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Summary. Inessentiality of large groups or, in other words, effectiveness of small
groups, means that almost all gains to group formation can be realized by
partitions of the players into groups bounded in absolute size. The approximate
core property is that all sufficiently large games have nonempty approximate
cores. I consider these properties in a framework of games in characteristic function
form satisfying a mild boundedness condition where, when the games have many
players, most players have many substitutes. I show that large (finite) games satisfy
inessentially of large groups if and only if they satisfy the approximate core

property.

1. Large games and economies with inessentiality of large groups

In diverse economic situations small groups of players can realize nearly all gains
to group formation. While arbitrarily large groups may form, they can realize little
more, per-capita, than small groups. To model such situations I introduce a
framework of games in characteristic function form. This framework has the
property that the opportunities open to a group of players depend continuously
on the “types” or “attributes” of the members of the group and these opportunities
are defined independently of the society in which the group is embedded. Also, if
there are many players in a game, then most players have many substitutes, a

* This paper focuses on a part of another paper, “Inessentiality of Large Coalitions and the
Approximate Core Property; Two Equivalence Theorems”, previously circulated as a University of
Bonn Sonderforschungsbereich Discussion Paper.

** The author is indebted to Roger Myerson for a very stimulating comment and the term “inessentiality
of large coalitions.” She is also indebted to Robert Anderson, Sergiu Hart, and Aldo Rustichini for
helpful conversations. She is especially indebted to Robert Aumann for many stimulating and
helpful discussions on research leading to this paper. The author gratefully acknowledges the
ﬁnal_'lcia] support of the SSHRC and the hospitality and support of the‘Universit}r of Bonn through
Sonderforschunpgsbereich 303.
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consequence of compactness and continuity assumptions. I define two properties:
Inessentiality of large groups means that almost all gains to group formation
can be realized by partitions of the players into groups bounded in absolute size
of membership. The approximate core property is that all sufficiently large games
have nonempty approximate cores. | show that large games satisfy the condition
of inessentiality of large groups if and only if they have the approximate core
property. This provides an asymptotic version of the Bondareva (1963) and Shapley
(1967) result that games have nonempty cores if and only if they are balanced,
with inessentiality of large groups replacing the balancedness condition.
The modelling assumptions underlying our framework are:

(1) Self-sufficiency: The opportunities available to a group of players depend only
on the group itself, and not on the society in which the group is embedded;

(2) Superadditivity: The opportunities realizable by two disjoint groups of players
are realizable by their union;

(3) Substitution: In games with many players most players have many substitutes:
(4) Boundedness of balanced payoffs: There is a uniform bound on core payoffs of
balanced covers of games.

The current model and results are restricted to economies with quasi-linear utilities

and to games with sidepayments (TU games and economies).' However, our

modelling assumptions are valid in diverse economic environments. For example,

they characterize economies with private goods, including ones with finite or infinite

dimensional commodity spaces, nonconvexities, indivisibilities, and nonmono-

tonicities, as well as economies with local public goods and/or coalition production.
Within our framework I relate the following 2 properties:

(A) Inessentiality of large groups: Almost all gains to group formation can be
realized by coalitions bounded in absolute size; and

(B) The approximate core property: All games with “enough™ players, in absolute
numbers, have nonempty approximate cores.

My result is:
Theorem. (A) is necessary and sufficient for (B).2

The result has implications for the theory of perfect competition. Instead of an
equivalence for outcomes for solution concepts, as in Debreu-Scarf (1963) or
Aumann (1964, 1975) for example, and instead of game-theoretic equivalence of the
structures of games and markets as in Shapley-Shubik (1969) and Wooders (1988),

' Partial analogues for games without sidepayments (NTU games) have been obtained in Wooders
{1990b); these are significantly more subtle and difficult in interpretation than those for TU games.

? Assumptions (1)-(4) together are typically not valid in models of economies with pure public goods
and in voting games; in these models (A) is also not satisfied and we can casily find examples where
the approximate core property does not hold. Condition (4) is technical and appears mild. It is milder,
for example, than the property that small subsets of players do not have significant effects on per-capita
payoffs of large populations.
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I show equivalence of properties of large games. These equivalence results together
raise the question of what is a minimal requirement to impose on games to ensure
that a large number of participants leads to competitive payofl/price taking behavi-
our ie., that the games are game-theoretically equivalent to large exchange
economies. An essential requirement is the nonemptiness of approximate cores of
games, analogous to the existence of approximate equilibrium of exchange
economies. Taking this requirement as a minimal standard, inessentiality of large
groups is a necessary and sufficient condition for large games to be analogous to
large economies.

The importance of the absence of effective collective action by large groups for
competition was emphasized by von Neumann-Morgenstern (1944), and their
discussion warrants repetition:

It is neither certain nor probable that a mere increase in the number of participants will lead in fine
to the conditions of perfect competition. The classical definitions of free competition all involve further
postulates besides the greatness of that number. E.g, it is clear that if certain great groups of
pacticipants — for any reason whatsoever — act together, then the great number of participants may not
become effective; the decisive exchanges may take place directly between large ‘coalitions,’ few in
number, and not between individuals, many in number, acting independently. Any satisfactory theory
will have to explain under whal circumstances such big ‘coalitions’ will or will not be formed - ie.,
when the large number of participants will become effective and lead to more or less free competition.

My results emphasize the importance of the smallness of essential group sizes. As
von-Neumann—-Morgenstern suggest, when large groups are essential, i.c., when
significant increased payoff can be achieved by forming very large, rather than
small coalitions, then we cannot expect perfect competition. Von Neumann-—
Morgenstern viewed the “role and size of ‘coalitions’ as decisive.” [ too view the
role of “coalitions” — “groups” in our terminology — and possible behaviours of
individuals within groups and in group formation as fundamental.

I consider the literature further in the concluding section of this paper. Also,
I discuss the relationship of this work to previous research and relate the
inessentiality of large groups condition to the boundedness conditions used
previously.

2. Games and pregames

2.1. Games

A game (in characteristic function form, with sidepayments) is a pair (N, v) where
N is a finite set (the set of players) and v is a function, the characteristic function
(of the game), from the set 2¥ of subsets of N to the set R, of nonnegative real
numbers, with the property that v(¢)=0. Nonempty subsets S of N are called

* deleted in proof. Ll




152 M. H. Wooders

groups (or coalitions) and the number v(S) is the worth of the group §. If the player
set N is understood, we frequently refer to v itself as the game. The game (or v) is
superadditive if for all disjoint subsets S and §' of N we have

v(Su S} = v(S) + v(S').

A payoff for the game (N, v} is a vector x in RY. The payoff is feasible if there
Is a partition of N into (disjoint) coalitions, say {S,,..., S}, such that

K
x(N) < 3. v(Sy)

where x(S) = Z x;, for any Sc N.
For e =0, the payoff x is the e-core of (N,v) if

x 1s feasible and
x(8) = v(5)— | S| for all coalitions §

where |S| denotes the number of elements in the set S. When ¢ = 0 the e-core is
simply the core. The e-core consists of those feasible payoffs with the property that
no group of players could be better off by ¢ per-capita.

2.2. Pregames

I introduce the framework of a pregame to formalize the notion of a large game
for which the worth of a group of players depends only on the attributes of its
members, and players with similar attributes are approximately substitutes.

Let £2 be a compact metric space, interpreted as a set of player “types™ or
attributes. A profile on {2, interpreted as a description of a group of players in
terms of the types of the members of the group, is a function f from 2 to the set
Z , of nonnegative integers for which the support of f,

support (f) = {wef: f(w) # 0}

is finite. A profile is simply a list of elements of £2 with each element w appearing
f(w) times. For each wef2, we interpret f(w) as the number of players of type w
or, in other words, with attributes w, in the group described by f. The set of profiles
on £2is denoted by P(£2). We write 0 for the profile which is identically zero, f < g
if f(w) = g(w) for each w in £2and for w, in £2 we write X for the profile given by

(@) = 0 if w#w,,
K= o o=,

By the norm of a profile, we mean

Ifl=% flo),

aEsuppart ()

which is simply the number of players in a group represented by f. This is a finite
sum since f has finite support.

A pregame is a pair (£2, ¥) where £2is a compact metric space, called the space
of attributes and W:P(§2)— R . , called the characteristic function (of the pregame),
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is a function with the following properties:

(2.1) ¥(0)=0,

(2.2) for every profile f in P(£2), for any £>0 there is a 6 >0 such that for all
Wy, W, in £2 with dist (w,,w,) < §, we have | P(f + x,,) — P + xo,)| < € (continuity),
(2.3) ¥()+ Pig) < ¥(f + g) for all profiles f and g (superadditivity), and an
additional property

(2.4) to be defined below.

The first condition means that a total of zero players can realize nothing. The
second is that players with similar attributes are nearly substitutes. This condition
and the compactness of £2 ensure the substitution property discussed in the
introduction. The third condition expresses the idea that an option open to a group
15 to split into several smaller groups.

We frequently refer to the elements of £2 as “types.” Players of the same type
are substitutes.

To derive a game from a pregame (£2, ¥), we specify a finite set N and a function
a:N — {2, called an attribute function. With any subset S of N we can then associate
a profile, prof(x|S), given by

prof (z|SH{w) = |a~ Yw) N S|.

Now we have a derived game (N,v,) where
v(S) = ¥(prof(«|S))

for each S = N.

“Equal-treatment™ payoffs to the players in a derived game will be used
frequently. Let (£2, ¥) be a pregame and let (N, v,) be a derived game. A payoff
x€RY has the equal-treatment property if x; = x; whenever a(i) = af j), i.e., identical
players are treated identically. Let {w,,...,w;} = a(N). A vector XeR” represents
a feasible payoff with the equal-treatment property if x, defined by

xi=x, if al)=w,

for each ieN is a feasible payoff for the game.

When Zf* = ffor some collection of profiles f, f,..., /%, not necessary distinct,
we say that the collection is a partition of f and each member of the collection is
called a subprofile of f. Obviously, a partition of a profile is related to a partition
of a set of players. If (N,v,) is a game derived from (£2, ¥¥), and {S,,...,5¢} isa
partition of N, then { f*:prof(«|S,} = f* k=1,...,K} is a partition of prof(x|N).

To define the boundedness condition used in this paper, I must first define the
balanced cover of the characteristic function ¥ of a pregame (£2, ¥). Let h be a
profile and let § be a collection of subprofiles of h, i.e., sef implies s is a profile
and s = h. The collection is a balanced collection of subprofiles of h if there are

positive real numbers, y, for sef such that ¥ y,s = h. For each profile h, define
xeff

P(k) = max ¥ 7, ¥(s)
B sef a
where the maximum is taken over all balanced collections § of subprofiles of h
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with weights y, for sep. The pair (£, ¥) is called the balanced cover pregame of
(£2, ¥). It follows immediately from the Bondareva (1963) and Shapley (1967) result
that any game determined by (£2, ¥) has a nonempty core. Since the core of a
game in characteristic form is convex, any game determined by (£2, ) has a payoff
in its core with the equal treatment property, called a balanced payoff. Also, it can
be shown that, given £>0, if a game (N,v,) derived from (£, ¥) and with
prof(«| N) = h has a nonempty &-core, then ¥P(h) —&| h|| £ W(h). It is required that
a pregame ({2, ¥) satisfies boundedness of balanced payoffs,

(2.4) there is a constant A such that for all prefiles f, for all balanced payoffs x
we have x, < A for all w, in support (f).

3. Equivalence

After introducing the required definitions, I state my resuit.

A pregame (£2, ¥) satisfies uniform inessentiality of large groups if, for any £ >0
there is an n,(g) such that for any profile f there is some integer K and profiles
..., [% with the properties that

(3.1) | f*I <n,(e) foreach k=1,... K,
K

(3.2) t; f*=f, and

(3.3) ‘F(f}—g‘f'{f"}{ﬂllfll-

This property means that given the measure of per-capita approximation (the &),
there is a bound n,(g) such that almost all per-capita gains to cooperation can be
realized by groups smaller in size than that bound; the games can be approximated
by ones with bounded essential coalition sizes.® In other words, bounded sized
coalitions can nearly exhaust gains to scale of coalition formation.

A pregame (€2, ¥) has the uniform approximate core property if, for any &> 0,
there is an integer n,(¢) such that for all profiles f with || f || = n,(¢), any derived
game (N, v,) with prof(a|N)= f has a nonempty e-core.

Theorem. Let (£2, W) be a pregame. Then (£2, ¥) satisfies inessentiality of large
groups if and only if it has the approximate core property.

In the next section I provide some examples illustrating the role of inessentiality
of large groups and in the following section, the proofs. First, however, I state
another theorem which is used in the proofs and a lemma. The theorem is a TU
form of the main result of Wooders (1983) for NTU games.

* deleted in proof.

* A game, or pregame, has bounded essential coalition sizes if all gains to group formation can be
realized by groups bounded in absolute size. This does not rule out the formation of large coalitions,
but it does mean that the formation of coalitions larger than the bound does not increase per-capita
payoll.




Inessentiality of large groups 135

Theorem (Wooders 1983). Let (2, ¥) be a pregame and let {(N",v,)} be a sequence
of derived games where the profile of N* equals n times the profile of N*. Then for
any £ >0 there is an integer n(g) such that for all n = nlg), the e-core of (N",v,) is
nonempty.

Our proofs also rely on the following lemma. Roughly, the lemma states that
when there is only a finite number of player types we can approximate a large
player set by a large number of players subsets, all with the same profile, plus a
number of “left:overs” who, in total, constitute only a small percentage of the total
player set. This allows us to apply the above theorem.

Lemma 1. Let (£2, V) be a pregame where 2 = {w,,...,wr}. Let ("} be a sequence
of profiles on £2 such that || f"|| = oo as n— oo and (/|| f" |} /™ = f for some function
f:2-+R .. Then given any ¢ > 0 there is a profile h and an integer n(e) such that
for each n = n(g), for some integer r, and some prafile I' we have

I
1™

Moreover, when f is rational-valued, we can take g=mf for some integer m such
that m [ is integer-valued.

rh+1"=f" and <E

Since the lemma is not surprising but has a long proof, we omit the proof and
refer the reader to Wooders (1990a) for details.

4. Boundedness conditions and inessentiality of large groups

In this section I relate some boundedness assumptions to the inessentiality-of-
large-groups condition. Also I indicate the use of these boundedness conditions
in previous work.

We obtain the following relationships, expressed by set inclusions, between
games satisfying the various properties.

Boundedness of Average Payoffs

Inessentiality of Large
Groups

Boundedness of
Marginal Contributions

Bounded Essential
Group Sizes
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4.1 Inessentiality of large groups, boundedness of average payoffs,
and the uniform approximate core property

A pregame (£2, V) satisfies boundedness df average payoffs if there is a constant

¥
C such that for all profiles f we have " }'T <

One might conjecture that boundedness of average payoffs suffices for uniform
inessentiality of large groups. Our next example illustrates that it does not.

Example 1. A “pregame” satisfying boundedness of average payoffs but not uniform
inessentiality of large groups.

The term pregame is in quotation marks here as this example also illustrates
a situation where (2.4) does not hold.

There are two types of players, 2= {w,,w,}. The “pregame” characteristic
function is given by

P(f) = flo)+ flo;) if flw,)>0 and flw,)>0
= 0 if flw)=0 or flwy)=0.

Let 5> 0 be given and suppose the bound n,(g,), given in the definition of
inessentiality, is B. Let f" be a profile defined by

fMo,)=1
Swz)=n—1

for each integer n. The “inessentiality” requirement is that for each n,
Y —; Y™ Z el

for some partition { f™} of /" where || /™| < n,(g,) for each nk. But ¥ Y(f™)<B

since only 1 member of the partition will contain the one player of type 1. Therefore,
satisfaction of “inessentiality” requires that n — B < g,n for every n sufficiently large;
this is impossible, so we have a contradiction.

We have the result, proven in the next section, that uniform inessentiality of
large groups implies boundedness of average payofls.

Proposition 1. Let (£2, '¥) be a pregame satisfying only (2.1) to (2.3). Suppose (12, V)
satisfies uniform inessentiality ﬂrf large groups. Then (£2, ¥) satisfies boundedness
of average payoffs.

Boundedness of balanced payoffs (2.4) implies boundedness of average payoffs.
I have not established any relationship between boundedness of balanced payolffs
and inessentiality of large groups. However, it is apparent that inessentiality of
large groups does not imply boundedness of balanced payoffs. The inessentiality
condition allows some games where very small percentages of players can receive
very large balanced payoffs.
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4.2. Inessentiality of large groups and boundedness
of marginal contributions to coalitions

A pregame satisfies boundedness of marginal contributions to groups if there is a
constant M such that ¥(f + x,) = ¥(f)+ M for all profiles f and all w in £2 The
property of boundedness of individual marginal contributions means that there
are no types of players who can make unbounded contributions to society.®

Boundedness of marginal contributions implies the uniform inessentiality of
large groups. This follows from Theorem 1 and the result of Wooders—Zame (1984)
that pregames satisfying boundedness of marginal contributions have the uniform
approximate core property. A direct proof using Lemma 1 is given in Wooders
(1990a).

Proposition 2. Let (£2, ¥) be a pregame satisfying boundedness of marginal contri-
butions. Then (£2, V) satisfies inessentiality of large groups.

It can also be shown that boundedness of marginal contributions implies (2.4),
boundedness of balanced payoffs.

The example below shows that the converse of Proposition 2 does not
hold.

Example 2. 4 pregame satisfying inessentiality of large groups but not boundedness
of marginal contributions.

Let (£2, ¥) be a pregame with |£2| = 1, i.e., there is only one type of player. In
this case, a profile is equivalent to a nonnegative integer number of players. We
define ¥ as follows

¥(0)=0
w(l)=1
¥(10)= 10
o 14+l L) -
¥(10%")=(10 ;(1+m+mz+ + 15 for k=12,....

and ¥(-) is defined as the least superadditive worth function satisfying the above,
foralln=1,2,..., ie, for any profile / we define ¥(f)=max Z¥(f*) where the
max is taken over all partitions of { f*} of f. It is easy to show that, for any k we
have ¥(10%") = max Z¥(10%), for all partitions {10’} of 10%*. Note that ¥ satisfies
inessentiality of large groups, which in this I-type case means simply that the per
capita benefit of increasing the size of a “large™ group by 1 additional player,
is bounded by 1/10*. However, the marginal contribution of a player to
a coalition containing 102" —1 players for any positive integer k is at least

® It has been suggested to the author that boundedness of marginal contributions is a condition on
individuals rather than on groups, and in that sense more appealing than inessentiality of large groups.
The view of this author is that the ability of an individual to contribufe to a group depends on the
group as much as the individual, so in that sense we view the two conditions as similar.
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Y0
10%*/10%, which becomes infinite as k becomes large. Also note that lim —ll[ﬂ“‘ )
R a
AR 1 : ¥(n) 1
1+ Y —=1+4-.Foranye > 0,forall nsufficiently large so that >14+-—¢,
= 1 9 n 9

and the & — core of a derived game with n players is nonempty.

4.3. The boundedness assumptions and nonemptiness of approximate cores

The approach taken in this paper has origins in the literature of exchange economies
and the core, especially Shapley—Shubik (1966, 1969), where the authors showed
that replica exchange economies with a finite number of types of goods and of
types of agents have nonempty approximate cores and also that (finite) games are
market games if and only if they are totally balanced. Wooders (1980, 1989) applies
extensions of the notions of approximate cores of Shapley-Shubik to economies
with local public goods, and introduces boundedness of essential coalition sizes
assumptions to ensure that the public goods are “local” rather than “pure”. These
assumptions enable core convergence results. The sorts of models of large games
used in this paper, separate from any specific underlying economy but satisfying
some form of inessentiality of large groups and substitution were introduced in
Wooders (1983) and have now appeared in several papers. To illustrate the roles
of various inessentiality of large groups conditions in these papers, we briefly
discuss these papers (in order of undertaking), and some other related litera-
ture below. More generally related literature is discussed in the concluding
section.

For replica games, one with a finite number of player types and constant pro-
portions of players of each type in each game, boundedness of average payoffs
suffices for the nonemptiness of approximate cores of a subsequence of the games,
even in the without sidepayments (NTU) case.” When we consider games with
finite types and just a limiting distribution of player types and use notions of NTU
approximate cores where a small set of players is ignored, an approximate core
with “left-overs” then, from Lemma | and Wooders result, we obtain nonemptiness
of approximate cores for all sufficiently large games in the sequence.® For TU
games, the need for a weaker approximate core concept does not arise; we have
nonemptiness of the ¢-core for all sufficiently large terms in the sequence with just
the assumption of boundedness of average payoffs.

Kaneko-Wooders (1982) focus on bounded essential coalition sizes and
highlight the basic properties of large replica games following from the lemma’s
in Wooders (1983). Specifically, for a sequence of “replications of a given game”,
with bounded essential coalition sizes, all members of a subsequence have nonempty
cores and this subsequence depends only on the size of the total player set and
not on the particular characteristic function.”

7 This is shown in Wooders (1983) (see especially Lemmas 3 to 8),

B See Wooders (1983) and also Shubik—Wooders (1983).

* This is a consequence of the fact that a sufficiently large replication of a minimal balanced collection
is a partition. This itself is a consequence of the fact that minimal balanced collections of sets have
rational weights, exploited in Wooders (1983). (The concept of a minimal balanced collection was
introduced by Bondareva (1963) and Shapley (1967).)
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A continuum game with finite coalitions, introduced in Kaneko—Wooders
(1986) embodies a limit form of inessentiality of large groups, since coalitions of
measure zero can realize all gains to coalition formation.!® The concept of a
measurement-consistent partition of the total player set into finite coalitions is
introduced; this concept extends the notion of an assignment or matching to a
continuum player set where admissible groups may contain only finite number of
members. With measurement-consistent partitions we can aggregate the behaviours
of finite coalitions while preserving the proportions given by the measure on the
total player set. The property of inessentiality of “large” coalitions (by which I
now mean ones of positive measure), along with an assumption of per-capita
boundedness, ensures the nonemptiness of the f-core of a continuum game with
finite coalitions.

Boundedness of marginal contributions was introduced in Wooders—Zame
(1984), where the finite-type assumption of the previous papers was relaxed. The
formulation developed there to extend the framework of Wooders (1983), with a
finite set of types, to a compact metric space of types is used in this paper.'? This
framework is very appropriate from our purposes. However, the assumption of
boundedness of marginal contributions is too restrictive for the purposes of this
paper because it is not necessary that players make bounded contributions to large
player sets, as we have illustrated.'* Also, we show there nonemptiness of the
individually rational e-core with the additional condition that for each player there
are “enough” similar players.!* We note that Wooders-Zame contains a number
of informative examples.

In Kaneko-Wooders (1990) we consider continuum games with bounded
coalition sizes and without the restriction to a finite set of player types of our
earlier paper.'® Nonemptiness of the core, called the f-core, is obtained without
any further restrictions. Thus we provide a new continuum limit model of
assignment games and their generalizations, including many-sorted assignment
games and games with bounded coalition sizes (cf, Gale-Shapley (1962) and
Shapley-Shubik (1982)), without the restriction to a finite number of types of our

10 See also Hammond-Kaneko-Wooders (1989) and Kaneko-Wooders (198%).

'! That research has had a major impact on the research of this paper since the continuum with finite
coalitions, along with previous results on economies with local public goods and on large games,
suggests the equivalence herein.

12 The NTU framework of Wooders (1983) is slightly more general, even in application to TU games,
than suggested here. However, the extent of this additional generality is not very significant and the
Wooders—Zame model is exactly an extension of my earlier (1979) TU version of the 1983 paper.

'3 Here the continuity notion used in the definition of the pregame is also less restrictive. Rather than
requiring uniform continuity as in Wooders—Zame, we use the pointwise continuity of the pregame to
obtain a uniform continuity on a subset of norm-bounded profiles. This suffices since inessentiality of
large groups means that we can approximate a pregame by one with norm-bounded essential profiles.
(See Note 5.)

4 Such a result could also be established with the assumption of inessentiality of large groups rather
than boundedness of marginal contributions. The result would need some additional assumption such

as one ensuring that each player has enough near-substlitutes. 4
'* This, and Kaneko—Wooders (1986) both treat games without sidepayments. The earlier paper has
only a finite number of types.
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earlier work.'® In situations with bounded essential coalition sizes and a continuum
of players the properties of large games satisfying inessentiality of large groups
emerge sharply.'” The current paper shows that we can approximate large games
satisfying mild conditions, such as boundedness of marginal contributions or
inessentiality of large groups, by ones with bounded essential coalition sizes.

Finally, we note that the properties of large games that we have studied, with
the exception of the approximate core property, do not appear to have been isolated
in the literature on core convergence in exchange economies. However, recent
examples showing asymptotic nonequivalence of the core and the competitive
allocations appear to depend on violation of inessentiality of large coalitions as
noted by Anderson (see Anderson (1990} and also Manelli (1989)).

5. Proofs
For a proof of Lemma 1 see Wooders (1990a).

Proof of Theorem 1.
Inessentiality of large groups implies the approximate core property:

We first show that inessentiality of large groups implies the approximate core
property. Suppose (£2, ¥) satisfies inessentiality of large groups and, to obtain a
contradiction, that (£2, ¥) does not satisfy the approximate core property. Let g, >0
be a real number with the property that for each n there is a profile ", || f*| > n,
such that the game (N",v,.) has an empty 3¢,-core, where prof(v,.|N")=f". We
denote this game simply by (N",v,) in the remainder of the proof.

For the proof of this part of the theorem, we consider first the finite-type case,
and then carry out the general case by approximating £ by a finite number of

player types.

Case 1. 2 Finite

Suppose £2 is finite, 2= {w,,...,ws}. By passing to a subsequence if necessary,
we can assume that (1/]| /™[|) /" — f, i.e., given & > O there is an n, sufficiently large
so that for all n 2 n,, for each w,e£2 we have

S,
(Fi

— J@)

<&

"6 A many-sorted assignment game is a composition of assignment games and includes multiple-sided
assignment games.

'" In particular, for TU situations we have equivalence of the f-core and the competitive payoffs of
the associated continuum market. This is almost immediate from the fact that the market games of
Wooders (1988) satisfy the conditions of Mas-Colell (1975) and he demonstrates an equivalence
result.
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From inessentiality of large groups, there is a bound B such that for any profile
g on £2, for some partition of g into sub-profiles, say {g*:k=1,...,K} where
llg* || = B for each g*, we have

'ﬂg}*;*f’(ﬂ"]{ﬂollﬂll-

Let M = max { { ¥(g) + 2Bey: | g || < B}, 35}
From Lemma 1 there is an integer n, and a profile h such that for each n = n,,
for some integer r, and some profile I" we have

1"l &
rsh+0"=f" and < —,
$ TAR
| &o : i ;
Since 21 ———and M > 2¢,, there is an n’ Z n, such that for all n = n',

i 2M
r.lhlleg> |I"IM, and r,>B.

We will use this fact to construct an gy-core payoff.

From Wooders (1983) for all sufficiently large n, say n= n* where, for later
convenience we choose n* = n', any derived game with profile of the total player
set equal to r,h has a nonempty &,-core containing a payoff with the equal-treatment
property. Let X, =(X,,,...,Xr,) represent such an equal-treatment payoff. Since
rollhlleo > || .|| M, we can construct a payoff z for the game (N, v,) (with the profile
of the total player set equal to f*) and with the properties that if ie N", and afi) = w,
is in the support of h, then z; = x,, — &, and if a(i) = w, is not in the support of h,
then z, = M. Specifically, let W denote a subset of N with profile r,h. For each i
in W define

z;=X,—& when afj=t, t=1,...,T.
and, for ieN", i¢ W
=M.

(It is not necessary to ensure that z(N") = v,(N"), but of course we could.)
We now show that z is in the 2z,5-core of the game (N”, v,). Suppose not. Then
for some coalition § = N", letting s denote the profile of S, we have

¥is) - ;Sz.- > 2g 5]

From the inessentiality of large groups, for some partition of S into groups
{S:k=1,...,K} with profiles s',...,s* respectively and with ||s*| < B for each k

we have
E Yi(s —E Zi+ el 5l
(s%) : :}” |

2 P(s)— Y z;> 2¢4ll 5.
ieS
This implies that for some k'

)= T 2> ol
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We cannot have the support of s* contained in the support of r,h; otherwise we
would have a contradiction to the fact that x, is in the g,-core of any derived game
with profile of the total player set equal to r,h for any n sufficiently large. We
cannot have the profile s greater than or equal to r h since || s* | < B < r,. Therefore
for at least one ieS¥, we must have z, = M. But then

P(s)— T z,< P(¥)— M + 2¢o(B— 1) <0,
fes*
since ¥(s*)+ 2e,B < M, which gives us a contradiction

Case 2. £2 not necessarily finite

We proceed by first constructing another sequence of games derived from a pregame
with bounded essential coalition sizes. Let n,(¢,) be the number given by the
definition of inessentiality of large groups for the pregame (£2, ¥). Define the
characteristic function I” by

r(f)=maxZ¥(f™)

where the maximum is taken over all partitions { ™} of f with || f™|| < n,(g,) for
each member /™ of the partition.

The assumption that (N", v,) has an empty 3&,-core implies that (N",y,) has an
empty 2¢q-core, for each n where y, is the characteristic function of the game
derived from the attribute function o" and the function I. Note that the set of
profiles with bounded norm (n,(¢,)) is a compact space (cf,, Mas-Colell (1975)).

We proceed by approximating the pregame (€2, I") by one with a finite number of
types. Let (0, 1) be such that if w,, w, €2 and dist(w,, w,) <, then |[I'(h + x,,,) —
I'h + x.,.)| < &g for every profile h on £2 with | h|| < n,(g). (This is possible from
the continuity of ¥ and the compactness of the set of profiles with bounded norms.)
Let {£2,,...,12;} be a partition of £2 such that, for each t=1,..., T, if wef, and
w'e£2, then dist(w, ') < 4. Select a point w,e12, for each r.

Now consider the sequence {f"}. We construct another sequence {g"} with
support (§") = {@,,...,®7}. Define g"w,) = ; [™w). Observe that

IF(fM)—T(g) =ellg"ll

(This can be demonstrated by successively subtracting profiles y,, from f*, where
w® is in the support of f", and adding profiles y., where @’ is in the support
of g", with dist(w, ®’) < d, and applying continuity until we reach the profile g".)

For all sufficiently large n, a game with the profile of the total player set equal
to g" and characteristic function derived from I has a nonempty g,-core. Let x
represent an equal-treatment payoff in the g,-core of such a game. Define a payofl
y for the game (N",y,) by y, = X, — & if a™i)ef2, for each ie N". Observe that the
payoff y is feasible:

!ZN WET(G) — el M I =M

(=) n

Also, y cannot be “3g,-improved upon”. To show this, suppose § =« N" and
}:m < 74(8) — 3, /S|
ES
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Let s denote the profile of S. Let g denote a profile defined by
glw,) = Y siw) foreach w,=t=1,...,T.

¢ support (3} L)

Now ¥ y; < 7,(8) — 3¢,/ S| implies that ¥ (%, — go)g(w,) < 7,(S) — 2¢4|S]. From conti-
ies

t
nuity, y,(S)=1"(s)<I'(g)+¢llgll. We then have } (X, —eolg(w) =}, X,g(e) —
T f
tollgll < I'(g)— 2eq4llgll, which is a contradiction to the fact that x is in the
eg-core of a game derived from (£2, I') with profile of the total player set equal
to g".

The approximate core property implies inessentiality of large groups: Suppose the
assertion is false. Then for some g, > 0, for each integer n there is a profile [ such
that for any partition of /" into subprofiles { /™'} with | f™|| < nforeach i, we have

UM - L¥U™) >l )

We consider first the case where £2 is a finite set, 2 = {w,,...,w;}. We can
assume without loss of generality that {(1/]| f*||)f"} converges, say to a func-
tion f.

For each profile f" let x" be a balanced payoff. From the boundedness
assumption (2.4), by passing to a subsequence if necessary we can suppose that x"
converges to a payoff x*.

We now show that for all n sufficiently large (x* — 2g,1,)- /" = ¥(f"). This
follows from the approximate core property since, for all n sufficiently large, we
have

x* f7—2eg || Ml S x™ " — g || S7]
= W(f") —&l /"] (since x™ "= P(f"))
- < ¥P(f") (from the approximate core property).
Observe that for all n sufficiently large we also have
Y(f" < P(f") (from the definition of the balanced cover)
= x" f*
=x* "+l .

Suppose that n, is sufficiently large so that the above inequalities hold for all n = n,,.
Let z = max x* + g, (where g, is added into the expression for z simply to

r
ensure that z # 0). From Lemma 1 we can select a profile h with the property that
for all nsufficiently large, say all n 2 n,, for some integer r, and profile m" we have

|m™ |z
™
We can assume that n, = ny. This implies that for all n 2 n,,

P(f") — Zr, P(h) S x* "+ o | ]| — rax*h + 2e0m, | 1]
< x*m" + 301 < deo |l 17

ff=rh+m" and

Eq-
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since x*- f"+ g, || /" | = ¥(Sf™)foralln=nyand n; Zng, — F(h)< —(x*-h—2¢,[ k)
m'x* _ | m"|z

Vil

< 5. We now have

YU?)_Zr,¥()
1 I i

This yields a contradiction since | k| < n for all n sufficiently large and a partition
containing r, profiles h and (f"(w,) — r.h(w,)) profiles y, for each ¢ satisfies the
required condition. Specifically, for all n = n,, we have

V(f") —r, ¥(h) — Zm"(@,) ¥(1o,) = 4é0.

u-.

Case 2. {2 not necessarily finite. This case can be treated the same way as the
extension of the finite-type case to the general compact metric space of consumer
types was treated previously. Thus I leave the details to the reader. [J

Proof of Proposition 1. Consider the finite type case, 2 = {w,,...,wy} and sup-
pose the Proposition is false. In particular, let { f"} be a sequence of profiles such
that

(")
[

Note that it cannot be that || f*| is bounded. Let £ be given, 0 <& < 1, and let n,(g)
be the parameter in the definition of inessentiality of large profiles. Let

=n for each n.

A
5=_sup {¥(/)2},
1rl=nile)
Since the set of profiles with norms less than or equal to n,(g) is compact, this
supremum exists. Then we have ¥( /") — Z Y(f™) <e| f*| for some collection of

subprofiles { ™:k=1,...,K} of f" with

| f™|| <ny(e) for each nk,

KA
Eftt=f" and Y¥(f")<e| " +—-

(M KA A : : ;
—=<t+ —<e+-=<Asince KA A| f"| and since A is
I 21 7 2
greater than 2¢. This is a contradiction.
The extension to the case where £2is a compact metric space can be obtained

similarly to this extension in the proof of Proposition 1. O

and therefore

6. Discussion of the literature and conclusions

The idea that large economies with small effective coalitions, firms, or groups have
competitive properties has appeared in other forms in the literature. One example
is the work of Novshek-Sonnenschein (1979) and others on economies with
production and small-capacity firms with roots going back to Joseph (1932).
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Literature on coalition production where productive coalitions become relatively
small as the economy grows large includes B6hm (1974) and others. A third sort
of model with small effective groups (clubs or communities) for the production
and/or consumption of public goods was initiated by Tiebout (1956) and Buchanan
(1965).'® Tiebout (1956) conjectured that when public goods are “local” rather
than pure, then competitive forces lead to “market-like” outcomes.'? Exploiting
the feature that in economies with local public goods and sufficient crowding or
congestion, all or nearly all gains to group size can be realized by relatively small
groups, Wooders (1978, 1980, 1989) demonstrated the “Tiebout Hypothesis” by
exact core-equilibrium equivalence in Wooders (1978) (with one private good),
and, in (1980, 1989) by core convergence. Tomasiunas (1990) obtains a core
convergence result without crowding but when the numbers of agents who can
Jointly consume the public goods are bounded.

It is perhaps of greatest importance that private goods exchange economies
have the property of inessentiality of large groups. The importance of the
effectiveness of small coalitions for the study of the core and the competitive
equibbrium was clearly recognized by Mas-Colell (1979) who showed an
“inessentiality of large coalitions” from the perspective of “improvement” or
“blocking” in exchange economies. The inessentiality of large coalitions for both
improvement and feasibility was shown by Hammond-Kaneko—-Wooders (1989)
and Kaneko—Wooders (1989) (see also Kaneko-Wooders (1986, Lemma 3.2)).2°

The role of inessentiality of large groups in economies with infinite dimensional
commodity spaces has not yet been adequately studied. Of course if large groups
are essential, convergence of the core to the competitive allocations would be quite
surprising (and probably a very delicate phenomenon). Because economies with
infinite dimensional commodity spaces are quite subtle, I note that the application
of our framework to such a model may be most transparent for economies of the
type introduced by Mas-Colell (1975), but with finite player sets and quasi-linear
utilities. In this case, when agents are endowed with commodity bundles containing
only finite numbers of distinct commeodities, my framework can be applied. This
is partially because the space of attributes is analogous to Mas-Colell’s space of
commodity characteristics. (To relax the restriction of quasi-linear utilities,
however, may be quite difficult, as the examples of Anderson (1990) suggest.)

I conclude with a caution to the reader. Rather than situations where aimost
all gains to group formation can be realized by groups bounded in size, it may be

'® For this author, the importance of the inessentiality of large groups in internalizing externalities
emerges more sharply in Tiebout's work than in Buchanan's. Although Buchanan considered clubs as
the result of individual optimising behaviour, I have not found any reference to the “market-like”
optimality of the outcome.

' Another author who appears to have had similar ideas to those of Tiebout and Buchanan is Allais
{(1942). Allais considered the “market mechanism™ primarily in terms of supporting prices in situations
with essential groups.

*® To the author of this paper, the emphasis of the continuum models initiated by Aumann, with
coalitions of positive measure, is quite distinct. We intend to discuss this, alxl:l Aumann's “Equivalence
Principle” elsewhere.
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the case that because of group formation costs, for example, only small groups
form. Without modelling such group or coalition formation costs explicitly, we
may take them into account by allowing only relatively small coalitions to form.
In such situations we may still be able to apply the results of this paper to the
game with restricted coalition sizes, even though it is not necessarily the case that
all gains to coordination of group activities can in fact be realized by the cooperative
activities of individual players in small groups and that the competitive equilibrium
is Pareto-optimal.
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