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A FURTHER EXTENSION OF THE KKMS THEOREM

YAKAR KANNAI AND MYRNA H. WOODERS

Reny and Wooders (1998) showed that there is some point in the intersection of sets in
Shapley’s (1973) generalization of the Knaster-Kuratowski-Mazurkiwicz Theorem with the prop-
erty that the collection of all sets containing that point is partnered as well as balanced. We
provide a further extension by showing that the collection of all such sets can be chosen to
be strictly balanced, implying the Reny-Wooders result. Our proof is topological, based on the
Eilenberg-Montgomery Fixed Point Theorem. Reny and Wooders (1998) also show that if the col-
lection of partnered points in the intersection is countable, then at least one of them is minimally
partnered. Applying degree theory for correspondences, we show that if this collection is assumed
to be zero-dimensional, then there is at least one strictly balanced and minimally partnered point
in the intersection. Our approach sheds a new geometric-topological light on the Reny-Wooders
results.

1. Introduction. A solution concept for a game (or economy) is said to be partnered
if it exhibits no asymmetric dependencies between players. That is, whenever player i
needs the cooperation of player j or is dependent upon the actions of player j, then j
similarly depends on i. Partnership is a natural property to require of a solution concept.
If a solution concept is not partnered, there is an opportunity for one player to demand
a larger share of the surplus from another player. Thus, a payo> that is not partnered
exhibits a potential for instability. Consider, for example, the two-person divide the dollar
game. If the two players can agree on the division, the dollar is divided between them
according to the agreement. Any division giving the entire dollar to one player displays
an asymmetric dependency since the player receiving the dollar needs the cooperation of
the player who gets nothing.
The de?nition of partnership is based on the notion of partnered collections of subsets

of a ?nite set. Let N be a ?nite set, whose members are called players. A collection
of coalitions, consisting of subsets of N , is partnered if each player i in N is in some
coalition in the collection, and whenever i is in all the coalitions containing player j,
then j is in all the coalitions containing player i. If i is in all the coalitions containing j,
we think of this as a situation in which j “needs” i. Thus, a collection of coalitions is
partnered if and only if whenever a player i needs another player j, then j similarly
needs i.
Let x∈RN be an outcome of an |N |-person game. A coalition S ⊂N is a supporting

coalition for x if its part of x, xS , can be achieved by cooperation of the membership
of S alone. The supporting collection for x is the set of all supporting coalitions for x.
The outcome x is partnered if it is feasible and if its supporting collection is partnered.
To illustrate a partnered outcome for a game, we return to the divide the dollar example.
An outcome in which one player receives the entire dollar is not partnered since the
only coalition that can a>ord to give him the dollar is the two-player coalition, whereas
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the player getting nothing has an alternative coalition, the coalition consisting of himself
alone. Thus, the player receiving the dollar needs the player receiving nothing, but the
player receiving nothing needs only himself.
A collection of subsets of a set N is minimally partnered if it is partnered and if

for each player i there does not exist another player j such that j is in all the subsets
containing player i. In other words, no one needs anyone else in particular. The only
minimally partnered outcome for the divide the dollar game is that which assigns each
player zero.
An outcome x is in the partnered core of a game if it is in the core (that is, it is feasible

for the grand coalition and not in the interior of the feasible set for any coalition) and if,
in addition, it is partnered. For the divide the dollar game, any division of the entire dollar
that gives both players a positive share is in the partnered core. There are no outcomes
in the partnered core that are minimally partnered since, to have a positive payo>, each
player needs the other.
The partnership property was originally introduced to study solution concepts of games

and economies and has now been applied in a number of papers; see, for example,
Maschler and Peleg (1966), Maschler, Peleg, and Shapley (1972), Albers (1979), Bennett
(1983), Bennett and Zame (1988), Reny and Wooders (1995), and Page and Wooders
(1996). Recently, it has been shown that balanced games with and without side payments
have nonempty partnered cores (see Reny, Winter, and Wooders 1993, Reny and Wood-
ers 1996). As an outgrowth of Reny and Wooders (1996), Reny and Wooders (1998)
extend Shapley’s (1973) generalization of the Knaster-Kuratowski-Mazurkiwicz Theorem
by showing that there is some point in the intersection (whose nonemptiness is assured
by the theorem) with the property that the supporting collection for that point is partnered
as well as balanced. Reny and Wooders (1998) also show that if the intersection of a
balanced and partnered collection satisfying the conclusion of their extension of Shapley’s
generalization of the KKM Theorem contains at most countably many points, then at least
one of these balanced collections is minimally partnered.
In this article, we ?rst obtain a further extension of Shapley’s generalization of the KKM

Theorem, showing that the collection of sets satisfying the conclusion of the theorem can
be chosen to be strictly balanced — the weights on the sets in the balanced collection
are all positive. Our argument involves the Eilenberg-Montgomery Fixed Point Theorem
for set-valued mappings. It is well known (cf. Shapley and Vohra 1991) that properties
of closed coverings indexed by coalitions may be inferred from ?xed point theorems for
convex-valued correspondences. Here we are dealing with partnerships of certain balanced
collections of coalitions (indexing closed coverings) and make use of nonconvex-valued
correspondences (satisfying the assumptions of Eilenberg-Montgomery). Assuming that
the set of partnered and balanced points is zero-dimensional (weaker than countable), we
obtain a stronger result on minimal partnership than Reny and Wooders (1998): There
is at least one point in the intersection of a strictly balanced and partnered collection
of sets that is minimally partnered. We use a version of degree theory valid for set-
valued maps (correspondences), where the image of a point is not necessarily convex. In
addition, we obtain the same conclusion under the assumption that the closure of the set
of strictly balanced (and hence partnered) points is of zero dimension. We demonstrate,
by examples, that the set of partnered and balanced points may be countably in?nite with
closure of positive dimension or may be uncountably in?nite with dimension zero. Thus,
our result showing the existence of a strictly balanced and partnered collection of sets
that is minimally partnered provides a meaningful extension of the Reny and Wooders
result on minimal partnership.
The results of this article induce similar game-theoretic results to those of Reny and

Wooders (1996). From our extension of Shapley’s generalization of the KKM Theorem,
it follows that for a balanced game there is a point in the core with the property that the



A FURTHER EXTENSION OF THE KKMS THEOREM 541

supporting collection of sets for the said point is strictly balanced. From strict balancedness
if follows that the point in the core is partnered. Our minimal partnership results on
closed coverings also apply to partnered cores of games. We show by an example that
the minimally partnered core of a game may be homeomorphic to the Cantor set.
Concerning mathematical methods, note that the Eilenberg-Montgomery Fixed Point

Theorem for set-valued maps is deeper than the Kakutani ?xed point theorem “cus-
tomarily” used in game theory and economics. (Exceptions include Debreu 1952, Mas-
Colell 1974a, Keiding 1985, and McLennan 1989a.) Degree theory for nonconvex valued
correspondences may appear not to be entirely standard; see, however, Borisovitch (1980)
for an exposition, Mas-Colell (1974b) for an accessible account of the key lemma required
for development of the theory, and McLennan (1989b), where the lemma is applied for
the construction of a Leftschetz ?xed point index. Degree theory for (single-valued) func-
tions, however, has been more extensively employed in the past in game theory and
mathematical economics.

2. De�nitions and the main results. The concept of a partnered collection of sets
was introduced in Maschler and Peleg (1966, 1967), who used the term “separating col-
lection.” We follow the terminology of Bennett (1983). Let N = {1; 2; : : : ; n} and let P
be a collection of subsets of N . For each i in N let

Pi = {S ∈P : i∈ S}:
We say that P is partnered if for each i in N the set Pi is nonempty and for every i
and j in N the following requirement is satis?ed:

if Pi ⊆Pj then Pj ⊆Pi;

i.e., if all subsets in P that contain i also contain j, then all subsets containing j also
contain i. Let P[i] denote the set of those j∈N such that Pi =Pj. We say that P is
minimally partnered if it is partnered and for each i∈N; P[i] = {i}.
Let N denote the set of nonempty subsets of N . For any S ∈N, let eS denote the

vector in �N whose ith coordinate is 1 if i∈ S and 0 otherwise. For ease in notation, we
denote e{i} by ei.
Let O denote the unit simplex in �N . For every S ∈N, de?ne

OS = conv{ei : i∈ S}; and

mS =
eS

|S| ;

where “conv” denotes the convex hull and |S| denotes the number of elements in the set S.
Let P be a collection of subsets of N . The collection is balanced if there exist non-

negative weights {
S}S∈P such that ∑
S∈P


SeS = eN

and the collection is strictly balanced if all weights 
S can be chosen to be positive.
It is easy to show that a strictly balanced collection of sets is partnered.

PROPOSITION 1. Let P be a strictly balanced family of subsets of N . Then P is part-
nered.

PROOF. Suppose that P is strictly balanced but not partnered. Then there exists i; j∈N
such that for all S ∈P with i∈ S it holds that j∈ S, but there exists T ∈P with j∈T; i =∈T .
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Let {!S : S ∈P} denote a set of strictly positive balancing weights for P. Because the
weights !S on all the sets in P are strictly positive,

∑
S : i∈S !S¡

∑
S : j∈S !S =1. This is

a contradiction.
Observe that the collection P is balanced if and only if

mN ∈conv{mS : S∈P}:
Reny and Wooders (1998) have obtained the following two results:

THEOREM A. Let {CS : S∈N} be a collection of closed subsets of O such that⋃
S⊆T

CS ⊇OT for all T ∈N:(1)

Then there exists x∗∈O such that the supporting collection for x∗; S(x∗) ≡ {S∈N :
x∗∈CS}; is balanced and partnered.

REMARK 1. Observe that the supporting collection for the point x∗ consists of all those
coalitions S such that x∗∈CS .

THEOREM B. Let {CS : S∈N} be a collection of closed subsets of O satisfying (1).
If the set

{x∗∈O :S(x∗) is balanced and partnered}
is at most countable; then at least one x∗∈O renders the supporting collection S(x∗)
balanced and minimally partnered.

The next two theorems, used in our extension of Reny and Wooders’ results, are topo-
logical and essentially ?xed point theorems for correspondences. Theorem 1 implies a
strengthening of Theorem A of Reny and Wooders (1998). Under somewhat di>erent
assumptions, Theorem 2 yields a stronger conclusion than those of Theorem B of Reny
and Wooders (1998).

THEOREM 1. Let F(x) be a correspondence from O into the closed convex subsets of
O such that

F is upper-hemicontinuous;(2)

for all x∈B (:= @O); F(x)⊆B and g(x) =∈F(x); where g is the

antipodal map; g :B → B;(3)

and

F assumes a �nite number of distinct values:(4)

Then there exists x∈O such that mN ∈rel int(F(x)).
(As usual; rel int(K) means the interior of K in the a*ne submanifold spanned by K:)

Recall the de?nition of zero (topological) dimension (Hocking and Young 1961, Spanier
1966, Arkhangel’skiQR and Pontryagin 1988): A topological space X has dimension zero if
for every p∈X there is an arbitrarily small open set with empty boundaries containing p.
It is well known (cf., Hocking and Young 1961, p. 147, or Arkhangel’skiQR and Pontryagin
1988, pp. 106–109) that among compact spaces the zero-dimensional spaces and the totally
disconnected spaces are identical.
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THEOREM 2. Let F(x) be a correspondence from O into the closed convex subsets of
O satisfying (2), (4) and:

for all x∈B; x∈OS ⇒ F(x)⊆OS (S ⊆N ):(5)

Assume also that

The closure of the set {x :mN ∈rel int(F(x))} is zero-dimensional:(6)

Then there exists x∈O such that F(x) has nonempty (n− 1)-dimensional interior and
mN ∈ int(F(x)). (By “int” we mean the “interior in the topology on the hyperplane∑n

i=1 xi =1.”)

The following proposition, establishing a link between correspondences and closed
coverings, is derived from the Shapley and Vohra (1991) proof of the KKMS Theorem.
A proof of the proposition is provided in the appendix.

PROPOSITION 2. Let {CS : S ⊆N} be a family of closed subsets of O satisfying (1).
Then there is a homeomorphism ’ of O into the interior of O and a correspondence F
from O into the closed convex subsets of O satisfying (2), (4), (5) and such that

F(y)= conv{mS :’−1(y)∈CS} for ally∈’(O);(7)

and

if mN ∈F(x) then x∈’(O):(8)

The following theorem shows that the point satisfying the conclusion of the statement of
the KKMS Theorem can be chosen so that its supporting collection is strictly balanced. By
Proposition 1, strict balancedness implies partnership so the theorem implies Theorem A
of Reny and Wooders (1998). To show that our theorem is a strengthening of the prior
result, we must exhibit a collection of sets that is partnered but not strictly balanced. It
is well known (Maschler, Peleg, and Shapley 1972) that there exist partnered collections
that are not balanced. Let P be such a collection for an n-person game. Then {N}∪P
is balanced and partnered, but mN =∈ rel int[conv{mS}S∈P∪{N}]. One may even choose
P to be minimally partnered. Then P∪{N} is balanced and minimally partnered, but
again mN =∈ rel int[conv{mS}S∈P∪{N}]. As a concrete example, take N = {1; 2; 3; 4; 5} and
P= {{1; 3}; {1; 4}; {1; 5}; {2; 3}; {2; 4}; {2; 5}}. The collection P is partnered and, in fact,
minimally partnered. The collection P∪{N} is balanced and minimally partnered, but
the only possible collection of balancing weights 
S must assign zero weight to all sets
S �=N and weight 1 to N .

The next theorem follows from Theorem 1 and Proposition 2:

THEOREM 3. Let {CS : S ⊆N} be a family of closed subsets of O such that (1) is
satis�ed. Then there exists x∈O such that the supporting collection S(x)= {S : x∈CS}
is strictly balanced.

PROOF. Let F be the map whose existence is stated in Proposition 2. Note that since
F satis?es condition (5) it also satis?es condition (3). By Theorem 1 there exists y∈O
such that mN ∈rel int(F(y)), and by (7) and (8) there exists x∈O (x=’−1(y)) such that

mN ∈ rel int[conv{mS : x∈CS}]:(9)

Clearly, P := {S : x∈CS} is balanced. Moreover, it is strictly balanced. In fact, let S ∈P;
S �=N (without loss of generality, P �= {N}) and let ‘S denote the line joining mN
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and mS . Then mN is contained in the interior of the interval ‘S ∩ conv{mS}S∈P. Hence
there exists an aS ∈ conv{mS}S∈P and positive numbers �S ;  S such that �S +  S =1
and mN = �SmS +  SaS . We may average these equations with positive weights over
S ∈P; S �=N and obtain mN as a convex combination of the points mS; S ∈P, with pos-
itive weights for each S �=N .
The following consequence of Theorem 2 is related to Theorem B of Reny and Wooders

(1998).

THEOREM 4. Let {CS : S ⊆N} be a family of closed subsets of O such that (1) is
satis�ed. Assume that the closure of the set

{x : {S : x∈CS} is strictly balanced}
is zero-dimensional. Then there exists x∈O such that the collection {S : x∈CS} is min-
imally partnered and strictly balanced.

PROOF. Let F be the map whose existence is stated in Proposition 2. Note in particular
that F satis?es (5), and the assumptions imply that (6) is satis?ed as well. Hence there
exists (by Theorem 2) x∈O such that mN ∈ int(D(x)) [where D(x)= conv(mS : x∈CS)].
If P= {S : x∈CS} is not minimally partnered, then there exists a pair i; j such that
for every S ∈P either i and j both belong to S, or neither belongs. Hence for all
y∈D(x); yi =yj. Thus int(D(x)) is empty, a contradiction.
Comparing the assumptions of Theorem 4 with those of Reny and Wooders (1998)

Theorem B, it appears that neither is stronger than the other. On the one hand, a count-
able set (as assumed in Theorem B) may be dense and hence have closure of positive
dimension; on the other hand, a set of dimension zero (as assumed in Theorem 4) may be
uncountable (for example, a Cantor set on a line). Example 1 illustrates a situation cov-
ered by Theorem B but not by Theorem 4, and Example 2 illustrates a situation covered
by Theorem 4 but not by Theorem B.
EXAMPLE 1. For a two-dimensional simplex, let m denote the barycenter and let C{i} =

{ei} for i=1; 2; C{i; j} =conv{ei; e j; m} for i; j=1; 2; 3, and C{1;2;3} =conv{e1; e2; e3}.
For C{3} ?rst select a sequence Q in the interior of C{1;2} such that the set of limit
points of Q is the interval [e2; m]. Then set C{3} to be the union of {e3} with the
closure of Q. The set of partnered points in the intersection, ∩S CS , consists of Q and m,
a countable in?nite set, whose closure is one-dimensional.
EXAMPLE 2. Let C denote the Cantor set. Denote by E the union of intervals removed

in an even step (that is, numbers for which the ?rst “1” in the ternary expansion appears
in an even place) and let O be the union of intervals removed in an odd step. Let C1

denote the union of E and C, let C2 denote the union of O and C, and let C12 be C.
Note that the sets CS satisfy the conditions of the KKMS Theorem. The set of partnered
points C is neither countable nor a (topological) continuum.
REMARK 2. Note that the statement “mN ∈ int(D(x)),” established in the proof of

Theorem 4, is stronger than the conclusion of the theorem. The statement means that
every hyperplane through mN (except for

∑n
i=1 xi =1) has vectors eS with x∈CS on both

sides.
Our ?nal result is a proper strengthening of Theorem B of Reny and Wooders (1998).

Because a formulation for correspondences (similar to Theorems 1 and 2) is cumbersome,
we state here the result only for closed coverings.

THEOREM 5. Let {CS}S⊆N be a closed covering of O such that (1) is satis�ed. If
the set {x∗ ∈O :S(x∗) is balanced and partnered} is zero-dimensional; then at least
one x∗ ∈O renders S(x∗) strictly balanced and minimally partnered. Moreover; mN ∈
int[conv{mS}S∈S(x∗)].
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3. Partnered cores of games. In this section we obtain, as a corollary to Theorem 3,
the Reny-Wooders result that a balanced game has a nonempty partnered core. We also
present an example showing that the partnered core may be homeomorphic to the Cantor
set. This resolves the question raised in Reny and Wooders (1998) whether it is possible
that the set of points in the partnered core is either countable or zero-dimensional but
not ?nite. We use standard notation, de?nitions, and terminology — see, for example,
Shapley and Vohra (1991) and Reny and Wooders (1996).
Let (N; V ) be a game and let x∈�N be a payo> for (N; V ). A coalition S is said

to support the payo- x if x∈V (S). Let S(x) denote the set of coalitions supporting
the payo> x. The payo> x is called a partnered payo- if the collection S(x) has the
partnership property. The payo> x is minimally partnered if it is partnered and if the set
of supporting coalitions is minimally partnered. Note that partnered payo>s need not be
feasible.
Let P(N; V ) denote the set of all partnered payo>s for the game (N; V ). The partnered

core is denoted by C∗(N; V ) and is de?ned by

C∗(N; V )=P(N; V )∩C(N; V );

where C(N; V ) denotes the core of the game (N; V ).
A game is balanced if for any balanced collection  ⋂

S∈ 
V (S)⊆V (N ):

With Theorem 3 in hand, it is easy to prove that there is a point in the core of a
balanced game whose supporting collection is strictly balanced. From Proposition 1, this
implies the Reny-Wooders result that a balanced game has a nonempty partnered core.
For simplicity, our proof makes use of two properties of games as de?ned by Shapley
and Vohra (1991) and Reny and Wooders (1996), namely, (i) for each S ⊆N; V (S) is
bounded from above, and (ii) for each i∈N; V ({i})¿0. With some additional work,
another version of Scarf’s proof, not requiring these two properties, as in Kannai (1992,
pp. 376–377), could be used.

THEOREM 6. Let (N; V ) be a balanced game. Then there is a point y in the core whose
supporting collection S(y)= {S ⊂N :y∈V (S)} is strictly balanced.

PROOF. Recall that in the proof of Scarf’s Theorem on nonemptiness of the core as in
Shapley and Vohra (1991, p. 111; compare Kannai 1992, pp. 376–377) a certain function
f : O→�N and certain closed subsets CS of a simplex are constructed with the properties
that
(a) f(x) �∈ int V (S) for any S ⊆N , and
(b) if f(x)� 0, then for each coalition S the statements x∈CS and f(x)∈V (S) are

equivalent.
The sets CS satisfy the assumptions of Theorem 3, and thus x can be chosen so that
its supporting collection S(x)= {S : x∈CS} is strictly balanced. Let y=f(x). It follows
that the collection of sets S(y)= {S :y∈V (S)} is strictly balanced, and since (N; V ) is
a balanced game and y �∈ int V (S) for each S ⊆N; y is in the core.
Theorems 4 and 5 similarly induce theorems on the set of minimally partnered core

outcomes of games.
The following example illustrates a balanced game whose partnered core is homeomor-

phic to the Cantor set.
EXAMPLE 3. A marriage and adoption game. We consider a game with 12 players.

To make clearer the roles of players in the game, we’ll provide some interpretation.
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Players 1 and 3 are adult males and players 2 and 4 are adult females. The remaining
players are children, who may be adopted by male-female pairs who marry. Any married
couple has the opportunity to adopt either one of two children. However, there are com-
plicated adoption rules so that di>erent pairs of married players cannot adopt the same
children. Players 1 and 2, if they marry, may only adopt a child from the set {5; 6},
players 3 and 4 may only adopt a child from the set {7; 8}, players 1 and 4 may only
adopt from the set {9; 10}, and players 2 and 3 may only adopt from the set {11; 12}.
Let us call a coalition consisting of a male-female pair and one of their potential children
a family.
In the following, as in Example 2, C denotes the Cantor set, E denotes the union

of intervals removed in an even step, and O denotes the union of intervals removed
in an odd step. Each player alone may only realize a outcome of 0. That is, for all
i∈N = {1; 2; : : : ; 12},

V ({i})= {x∈�12 : xi ≤ 0}:
Also,

V (1; 2; c)= {x∈�12: there exists y∈C∪O with x1 ≤y; x2 ≤ 1− y

and xc satis?es x1 + x2 + xc ≤ 1} for c∈{5; 6}:
V (3; 4; c)= {x∈�12: there exists y∈C∪E with x3 ≤y; x4 ≤ 1− y

and xc satis?es x3 + x4 + xc ≤ 1} for c∈{7; 8}:
V (1; 4; c)= {x∈�12: there exists y∈C∪O with x1 ≤y; x4 ≤ 1− y

and xc satis?es x1 + x4 + xc ≤ 1} for c∈{9; 10}:
V (2; 3; c)= {x∈�12: there exists y∈C∪E with x3 ≤y; x2 ≤ 1− y

and xc satis?es x2 + x3 + xc≤1} for c∈{11; 12}:
Let us call the above coalitions consisting of individual players and families basic

coalitions. For any nonbasic coalition S, de?ne V (S) as the minimal set that renders the
game (N; V ) superadditive and comprehensive. Equivalently, de?ne

V (S)=
⋃
P(S)

⋂
S′∈P(S)

V (S ′);

where P(S) denotes a partition of S into basic coalitions and the union is taken over all
such partitions.
We claim that the game (N; V ) is balanced. To show this, without loss of generality

we can restrict attention to balanced collections containing only basic coalitions. Observe
that for any balanced collection  that is a partition, it follows from the de?nition of
V (N ) that

⋂
S∈ V (S)⊂V (N ). If the balanced collection  is not a partition, then at least

one basic coalition S ∈  must have a positive weight ! less than 1. Let us suppose
that, for a given balanced collection  , not a partition, there is an outcome x for which
x∈ ⋂

S∈ V (S) and x �∈V (N ). Because the outcome giving each player zero is in V (N ),
it follows that x �=0. Because x �=0, there is at least one family, say F , in the balanced
collection  and for at least one member i of the family, xi¿0. If all families in the
collection  have balancing weights equal to 1, then the balanced collection contains a
partition and we have a contradiction to the de?nition of V (N ). Thus, let us suppose
that the family F has balancing weight ! where 0¡!¡1. This implies that the child
in F must be in another coalition in  . The only possibility is the coalition consisting
of that child alone. Thus, the child must receive an outcome of at most zero. It follows
that xi ≤ 0 for i=5; 6; : : : ; 12. Also, because the parents in F must each be in at least
two di>erent basic coalitions in the collection  , it follows that xi must satisfy either
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x≤ (d; 1− d; d′; 1− d′; 0; : : : ; 0) or x≤ (d; 1− d′; d′; 1− d; 0; : : : ; 0) for some d and d′ in
the Cantor set C. But then x∈V (N ), a contradiction, so the game (N; V ) is balanced.
We now claim that a payo> x∈�12 is in the core if and only if x is of the form

d=(d; 1 − d; d; 1 − d; 0; 0; : : : ; 0) for d in the Cantor set C and that every outcome in
the core is minimally partnered. First, it is easy to see that for the case d∈C; d is in
the core. In fact, d is in the minimally partnered core; for example, for 0¡d¡1 the
supporting collection {{1; 2; c}c∈{5;6}; {3; 4; c}c∈{7;8}; {1; 4; c}c∈{9;10}; {2; 3; c}c∈{11;12}} is
minimally partnered.
Now suppose x∈�12 is a payo> in the core. It is immediate that the supporting col-

lection for x must contain at least two nonintersecting families. Also, for any male m and
female f in the same family it must hold that xm + xf¿0; this is immediate because
at least one child available to that couple for adoption must receive zero and that child,
along with the two parents m and f, could improve. In addition, xm≥ 0 and xf ≥ 0. Now
let us suppose, for the purpose of obtaining a contradiction, that xm + xf¡1. There are
three possibilities:
1. For some y in O, xm≤y and xf ≤ 1− y.
2. For some y in E, xm≤y and xf ≤ 1− y.
2. For some y∈C; xm≤y and xf ≤ 1− y.

Suppose that y∈O. Because O is the union of open intervals and because xm + xf¡1,
there are points x′m and x′f in O satisfying xm¡x′m; xf¡x′f, and x′m + x′f¡1. Thus, a
family consisting of m and f and one of the children available to them for adoption can
improve upon x, a contradiction. Therefore xm+xf =1. Similarly, if y∈E, it follows that
xm+ xf =1. If y∈C, because every point in C is an accumulation point of C, the points
x′m and x′f can be chosen to be in C. Thus, for any pair of parents m and f in the same
family, it must hold that xm + xf =1. Now suppose that m and f are members of two
di>erent families. Consideration of all possibilities as above leads to the conclusion that
xm+xf =1. The cases where both families have outcomes dominated by points in the same
set, C; E, or O, can be treated as the above cases. If for one set of parents, say m1 and
f1, it holds that for some y1 ∈O; xm1 ≤y1 and xf1 ≤ 1−y1, where as for the other set of
parents, say m2 and f2, it holds that for some y2 ∈E∪C; xm2 ≤y2 and xf2 ≤ 1−y2, then
there is a point y3 in C such that, for xm= min{xm1 ; xm2} and xf = min{xf1 ; xf2}; xm¡y3
and xf¡1−y3. It follows that the male and female who are receiving the smallest payo>s
can, along with a child, improve upon x. This proves that a payo> x is in the core if and
only if x is of the form d=(d; 1− d; d; 1− d; 0; : : : ; 0) for d in the Cantor set.

4. Proofs of Theorems 1, 2, and 5. To prove Theorem 1, note that if y is not in
the relative interior of a convex set K , then removing an open ball B(y; ,) of radius ,
centered at y from K results in a nonempty closed contractible set (i.e., a set homeo-
morphic to a simplex of a certain dimension) for ,¿0 suUciently small. It follows from
(2) and (4) that if mN ∈ rel int(F(x)) for no x∈O, then there exists a ,¿0 such that
F(x)\B(mN ; ,) is nonempty and contractible for all x∈O. Moreover the openness of
B(mN ; ,) implies that the correspondence x → F(x)\B(mN ; ,) is upper-hemicontinuous.
Let h denote the usual radial retraction of the punctured simplex O\{mN} onto B. Then
h(F(x)\B(mN ; ,)) is contractible for all x, and the same is true of g(h(F(x)\B(mN ; ,))),
where g is the antipodal map as given in (3). Clearly the correspondence x→ g(h(F(x)\
B(mN ; ,))) is upper-hemicontinuous. By the Eilenberg-Montgomery (1946) ?xed point
theorem, every upper-hemicontinuous correspondence mapping the simplex into the col-
lection of its nonempty, closed, and contractible subsets has a ?xed point. Hence there
exists a point x∗ ∈O such that x∗ ∈ g(h(F(x∗)\B(mN ; ,))). In particular, x∗ ∈B. By as-
sumption (3), F(x∗)⊆B. But on B, h is the identity. Hence, x∗ ∈ g(F(x∗)\B(mN ; ,))⊆ g
(F(x∗)), contradicting (3).
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For the proof of Theorem 2 we need degree theory as extended for correspondences
(see, for example, Lloyd 1978, pp. 115–120). Actually, a stronger version is needed, where
the values are not necessarily convex (see, for example, Borisovitch et al. 1980). In our
case the values assumed by the correspondence are contractible and compact, so that the
Begle-Vietoris mapping theorem (Eilenberg and Montgomery 1948, Hocking and Young
1961, Spanier 1966) is applicable and may serve as a basis for degree theory. See also
Mas-Colell (1974b) for an elementary proof of the key lemma required for development
of the theory and McLennan (1989b) where the lemma is applied for the construction of
a Leftschetz ?xed point index.
It follows from (5) and a simple homotopy argument that

d(F; int(O); mN )= 1:(10)

Denote by VX the closure of the set {x :mN ∈ rel int(F(x))}. By assumption, VX is zero-
dimensional. This means that for every .¿0, the set VX may be covered by a ?nite number
of disjoint open sets whose diameter is less than .. Let {Di;m}Pmi=1 denote such a collection
of sets with diam(Di;m)¡ 1

m ; VX ⊆∪Pm
i= 1Di;m and Di;m ∩ Dj;m= ∅ for i �= j. Then Di;m ∩ VX

is both open and closed in VX , so that @Di;m ∩ VX = ∅.
With , as in the proof of Theorem 1, set ,(x)= min[dist(x; VX ); ,], and de?ne an upper-

hemicontinuous correspondence G by

G(x)=F(x)\B(mN ; ,(x)):(11)

Then mN =∈G(x) if x =∈ VX . It follows from (5) (compare (11)) that

d(G; int(O); mN )= 1:(12)

By construction, mN =∈G(y) for all y∈ @Di;m; 1≤ i≤Pm. Hence d(G;Di;m; mN ) is well
de?ned and

Pm∑
i=1

d(G;Di;m; mN )=d(G; int(O); mN ):(13)

It follows from (13) and (12) that there exists i0 = i0(m) such that d(G;Di0(m); m; mN )
�=0. By compactness there exists Vx∈ VX and a sequence Di0(m); m of neighborhoods (with
Di0(m); m ∩ VX compact) such that Vx=

⋂∞
m=1Di0(m); m. For each m; d(G;Di0(m); m; mN ) �= 0

implies the existence of an (n− 1)-dimensional ball Bm, centered at mN , such that

Bm⊆
⋃

x∈Di0(m); m

G(x)⊆
⋃

x∈Di0(m); m

F(x):(14)

Set ai = ei − mN ; 1≤ i≤ n. Fix for a moment aj for an index 1≤ j≤ n. By (4) there
exists a positive number ,j such that if mN +.aj ∈F(y) for a certain y∈O and a positive
. (no matter how small), then mN + ,jaj ∈F(y). By (14) there exists a sequence xm

converging to Vx and a sequence of positive real numbers .m such that mN + .maj ∈F(xm).
Hence mN + ,jaj ∈F(xm). By the upper-hemicontinuity mN + ,jaj ∈F(Vx). The convex-
ity of F(Vx) and the spanning property of a1; : : : ; an imply that mN is an interior point
of F(Vx).
REMARK 2. Theorems 1 and 2 may be generalized to contractible nonconvex sets.

Inspection of the proof of Theorem 1 shows that the condition (4) may be replaced
by the assumption that there exists a positive number , such that the sets F(x)\B(mN ; ,)
are nonempty and contractible for all x∈O. Similarly, Theorem 2 is true if (4) is replaced
by the property that for every a �=0 there exists a ,¿0 such that if both mN and mN + .a
are in F(x) for any x∈O and .¿0, then mN + ,a∈F(x).
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The proof of Theorem 5 runs parallel to the previous proofs, with several essential
re?nements. Thus, let F and ’ denote the correspondence and homeomorphism introduced
in Proposition 1 and let the positive number , be chosen so that the set F(x)\B(mN ; ,)
is nonempty and contractible for all x∈O (compare the proof of Theorem 1), and if
mN =∈F(x), then B(mN ; ,) ∩ F(x)= ∅. We follow Reny and Wooders (1998) (inspired by
Bennett and Zame 1988) and set

cij(x)= min
{S : i =∈S; j∈S}

dist(x; CS)(15)

for x∈O; 1≤ i¡j≤ n,

cii(x)= 0 for x∈O; 1≤ i≤ n;(16)

0i(x)=
n∑

j=1

[cij(x)− cji(x)] for x∈O; 1≤ i≤ n;(17)

,(x)=min

[
n∑
i=1

|0i(x)|; ,
]

for x∈O:(18)

Then ,(x) is a non-negative continuous function on O. De?ne the correspondence H (x)
by

H (x)=F(x)\B(mN ; ,(’−1(x))) for x∈’(O);(19)

H (x)=F(x) for x =∈’(O):(20)

(Contrast with the de?nition of G(x) in (11).) The choice of , and (8) imply that H (x)
is upper-hemicontinuous. Let X denote the set {x∗ ∈O :S(’−1(x∗)) is balanced and
partnered}.
We claim that if x =∈X , then mN =∈H (x). In fact, if mN ∈H (x), then mN ∈F(x). Thus

(8) implies that x∈’(O). Hence H (x) is given by (19). It follows that S(’−1(x)) is
balanced and ,(’−1(x))= 0. But according to a lemma of Bennett and Zame (1988),
as adapted by Reny and Wooders (1998), if 0i(y)= 0 for all i=1; : : : ; n (as implied by
,(y)= 0), then S(y) is partnered. Hence x=’(y)∈X .
Set now Y = {x∈O :mN ∈H (x)}. Then Y is a closed subset of X , hence a closed

zero-dimensional set. Note that the correspondence H (x) satis?es the conditions of
Theorem 1, except for (4). But by Remark 2, the conclusion of Theorem 1 holds for
the correspondence H (see also (18)). Hence there exists a point x∈O such that mN ∈
rel int(H (x)), and in particular Y is not empty.
We can now continue the proof as in the proof of Theorem 2, with Y replacing VX

and H replacing G. We conclude that there exists Vx∈Y such that mN is an interior point
of F(Vx). As in the proof of Theorem 4, this implies the existence of x∈O (x=’−1(Vx))
such that mN ∈ int(D(x)), from which all the assertions of Theorem 5 follow.
REMARK 3. Note that Vx∈Y implies ,(’−1(Vx))= 0 or 0i(’−1(Vx))= 0 for all 1≤ i≤ n.

Thus the net credits (de?ned in Bennett and Zame 1988, Reny and Wooders 1998) of each
player at x are zero. However, one does not need all the assumptions of Theorem 5 for
the nonemptiness of Y . For this, the assumptions of Theorem 3 suUce. (This observation
was made in response to a suggestion by Philip Reny.)
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5. Appendix.
PROOF OF PROPOSITION 2. Following Shapley and Vohra (1991), set

O′ =

{
x ∈ �N :

∑
i∈N

xi =1; xi ≥−1 for all i∈N

}

and let 0 : O′ →O be de?ned by

0i(y)=
max(yi; 0)∑
j∈N max(yj; 0)

for all i∈N:

In addition (not found in Shapley and Vohra), de?ne ’ :�N →�N by

’(x)=
(
1 + x1
n+ 1

; : : : ;
1 + xn
n+ 1

)
:

Then ’ : O′ →O; ’ : O→’(O)⊂ int(O) are homeomorphisms. Note that

’−1(y)= [(n+ 1)y1 − 1; : : : ; (n+ 1)yn − 1]

and that ’(O) is an (n− 1)-simplex whose vertices are

ei =
(

1
n+ 1

; : : : ;
2

n+ 1
; : : : ;

1
n+ 1

)
;

where 2
n+1 occurs in the ith position.

Similar to Shapley and Vohra, we de?ne the following labeling function in O′:

L′(y)= {S : 0(y)∈CS and yi ≥ 0 for all i∈ S};
and a correspondence

G′(y)= conv{mS : S ∈L′(y)}:
We now set

F(y)=G′(’−1(y)):

(Note that G′(y) and F(y) are set-valued mappings and can assume only a ?nite number
of distinct values. Note also that the domain of G′ is O′, whereas the domain of F is O.)
It was proved by Shapley and Vohra that G′ is upper-hemicontinuous. Hence F , the
composition of G′ with a continuous function ’−1, is upper-hemicontinuous, proving (2).
If y∈OT⊂B (so that T �=N ) and S is not a subset of T , then (’−1(y))j =−1 for
j ∈ S\T , so that S is not an element of L′(Y ). Thus, if S ∈L′(y), then mS ∈OT so that
G′(y)⊂OT , proving (5). Similarly, if x =∈’(O), then ’−1(x) =∈O. Hence there exists an
index i∈N such that S ⊂L′(’−1(x)) implies that i =∈ S. Hence mN cannot be an element
of F(x), proving (8).
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