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1 Introduction 1-1

11~ur social and economic life ~s ~arried out within ~ro~ps --'- firms, families, mar~et~pla~es, '

1:1and clubs, for example. IndlVlduals cooperate Wlthø groups to benefit from øñråasøg ~I
returns to group size and coordination of activities. Individuals compete within groups ~I
for shares of the surplus generated Üó the activities of the group. There is competition ':1

between groups for scarce resources and for group members. Collective activities of groups 'j
of individuals are widespread in social and economic interaction.

This paper discusses research îï large games and economies with effective small groups.
À large game is one with the property that most players have òàïó substitutes. Small
groups are effective if all or almost all gains to collective activities ñàï Üå realized Üó activ-
ities within groups of players bounded in absolute size. À large game is an abstract model
of à large economy. ÒÜå results reported demonstrate that large games with effective small

groups share important properties of markets, defined as exchange economies with money
where all agents have continuous, concave utility functions. ÒÜå properties include that

approximate cores of large finite games are nonempty ([78,103,113], and others); approxi- :]
mate cores converge to the core of à continuum limit game ([49,114]); values of large games ~I
are in approximate cores ([9,80,114]); and large games are approximately market games -fl
ones derived from markets ([105,111]). Since large games are approximately market games, ~

approximate cores of large games cqnverge to competitive payoffs of representing markets I
([107]). Moreover, games with à cont.in~um of. players and s~~ll (finite) effective gro~ps .,
have nonempty cores and the core ÑÎØÑldås wlth the competltlve payoffs of råðråsåntøg i
markets. i

Games with the property that all gains to group formation ñàï Üå realized Üó groups i
smaller than the total player set satisfy à monotonicity property -any vector of population .]
changes and any corresponding vector of changes in core payoffs point in opposite directions ~
([75] and this paper). ÒÜå monotonicity results give conditions ensuring that player types !
who Üåñîòå less abundant in à society receive higher (or at least ïî lower) core payoffs. I
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146 Ìóãnà Í. Wooders

Large garnes with small effective groups exhibit àn appro.ximate monotonicity (this paper).
We call the mbnotonicity property à "weak law of scarcity" since it is à game-theoretic
counterpart of the "Weak Law of Demand", which dictates that changes in prices of ñîò-
modities and amounts demanded point in opposite directions. (See Hildenbrand [44] for à

recent treatment.)
If we regard the core of à large gàøå as à game-theoretic counterpart of à competitive

equilibrium, then the results reported suggest the conclusion that à game-theoretic ñîèn-
terpart of à competitive åñînîòó is à large game with effective small groups. We return to

this in the final section.
The framework used to discuss large games is à pregame (in characteristic form) with à

finite set of player types. While òàïó of the results have Üåån obtained for games without
side payments,l the garne-theoretic model presented is restricted to the side payments case.

The modeling assumptions underlying the tràøåwîrk are:
(1) Small groèp eff.ectiveness: All or almost all gains to collective activities ñàï Üå

realized Üó groups bounded in absolute size:
(2) Sèbstitètion: In games with òàïó players most players have many substitutes. Play-
ers are described Üó their types, and players of the sàøå type are substitutes for înå another.
The extension of the case of à finite set of player types to the case with à compact metric
space of player types is indicated in Appendix 2. In either case, large numbers of players ån-
sure the substitution property. The consequences of small group effectiveness are examined

within this frarnework.2
The research reported begins with some preliminary results îï cores and balancedness.

À modification of the Bondareva-Shapley conditions for the nonemptiness of the core is
presented. This modification treats cores and approximate cores ofgarnes with player types.
The Kaneko and Wooders [52] condition of strong balancedness of collections of coalitions
is discussed. Strong balancedness of à collection of coalitions ensures nonemptiness of the
core of every coalition structure garne whose admissible coalitions coincide. with those in
the collection. Shapley and Shubik [81] 'iJSSignment games are an important class of garnes

satisfying the strong balancedness condition.
Before treating the central case of small group effectiveness, results for an important

special case are reported. For this special case all gains to group formation, either for the
", achievement of feasible outcomes or for improvement èðîn outcomes not in the core, ñàï

, Üå realized Üó groups bounded in absolute size. Such gàøås have interesting properties:
r àll convergence of the core takes place in finite garnes and the core correspondence is

monotonic. With the restriction to effective groups bounded in size, the results are quite
straightforward, and more general results appearing later in the paper Üåñîòå transparent.
Garnes with the property that all gains to Áñøå are exhausted Üó groups bounded in absolute
size appro.ximate garnes with effective Áòàll groups, where all or alòost all gains to group

formation are exhausted Üó bounded-sized groups.
Next, the central property of small group effectiveness is introduced and related to

other properties. The Áòàll group effectiveness condition, dictating that small groups are
I

i lc.f., [51,86,87,10ç,115].~ 2The pregame framework is convenient and used throughout this paper. In ongoing research, small group

effectiveness and substitution ûå imposed directly îï individual games, without anó underlying topology
îï the space of player types. The techniques and intuition developed in this paper apply, and essentiallythe âàòå results hold. .

!
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àÛå to achieve almost all feasible gains to group formatioi1, is equivalent to the condition
that almost all improvement ñàï Üå done Üó small groups. When there are sufficiently
òàïó players of âàñÜ type appearing in the games, then small group effectiveness is equiv-
alent to boundedness of per capita payoffs. Results showing nonemptiness of approximate
cores of large games with effective small groups are discussed, and conditions ensuring the
nonemptiness are compared.

Òî indicate the amazing power of replication of games we discuss the following result:
given à player set and an admissible collection of profiles -descriptions of groups of players
in terms of the numbers of players of each type in the group- if the player set is replicated
àn appropriate number of times, then for ànó structure of payoffs to the admissible groups-
the core of the replicated game is nonempty ([52]).3

We then turn to relationships between market properties and properties of large games.
The Market-Game Equivalence Theorem of Shapley and Shubik [79] is sketched. The
market-game equivalence allows àn introduction to Wooders' asymptotic market-game equi-
valence ([105,111]). Àn extension of the Wooders [99] and Wooders and Zame [114] ñîn-
vergence results for approximate cores is stated. The convergence is used to show that for
large games, since approximate cores are nonempty and the games asymptotically exhaust
all gains to group formation, the approximate core correspondence is asymptotically mono-
tonic. Òî provide intuition for the results, Áîøå special properties of large games with à
minimum efficient scale to group size (equivalently, ones where, without affecting the core,
all improvement ñàï Üå restricted to groups bounded in absolute size) are reported. À
consequence of the results is that approximate (equal-treatment) cores of large games are
typically small. The approximate cores are small in the sense that they are contained in à
ball of small radius.

As the discussion of monotonicity øàó indicate, we consider only core and approximate
core payoffs with the equal treatment property -players who are substitutes receive the
Áàøå payoff. The restriction is justified Üó the result that when small groups are effective,
approximate core payoffs and core payoffs are distributed nearly evenly among most players
of the same type ([100]). While the equal-treatment result is subsidiary, it requires the
careful setting of Áîøå parameters, so à proof is provided in àn Appendix.

Wooders' [110] application of the results reported above to surplus-sharing problems, as
introduced in Zajac [118] and Faulhaber [31], is discussed. Units of the econoInic variables
generating payoffs, called "attributes", are taken as the "players". The resultant game is
called àn "attribute game" and its core is called the "attribute core". All our game-theoretic
results immediately apply. We also briefly discuss the effects of assigning property rights
to bundles of attributes to individual players. The relationship of the attribute core to
subsidy-free prices is indicated.

The concluding game-theoretic section introduces à continuum limit model of large
games with effective small groups. As in the elegant model of Aumann [6] the player set
is àn atomless measure Áðàñå so that individual players and finite groups of players are

negligible relative to the total player set. The model discussed here, due to Kaneko and
t Wooders [50], has à continuum of players and finite coalitions. 'The total player set is an

~ 3Her,e ~e. mean repiicating, both the ~layer 5et and the 5truc~ure of the characteristic function, 50, t,hat
l ' all posslblhtle5 for any group m any rephcated game ìå determmed Üó the payoff 5tructure of the ongmal

game. Most of the re5ult5 reported hold uniformly, for all 5ufficiently large gamesj there is ïî restriction to
replication 5equences,

,
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148 Ìóònà Í. Wooders

atomless measure space but players are atomistic relative to each otherj while ïî individual
player or finite group of players ñàï influence aggregate outcomes, individual players and
finite groups ñàï influence each other. Òî motivate the continuum with finite coalitions,
recall that small group effectiveness dictates that almost all gains to group formation ñàï
Üå realized Üó groups bounded iri absolute size. This bound does not depend îï the size of
the total player set so almost all gains realizable Üó very large player sets ñàï Üå realized Üó
collective activities within groups that are relatively very sòall. The continuum model with
finite effective groups, and thus, effective groups of measure zero, is intended to provide à
limit model of large finite games with small effective groups where the nature of coalitions
and the role of the player in à coalition is the same as in finite games. For the continuum with
finite effective groups, the effectiveness of small (finite) groups ensures the nonemptiness of
the core ([50]).

The motivation for the game-theoretic results comes from economic models. Small
group effectiveness undergirds the equivalence of the core and the competitive outcomes
and plays à significant role in economies with shared goods -collectively consumed andjor
produced goods, including certain sorts of information. In the penultimate section of the
paper, relationships of small group effectiveness to the competitive properties of economic
models are reported. In continuum exchange economies with finite dimensional commodity
spaces, with or without widespread externalities, the core with small (finite) coalitions
coincides with the Walrasian outcomes ([42,50]). In economies with shared goods (including
public goods) and with effective small groups, cores converge to outcomes that are Lindahl
equilibrium outcomes within groups sharing the public goods ([19,101,106]). When all
gains to collective activities and trade ñàï Üå realized Üó groups bounded in absolute size,.
then the convergence ñàï Üå completed at finite sizesof the åñînîòó ([74,98,108]). When
crowding depends only îï the numbers of players in à group collectively consuming andjor
producing the public goods, then corejequilibrium groups consist only of consumers with
the same demands ([74,98]). Other related literature is discussed.

While it is apparent that strategic game-theoretic approaches are important for the
study of competitive economies and small group effectiveness, ànó discussion of such àð-
proaches is beyond the scope of this paper. Also, we only briefly discuss the Shapleyvalue
of large games with effective small groups, since àn illustrative example appears in [116].
We omit discussion of à number of veiy recent results continuing the study of large games
(both with and without side payments) reported in this paper and further relating large
games to markets. We also omit any discussion of very recent research îï small group
effectiveness in the context of Arrow-Debreu exchange economies with general preferences.

1.1 Examples

Before introducing the model, we discuss three simple examples. The first illustrates our
framework and results. The next two examples illustrate situations not satisfying our

assumptions.

Example 1.1. Production with Two Types ofPlayers. Thereare two types ofplayers
-cooks and helpers -and four sorts of cooking teams

(à) 1 cook and 2 helpers ñàï make à cakej
(Ü) 4 cooks alone ñàï make à cake (too many cooks haye difficulty reaching an agree-
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ment)j
(ñ) à helper alone ñàï make à cookiej and
(d) à cook alone ñàï do nothing.

À cake is worth $10.00 and à cookie is worth $1.00. À group (õ, ó) consisting of õ cooks and
ó helpers ñàï realize the maximal total payoff possible from splitting into teams of the sorts
described àÜîóå. Let Ô(õ, ó) denote this maximal total payoff. The information consisting
of à specification of à set of player types and the associated payoffs to groups constitutes à
"pregame". As soon as à population n = (nl, n2) is specified, à game in characteristic form
is determined.

We consider five cases: ~ 1: The population n = (nl, n2) has nl > Î and n2 = Î.

In this case, the entire population consists of cooks. If nl ~ 4 the core is nonempty. If
nl > 4, the core i8 nonempty if and only if nl is an integer multiple of 4. If nl > 4 and
nl =1 4k for some integer k, then in any partition of the population into teams there will
Üå some leftover cooks. These cooks create instability-for any division of the payoff among
the employed cooks, unemployed cooks ñàï profit Üó offering to work for à lower payment.
When nl = 4k for some integer k ~ 2, the core is nonempty and consists only of the payoff
imputing $5/2 to each cook.
~ 2: The population n = (nl, n2) consists entirely of helpers; nl = Î and n2 > Î. The
core is nonempty and assigns $1 to each helper.
~ 3: With the population n = (nl, n2), where n = Òl(l, 2) + Ò2(0, 1) for some positive
integers Òl and Ò2, there are "many" helpers relative to the number required for teams
with composition (1,2). The core is nonempty and each helper receives $1. Intuitively,
"competition" between helpers keeps the price of à helper down to his opportunity price in
à helper-only group. The cor.e assigns $8 to each cook.
~ 4: If n = Òl(l, 2) + Ò2(4,0) for some positive integers Òl and Ò2, then there are many
cooks relative to the number require<!_for teams with composition (1,2). Competition
between cooks for helpers keeps the price (core payoff) for helpers èð to $15/4, while cooks
get ïî surplus from being in "mixed" groups. The core assigns only $5/2 to each cook.
~ 5: If n = ò(1,2) for some positive integer ò then the core contains à continuum of
points and its extreme points are described Üó the cores in Cases 3 and 4 àÜîóå. At one
extreme point cooks each get $8 and helpers each get $1, while at the other extreme point,
cooks get $5/2 and helpers get $15/4.

The reader ñàï verify that if n is à total population with nl ~ 4 and n2 ~ 2 the core is
nonempty only if the population is described Üó one of the cases 2 to 5 or Üó Case 1 with
nl ~ 4 or nl = 4k for some integer k. In any other case, there will Üå "leftover" cooks or
helpers who cannot realize the payoffs received Üó other players of the same type. These
players create the instability associated with an empty core.

Now let n = (nl, n2) Üå any large population. There are integers Òl, Ò2, Òç, and Ò4 so
that n = Òl(l, 2) + Ò2(0, 1) + òç(4, Î) + Ò4(1, Î). Clearly Ò4 ñàï Üå restricted to Üå less than
or equal to 3, and in à large game we ñàï ignore 3 players. For large nl + n2, either Ò2 or
ÒÇ (or both) ñàï Üå set relatively small and the situation ñàï Üå approximated Üó one of
the three case8 àÜîóå. This means that for sufficiently large number8 of player8 in total,
there are feasible partition8 of players into groups and di8tributions of payoff 80 that ïî
group of players ñàï significantly improve upon the payoff received Üó the group member8
-approximate core8 of large game8 are non~mpty.
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When there is à continuum of p1ayers, we 1et Nl denote the measure of cooks and N2
the measure of he1pers. Then there is à partition of the p1ayers into finite groups so that
one of the fo11owing ho1ds, except possibly for à set of measure zeroj

(à) al1 p1ayers are in groups (1,2) and (0,1) or
(Ü) a11 p1ayers are in groups (1,2) and (4,0), or
(ñ) a11 p1ayers are in groups (1,2).

With à continuum p1ayer set there ìå ïî "leftover" p1ayers, (or, at most, à set of measure
zero). Thus the core of the continuum game is nonempty and described Üó one of the three

cases above.
Whi1e we do not discuss the Shap1ey value in detai1 in this paper, we re1ate it to this

examp1e. The Shap1ey va1ue assigns to p1ayers their expected marginal contributions. When
there ìå 1arge numbers of p1ayers in total and òàïó he1pers, à he1per ñàï expect to Üå
in à he1per-on1y group and receive about $1. À cook ñàï expect that he wi11 Üå àÛå to
join èð with two he1pers in he1per-on1y groups and thus he ñàï expect to make à marginal
contribution of about $8.00. Thus, in 1arge games with øanó he1pers, Shap1ey va1ues ìå
in approximate cores. Ana1ysis of the opposite ÑàÁå, with òàïó cooks, is simi1ar. (The ÑàÁå
with cooks and he1pers in the ratio 1 to 2 is more difficu1t.) These sorts of insights motivate

the resu1ts.
Later we wi11 describe games with "bounded essential group sizes", those where all

gains to group activities ñàï Üå achieved Üó cooperation within groups bounded in abso1ute
size. TWs examp1e fits that description. It is not necessary, however, that all gains to group
formation ñàï Üå realized Üó groups bounded in sizej sma11 group effectiveness requires on1y
that alòost' all gains are rea1ized Üó groups bounded in abso1ute size. For examp1e, we cou1d
modify the examp1e Üó taking the payoff function to Üå Ô(õ, ó) where Ô(õ, ó) := Ô(õ, ó) +
1-lj(x+y) for õ+ó > Î, and where Ô is as given above. Note that òÔ(õ, ó) < Ô(òõ, òó) for

.any positive integer ò > 1; there ìå "increasing returns to sca1e". The intuition deve1oped
in the examp1e, however, still applies since we ñàï approximate this new situation Üó games
where groups are bounded in size.

Example 1.2. À Pure Public Goods Game. This examp1e illustrates situations to
which our resu1ts do not app1y. Per capita payoffs ñàï go to infinity for 1arge groups, and
small groups are not effective. Suppose that "the more, the merrier". The payoff rea1izable
Üó à group with ï members is ï2. Smal1 groups ìå not effective. (Fî-r this examp1e however,
cores ìå nonempty and the Shap1ey value is in the core. Later we provide an examp1e where
1arge games have empty cores.) The examp1e ñàï Üå interpreted as one with à pure public
good where the p1ayers themse1ves resemble public goods.

Example 1.3. À Game Without Effective Small Groups. The games constructed
in this examp1e have the property that smal1 groups Üåñîøå ineffective as the games grow
1arge. Even for 1arge games, cores and approximate cores ìå empty.

For õ in the unit interva1 [0,1], 1et f(x) Üå the median of the three numbers Î, 1, and

3õ -1. Define à k-person game Ôk Üó Ôk(S) = kf( ~) where k is the total number

of players in the game and I S I is the nuinber of p1ayers in the coa1ition Â. U n1ike the
preceding examp1e, the characteristic function is not specified independent1y of k, the size
of the popu1ation. Note that the game has an empty core for anó k > 2. Even for 1arge
games, approximate cores ìå empty, since if the core is nonempty it contains an equal-

~ .
-ÎÑ
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treatment payoff and ànó payoff of approximately 1 for each player ñàï Üå improved èðîn
Üó any coalition containing more than half the players.

2 Games and Pregames

There is à given finite number Ò of player types. À profile I = (11,. .., IT) Å Z~, where
Z~ is the Ò -fold Cartesian product of the non-negative integers Z+, describes à group of
players Üó the numbers of players of each type in the group. The profile describing à group
with înå player of each type is denoted Üó 1ò. Given à profile 1, define 11I11 == Et It, called
the nîòò or size of 1; this is simply the total number of players in the group. The set
{t Å {1,..., Ò} : It :/: Î} is the âèððîï 01 1. À partition of à profile I is à collection of
profiles Ik, not all necessarily distinct, satisfying Ek Ik = I .À partition of à profile is
analogous ,to à partition. of à set except that all members of à partition of à set are distinct.
À replication of à proffie I is à profile r I = (r Ë, ..., r IT) where r is à positive integer,

called à replication nèòber.
Let 'l' Üå à function from the set of profiles Z~ to IR+ with 'l'(O) = Î. The pair (Ò, 'l')

is à pregaòe with characteristic lènction 'l'. The value 'l'(I) is the total payoff à group of
players I ñàï achieve Üó collective activities of the group membership.

Let (Ò, 'l') Üå à pregame. Define à characteristic function 'l'*, the sèperadditive cover 01

'l', Üó
'l'*(/) = øàõ Ek 'l'(lk) , (2.1)

where the maximum is taken over the set of all partitions {Ik} of 1. The pregame (Ò, 'l')
is sèperadditive if the characteristic functions 'l' and 'l'* are equal.

À gaòe dete1mined Üó the pregaòe (Ò, 'l'), which we will typically call à gaòe or à gaòe
in characteristic 10òò, is à pair [n; (Ò, 'l')] where n is à profile. When the meaning is clear,
à game is denoted Üó its profile n.4 Let I Üå à subprofile of n, that is, I is à profile and
I ~ n. Then I is à sèbgaòe of the game n.

À payoff vector is à point õ in IRT. À payoff vector states à payoff for each type of
player. The tth component of õ, Xt, is interpreted as the payoff to each player of type t. À
payoff vector Õ is leasiûe for the game [n; (Ò, 'l')] if there is à partition {nk} of n satisfying:

Ek'l'(nk) ~ Õ .n .(2.2)

2.1 Cores of games, balanced games, and strongly balanced games

Let n Üå à game determined Üó à pregame (Ò, 'l'), let Å Üå à non-negative real number, and
let Õ Üå à payoff vector. Then õ is in the E-core î/ n if õ is feasible for n and

'l'(s) ~ õ. s + Ellsll for all subprofiles s of n .(2.ç)

40bserve that with anó game n, we ñàï associate à game according to the standard definition as follows:
Let N Üå à finite set with INI = Ilnll and let à Üå à function from N into {l, ...! Ò} with the property that
la-l(t)1 = nt for each t. Let 11 Üå à function from subsets 8 of N to IR+! defined Üó 11(8) = Ô(s) where s
is the profile given Üó St = la-l(t) n 81 for each t. Then the pair (N,II) satisfies the usual definition of à
game in characteristic (function) form. Since we do not keep track of identities of players we ñàï identify à
game with à profile.
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When f = Î, we call the f-core simply the ñîòå. The f-core depends îï the game n; thus the
f-core determines à correspondence, called the Å-ñîòå (or ñîòå) correspondence, from games
to subsets of ]RT. The concept of the core was formally introduced Üó Gilles [37] and the
f-core was introduced Üó Shapley and Shubik [78]. Note that consistent with the idea that
large groups might not form, we do not require that f-core payoffs Üå Pareto-optimal.

In contrast to the usual formulation of the core, only payoffs which treat identical players
identically are considered. This suffices since, for large games with effective small groups,
f-core payoffs treat "most" players of the Áàòå type "nearly" equally. See Proposition À.1

in Appendix 1.
The proof of the following Proposition is left to the reader.

Proposition 2.1. Let (Ò, Ô) Üå à pregame and let (Ò, ô*) Üå its superadditive cover.
For every f ~ Î and every game [n, (Ò, Ô)] and its superadditive cover [n, (Ò, ô*)], à payoff
vector õ is in the f-core of [n, (Ò,Ô)] if and only if it is in the f-core of [n, (Ò, Ô*)].

Let [n, (Ò, Ô)] Üå à game and let .â Üå à collection of subprofiles of n. The collection is
à balanced collection î! sèbprofiles î! n if there are positive real numbers 1 j for f Å .â such
that Å 1 j f = n. The numbers 1 j are called balancing weights. The game n is Å- balanced

!Å[Ç(in characteristic !îòò ) if for every balanced collection .â of subprofiles of n it holds that

Ô*(n) ~ L 1j(\Jf(f) -fllfll) (2.4)
!Å[Ç

where the balancing weights for .â are given ÜÓ1! for f Å .â. When f = Î, an f-balanced

game is called balanced. This definition extends that of Bondareva [18] and Shapley [77]
to games with player types and to pregames. Roughly, à game is balanced if allowing
"part time" groups does not improve the total payoff. À game n is totally balanced if every

subgame f ~ n is balanced.
For later convenience the notion of the balanced cover of à pregame is introduced. Let

(Ò, Ô) Üå à pregame. For each profile f, define

\Jfb(j) = øàõ L 19\Jf(g) ,. (2.5)

[ç gÅ[Ç

where the maximum is taken over all balanced collections .â of subprofiles of f with weights
19 for 9 Å.â. ÒÜå pair (Ò, ôÜ) is called the balanced cover pregame of (Ò, Ô). Since à
partition of à profile is à balanced collection it is immediately clear that \Jfb(f) ~ \Jf*(f) for

, every profile f.

À pregame (Ò, Ô) has the approximate ñîòå ðòîðåïó if, for åàñÜ f > Î, there is an integer
1]î(å) such that every game n with Ilnll ~ 1]î(å) has à nonempty f-core. ÒÜå pregame is
asymptotically balanced if, for åàñÜ f > Î, there is an integer 1]1 (å) such that every game n

with Ilnll ~ 1]1(å) is f-balanced.
ÒÜå following Proposition is an extension ofthe Bondareva [18] and Shapley [77]) result.

Proposition 2.2. Let f ~ Î Üå given. À game in characteristic form [n; (Ò, Ô)] has à
nonempty f-core if and only if it is f-balanced in characteristic form.

À proof is provided in the Appendix. We conclude this section with à Corollary.
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Corollary 2.1. À pregame (Ò, Ô) has the approximate core property if and only if it is
asymptotically balanced. Moreover, the integers TJO(E) and TJl(E) in the definitions of these
concepts ñàï Üå chosen to Üå equal.

2.2 Minimal balanced collections of subprofiles

À balanced collection ,â of subprofiles of à profile n is à òiniòal balanced collection if there
is ïî proper subset of,B which is also à balanced collection of subprofiles (Shapley [77]).
Since balancing weights ñàï Üå obtained from solutions to systems of linear equations where
the variables and the coefficients are all integers, minimal balancing weights are rational
numbers. Moreover, the balancing weights for minimal balanced collections are unique.
These are very useful observations for us. We note here one consequence:

Proposition 2.3. (Shapley [77]): Let (Ò, Ô) Üå à pregame and let n Üå à game. Then
ôÜ (n) = øàõ l:: W! Ô (/), where the maximum is taken over only all minimal balanced

.8 !Å.8
collections ,â of subprofiles of n with weights W! for / in ,Â; the balanced cover pregame
is unchanged when the balanced collections in the definition of the balanced cover are
restricted to Üå minimal.

2.3 Strong balancedness

Consider à game with à collection of "admissible" groups. All collective activities are
restricted to occur within these groups. In this Section we describe player profiles and
associated admissible collections of subprofiles having the property that every characteristic
function defined îï the collection of subprofiles determines à game with à nonempty core.

Let Ò Üå à finite number of player types. À finite collection Ñ of profiles / in Z:i' is
àn adòissible collection î/ profiles if it contains the singleton profiles Xt for each t, where
Xt = (õ} : j = 1,..., Ò) is defined as follows:

õ; = 1 if j = t
õ; = î otherwise. .

Let (n, Ñ) Üå à pair consisting of à profile and à collection of admissible subprofiles. À
balanced collection ,â of subprofiles of n is called C-balanced if each profile / in ,â is also in
Ñ.

Let (Ò, ô) Üå à pregame. Define

ÔÜ(n) = øàõ L'j ô(/)

!Å.8

where the maximum is taken over all C-balanced collections of subprofiles ,â with weights
, j for / Å ,Â. Similarly, define

Ô*(n) = màõ~kô(nk) ,

where each subp~ofile nk is in Ñ and the maximum is taken over all partitions {nk} of 'no
into subprofiles in Ñ.



,
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Let (n, Ñ) Üå à pair consisting of à profi1e n Å Z~ and an admissible co11ection of
subprofi1es of n. The pair (n, Ñ) is strongly balanced if for every pregame (Ò, Ô) with Ò
types of p1ayers, Ô*(n) = ÔÜ(n). The co11ection Ñ is itse1f strongly balanced if for every
pregame (Ò, Ô) and every profi1e n, it ho1ds that Ô*(n) = ÔÜ(n).

It is à remarkable fact that there exist strong1y ba1anced co11ections of admissible profi1es.
It was shown Üó Shap1ey and Shubik [81] that admissible coa1itions of assignment games

àãå strong1y ba1anced.
In Kaneko and Wooders [52] six necessary and sufficient conditions are given for à pair

(n, Ñ) to have the strong ba1ancedness property. Perhaps the most interesting of these is
that every ba1anced co11ection of admissible subprofi1es of the p1ayer profi1e n contains à
partition of n. (This condition was named the strong balancedness property Üó 1e Breton,
Owen, and Weber [15]). The fo11owing Proposition is à variation of part of à Theorem in
[52]. We refer the reader to [52] for the proof. (The symbo1 ~ is to Üå read "is equivalent

to".)

Theorem 2..1 Strong balancedness ~ Ñ- balanced col1ections containing parti-
tions (Kaneko and Wooders [52, Theorem 2.7 (ii)]): Let (n, Ñ) Üå à pair consisting of à
profi1e n Å Z~ and à finite co11ection Ñ of admissible subprofi1es. The pair is strong1y
balanced if and on1y if.every C-ba1anced co11ection f3 of subprofi1es of n contains à partition

ofn.

C1asses of games whose admissible coalitions have the strong balancedness property in-
c1ude assignment games (introduced Üó Ga1e and Shap1ey [36] and Shap1ey and Shubik [81]),
consecutive games (introduced Üó Greenberg and Weber [38]), and those communication
games (introduced Üó Myerson [61]) whose graphs are "forests". (See 1e Breton, Owen, and
Weber [15] for à description of these games and proofs showing that their admissible coali-
tion structures al1 satisfy the strong ba1ancedness property.) Other re1ated papers inc1ude

[22,2ç,39] .
Since consecutive games wi11 Üå of interest to us 1ater, we provide à brief description

here. Informa11y, and using the standard notation, à consecutive game is one where there
is Áîòå indexing îï the p1ayer set N = {1,..., Q} so that if i and j àãå p1ayers in Áîòå
admissible coalition S and i < k < j, then k is in Â. Every admissible coa1ition consists of

p1ayers that àãå "consecutive".

3 Games with Effective Small Groups, Cores, and Approx-

imate Cores

We introduce Bma11 group effectiveness and establish the re1ationship of sma11 group effec-
tiveness to other conditions. We a1so discuss nonemptiness of approximate cores of 1arge

games.
In Section 3.1, the central condition of sma11 group effectiveness is introduced. Resu1ts

obtained using this notion àãå deferred unti1 Section 3.3.
In Section 3.2, Áîòå resu1ts àãå demonstrated for games where all gains to group forma-

tion ñàï Üå rea1ized Üó groups bounded in size. Two other conditions ensuring the resu1ts
àãå also discussed: a11 gains to improvement ñàï Üå rea1ized Üó groups bounded in abso-
1ute size, and the games have à "minimum efficient sca1e" of group size. For games with
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bounded essential group sizes, cores and approximate cores cease to shrink after à finite
number of replications and remain unchanged with further replication. With the results for
games where all gains to group formation ñàï Üå realized Üó bounded-sized groups in hand,
we report in the next Section îï games where alòost all gains ñàï Üå realized Üó groups
bounded in size -games with small effective groups.

In Section 3.3, we review Áîòå nonemptiness of approximate core results in the liter-
ature. These results are obtained Üó continuations of arguments for the case of bounded
group sizes. Some new relationships are established to make connections between various
results in the literature. For games with sufficient numbers of players of each type, small
group effectiveness is equivalent to boundedness of per capita payoffs. (Recal1 that our
framework has the substitution property). Smal1 group effectiveness is equiva1ent to the
condition that the power of improvement is concentrated in sma11 coalitions, that is, any
feasible payoff that ñàï Üå significant1y improved upon ñàï Üå improved upon Üó à smal1
group. As the convergence results of Mas-Co1ell [56] and Kaneko and Wooders [49] suggest
even in øîòå general contexts, in our framework smal1 groups ñàï rea1ize almost al1 gains
to group formation if and on1y if small groups are effective for improvement.5

3.1 Small group effectiveness

À pregame (Ò, Ô) satisfies sòall groèp eJJectiveness if, for each Å > Î, there is an integer
1JÇ{Å) such that for every profi1e f tliere is à partition {fk} of f satisfying:

Ilfkll ~ 1JÇ(Å) for each subprofi1e fk, and (ç.1)

Ô*(J) -Ek Ô(fk) ~ Ellfllj (ç.2)
given Å > Î there is à group size 1JÇ(Å) such that within Å per capita of the gains to group
formation ñàï Üå realized Üó the collective activities of groups containing ïî more than

1JÇ(Å) players.
The term "inessentia1ity of 1arge groups" has also been used for this property -it is not

necessari1y the case that on1y smal1 groups form or that 1arge groups are ineffectivej it is on1y
required for smal1 group effectiveness that large groups cannot significant1y improve upon
the outcomes rea1izable Üó small groups. With small group effectiveness, as we discuss
in Section 3.3, àll sufficient1y large games have nonempty E-cores. The Theorem ho1ds
uniform1y for àll sufficient1y large games. In Section 4.2 it is shown that small group
effectiveness imp1ies all sufficient1y 1arge games are c1ose to 1imiting market games and
asymptotical1y the core correspondence is monotonic.

Games with effective sma11 groups are ones that ñàï Üå approximated Üó games with
bounded coalition sizes.

3.2 Games with bounded essential group sizes6

Games with bounded essential group sizes appear often in game-theoretic and economic
mode1s. Some examp1es inc1ude buyer-seller mode1s and assignment games øîòå generally.

5In [56] it is shown that with bounded sizes of improving coalitions, approximate cores of economies are
close to the Walrasian allocations. In [49] the same conclusion is reached with bounded sizes of trading
coalitions.

6With the exception of the strong E-core Theorem, motivated Üó à result of Elul [29], the results in this
subsection are primarily variations of ones in [99,100].

- -
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Other examples iïclude coalition structure games, partitioning games, and games derived
from economies with coalition production and with public goods subject to congestion.7

À simple but important result is that for ànó game n there is à replication number r with
the property that if the game is replicated r times, then the core of the replicated game òn
is nonempty. If there are sufficiently many players of each type in à game n, then the E-core
doesn't shrink when the game is replicated, i.e., when the total player set is increased to òn.
(Of course it is only required that there Üå enough players of each type appearing in the
game.) Cores of games with sufficiently òàïó players of each type do not expand when the
game is replicated. These results illuminate the special properties of games that "exhaust
gains to scale"-no further per capita gains ñàï Üå realized Üó replicating the game. In
addition, all sufficiently large games have non-empty approximate cores. (See the condition
in Proposition 3.2 below.) Since games with bounded essential group sizes (and games that
exhaust gains to scale) approximate games with small effective groups, the results in the
following sections of nonemptiness of approximate cores ñàï Üå viewed as continuations of

the results of this section.
À pregame (Ò, Ô) has boènded essential groèp sizes if there is à real number Â with

the property that for every profile f, there is à partition {fk} of f with Ilfk 11 ~ â for each

k, and
Ô*(f) ->::::k Ô(fk) = Î .(3.3)

While larger groups might form, such groups ñàï do ïî better than Áîòå partition into
sub-groups bounded in absolute sizej groups larger than this bound are not essential. The
property appears in Example 1.1 and in à number of previous papers.

À related notion is that there is à "minimum efficient scale of group size". À pregame
(Ò, Ô) has à òiniòèò efficient scale if there is à bound Â with the properties that for every
profile f, there is à balanced collection ,â of subprofiles of f with Ilgll ~ â for each 9 Å ,â,

and
ÔÜ(f) -L WgÔ(g) = Î , (ç.4)

gE{3

where {W9}9E{3 is à set of balancing weights fîr,â. The condition does not rule out the
efficiency of large groupsj it only requires that that there exist "small" efficient groups,
that is, efficient groups bounded in size. It is immediately clear that if à pregame satisfies
boundedness of essential group sizes, then it has à minimum efficient scale.8

The notion of à minimum efficient scale is equivalent to exhaèstion î/ iòproveòent
possibilities Üó boènded-sized groèps: there is à number Â such that for each profile f and

7See for example von Neumann and Morgenstern [62 ð. 556-586] for an early game-theoretic discussion
of buyer-seller models, Gale and Shapley [36] and Shapley and Shubik [81] for assignment games, Crawford
and Knoer [21] and Roth and Sotomayer [69] for à discussion oftwo-sided matching games (where à match
òàó involve several agents îï åàÔ side of the market), Àèòann and Dreze [8]) for coalition structure
games, Kaneko and Wooders [52], le Breton, Owen and Weber [15] and Demange [22] for partitioning games
(including coalition structure games as in [8]) and also strongly balanced games, Bohm [17] and Ichiishi [46]
for coalition production economies, and Ellickson [28], Scotchmer and Wooders [74] and Wooders [98,108]
for games derived ïîm economies with congestable public goods, and so îï.

8The terms "minimum effi.cient scale" and "exhaustion of gains to scale" to follow were introduced in
[103] to make à connection with the same terms in micro-economic production theory, dictating that there

exists à minimum average cost of production (c.f. [63]).
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payoff õ, if õ .f < \IJ(f), then there is à profile h with Ilhll ~ â and õ. h < \IJ(h).9

Proposition 3.1. Minimèm efficient scale ~ exhaèstion of improvement possi-

bilities: À pregame (Ò, Ô) has à minimum efficient scale of group size with bound Â if and
only if improving opportunities are exhausted Üó groups bounded in size Üó Â.

We provide à proof of this claim in Appendix 1.

The àÜîóå conditions ñàï Üå used interchangeably to obtain the results of the remainder
of this subsection. Each of the conditions implies that for any game n there is Áîòå finite
replication of that game that exhausts all gains to scale in the sense that eventually there
are ïî further per capita gains to replication. Note that exhaustion of gains to scale is
not equivalent to 1-homogeneity of the per capita payoff function, although it does imply
asymptotic 1-homogeneity. The property of exhaustion of gains to scale is important for
the equivalence of cores of games and economies to competitive outcomes. We comment îï
the proof after the proof of Proposition 3.4 below.

Proposition 3.2. Exhaèstion of gains to scale: Let (Ò, Ô) Üå à pregame and suppose
that any one of the àÜîóå three conditions holds with bound Â. Then:

Given any game n there is an integer ò(n) such that for all integers k,

\IJ*(kT(n)n) -Ô*(ò(n)n)-.
)llkT(n)nll IIT(n)nll

The following Figure òàó give insight into the results of this Section. For the Figure
and following exposition, we ignore indivisibilities.

Let (Ò, Ô) Üå à pregame with bounded essential group sizes (or à minimum efficient
scale of grou ð size) and let f Üå à profile. Define (}Ü ( ò) = ÔÜ ( ò f) / 11 ò f 11 for each ò. The

function (}ü(.) is non-decreasing; this follows from the observation that à balanced collection
of subprofiles of ò f is also à balanced collection of subprofiles of ò* f for any ò* ~ ò. When
Ô*(ò f)/IIT fll = (}ü(ò) the game [ò f; (Ò, Ô)] has à nonempty core.

Suppose that Ô*(ò f)/IIT fll achieves its maximum at òî. We ask how much Ô*(ò f)/IIT fll

can dip below its maximum value as we increase ò beyond òî. Define (}(ò) = ffiF(}(i),

where the maximum is over all nonnegative integers k. From superadditivity, the function
Ô*(ò f)/IIT fll must not cross below the function (}(ò), since à possibility open to à group

ò! is to divide into k* subgroups, all with the same profile ~f. Since ÔÜ(òf)/llòfll ~

Ô*(ò f)/IIT fll the function (}(ò) cannot rise àÜîóå the function (}Ü(ò). At òî, (}(òî) = (}ü(òî),

The function (}ü(ò) cannot take îï values higher than (}(òî) since at òî per capita payoffs are
maximized over all replication numbers ò. From superadditivity, for all integer multiples t'
of òî, it follows that (}(t'TO) = (}b(t'TO), This implies that the dips in the function (}(ò) vanish

in the limit and the function (}(ò) converges to (}Ü(ò). Since (}(ò) ~ \IJ*(Tf)/IITfll ~ (}Ü(ò),
we have the conclusion that \IJ*(Tf)/IITfll converges to (}Ü(ò).

The Figure illustrates Propositions 3.2, and 3.4. It also illustrates Proposition 3.6 (but
only for replication sequences). Because of its clear interpretation and relationship to several
economic models, the following results are stated with boundedness of essential group sizes.

9 À version of this condition was introduced in [99} , and another in [114}, discussed later. Related

conditions with other names appear in various papers.

-
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Figure ÕII.1: Limiting 1-homogeneity with replication.

The next Proposition shows that for any game with bounded essential group sizes and
sufficiently òàïó players of each type, the t:-core does not shrink when the game is repli-

cated.

Proposition 3.3. No shrinkage of t:-the ñàãå: Let (Ò, Ô) Üå à pregame with essential
group sizes bounded Üó Â. Let n Üå à game, where, for each t, either nt = Î or nt > Â. Let

t: Üå à non-negative real number and suppose that õ is à payoff in the t:-core of n. Then,

for all integers Ò, õ is in the t:-core of the game òn.

Proof of Proposition 3.3. Suppose the game n and the payoff õ satisfy the conditions
of the Proposition. Observe that since õ is à feasible payoff for the game n, õ is à feasible
payoff for all replications Ò, i.e., õ .òn ~ òÔ*(n) ~ Ô*(òn). Therefore if õ is not in the
t:-core of òn there is à profile f ~ òn such that Ô(f) > f .õ + t:llfll. From boundedness of

essential group sizes, there is à partition {fk} of f such that

Ô(f) -~kÔ(fk) = Î and

11 fk 11 ~ â for each k .

Since Ô(f) > f .õ + t:llfll it holds that ~kÔ(fk) > }::;k(fk .Õ + t:llfkll). It follows that for
at least one k, Ô(fk) > fk .Õ + t:llfkll. Since fk ~ n this contradicts the supposition that

"õ is in the t:-core of n. i

Q.E.D.

The following Proposition is remarkably simple but the idea is crucial to òàïó of the
results to follow. The key observation is that any minimal balanced collection of subprofiles
of à game n generates à partition of òn for appropriate choice of replication number Ò. For
the pregame depicted in Figure 3.1, the integer òî in the Proposition ñàï Üå chosen to Üå

the òî in the description of the Figure.

Proposition 3.4. Nonemptiness under replication: Let (Ò, Ô) Üå à pregame satisfying
boundedness of essential group sizes with bound Â. Let n Üå à game and let t: Üå à non-
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negative real number. Then there is à positive integer òÎ such that for each positive integer
ò, the game òòîn has à nonempty E-core.

Proof of Proposition 3.4. It suffices to prove the Proposition for Å = Î. Let n Üå à
profi1e. Let rl Üå an integer sufficient1y 1arge âî that for each t with nt > Î, rl nt > Â. For
ease in notation, and without any 10ss of genera1ity, assume that rl = 1.

Consider the co11ection of a11 minima1 balanced co11ections of subprofi1es of n. The key
observation that since òiniòal balanced collections have rational weights, we ñàï select
àn integer òÎ with the ðòîðåïó that for every balancing weight 'Ó for ànó òåòÜåò î! ànó
òiniòal balanced collection î! sèbprofiles î! n, òî'Ó is àn integer. It fo11ows that for any
minima1 balanced co11ection [3 of subprofi1es of n with weights 'Ó f for f Å [3, there is à
partition of òîï where òî'Ó f members of the partition have profi1e f.

Let õ Üå in the core of the ba1anced cover of n. Then, for Áîòå minimal ba1anced
co11ection [3 with weights 'Ó! for f Å [3 it ho1ds that õ .n = ~ 'Ó! '\I!(f). Furthermore, for

fefJ
any positive integer ò, (òî'Ó f) is integral for each profi1e f in [3 and ~ (òî'Ó f) f = òîï.

fefJ
From superadditivity of 'ô* it fo11ows that òòîõ .n = r ~ (mo'Yf)'\I!(f) ~ 'ô*(òòîn).

fefJ
Therefore õ is à feasible payoff for the game òòîn. Àâ in the preceding proof, it fo11ows
that õ is in the core of òòîn.

Q.E.D.

Taking ò(n) = òî as defined above, the Proof of Proposition 3.2 fo11ows from the
observation that if à payoff õ is in the core of kr(n)n for a11 positive integers k then, from
superadditivity and from the fact that õ is in the core and therefore cannot Üå improved
upon, '\I!*(kr(n)n) = kr(n)n. õ = k'\I!*(r(n)n) for a11 k.

The reader might observe that except for having the property that al1 gains to group
formation ñàï Üå rea1ized Üó groups containing ïî more than Â p1ayers, the characteristic
function '\I! p1ayed ïî essential ro1e in the above proofj the profi1e n determined òî. We
return to this at the end of the subsection.

The next Proposition demonstrates conditions under which the E-core, if nonempty, does
not expand when the game is rep1icated.

Proposition 3.5. Non-expansion of cores: Let (Ò, 'ô) Üå à pregame with essentia1
group sizes bounded Üó Â. Let n Üå à game with the property that if nt # î then nt > Â
and 1et Å Üå à non-negative real number. Àââèòå that the core of n is nonempty. For any
positive integer ò, if õ is à payoff in the E-core of òn then õ is in the E-core of n.

Proof of Proposition 3.5. Let n, Å, and r satisfy the conditions of the Proposition. Let õ
Üå in the E-core of òn. There is à balanced co11ection {fk} of subprofi1es of òn with weights
'Yk for fk and with 11 fk 11 ~ â for each k, such that òõ .n ~ }::;k'Yk'\I! (fk). Dividing Üó r we
obtain õ. n ~ }::;k(~)'\I!(fk). Since }::;k'Ykfk = òn, it ho1ds that }::;k(~)fk = n. Since, for

r r
each k, Ilfkll ~ â, it fo11ows that fk ~ n -each fk is à subprofi1e of n. We conc1ude that
{fk} is à ba1anced co11ection of subprofi1es of n. It fo11ows that õ .n ~ 'ôÜ(n).

Since n has à nonempty core, n is à ba1anced game and õ.n ~ 'ô*(n). Since õ is in the
E-core of òn, õ cannot Üå E-improved upon Üó any subprofi1e f ~ n. It fo11ows that õ is in
the E-core of n.
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(Ü) Assume that for all profiles f with Ilfll > â, \If(f) = î and, for each t, \If(Xt) > î.

, Then given Å > Î there is an integer 1J~ ( Å) such that each game n with nt > 1J~ ( Å) for
each t has à nonempty strong E-core. -

i

The reason the additional conditions are required for part (Ü) of the Theorem is that

even in à large game with bounded essential coalition sizes, large groups òàó have good
payoff possibilities. À large group òàó Üå àÛå to E-improve upon à payoff that cannot Üå
E-improved upon Üó any small group (where, Üó "E-improve" it is meant here that the group

ñàï, in total, Üå better off Üó at least Å). For the âàòå reason Proposition 3.3 does not
hold for the strong E-core. The restrictions in (Ü) ñàï Üå somewhat relaxed. For example,
instead of assuming each player ñàï realize à positive payoff we could have assumed that,
for each t, Áîòå positive numbers of players of type t ñàï realize à positive payoff. The

statement given has the advantage of being uncomplicated.

3.2.1 Strong Ba1ancedness of Replicated Games. ~

Let Ò Üå à finite set of player types an let Ñ Üå an admissible collection of profiles, as ';,

defined in Section 2.4. The following result illustrates the power of replication.

Theorem 3.1. Strong ba1ancedness ofcollections ofprofiles and replicated player
profiles (Kaneko and Wooders [52], Theorem 3.2): Given à number of player types Ò, let
Ñ Üå à collection of admissible profiles. Let n Üå à profile with the property that f ::; n for ,

each f in Ñ. Then there is an integer òî such that for every replication number r the pair

(òòîn, Ñ) is strongly balanced.

We refer the reader to [52] for à detailed proof. Òî prove the Theorem we choose òî
to Üå à multiple that clears all the denominators of all weights îï subprofiles in minimal
balanced collections of admissible subprofiles of n. Since for any pregame (Ò, Ô) and any
game [n; (Ò, Ô)] satisfying the required conditions, the game [òîï; (Ò, Ô)] has à nonempty
core, the pair (òîï, Ñ) is strongly balanced. Kaneko and Wooders [52] demonstrate the

result for games with and without side payments. .1

I
3.3 Characterizations of large games with effective søàll groups 1,

Building îï the results of the preceding section, it is now not difficult to show that if groups

bounded in absolute size ñàï achieve alòost all gains to group formation, then approximate l'

cores of large games are nonempty. The nature of the results depends îï whether or not ':
"scarce types" are allowed. Informally, scarce types are allowed if we admit sequences
of games where the percentages of players of one or more types are positive but Üåñîòå
arbitrarily small as the games Üåñîòå large. Sequences of replica games, those of the form
{ò f}~l for Áîòå fixed profile f, do not allow scarce types. When scarce types are ruled
out (and with à finite number of player types) simply boundedness of per capita payoffs
will ensure that all sufficiently large games have nonempty approximate cores.

À pregame (Ò, Ô) satisfies weak effectiveness î! sòall groèps, or, in other words, boènd-
edness î! ðåò capita payoffs, if there is Áîòå constant ñ such that, for all profiles f,

\If(f)/llfll ::; ñ.

Theorem 3.2 Ðåã capita boundedness -+ nonemptiness of approximate cores of
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replicated games (Wooders [99,103])12: Let (Ò, Ô) Üå à pregame satisfying boundedness
of per capita payoffs. Let n Üå à derived game and let Å > Î Üå given. Then there is an
integer Òî sufficiently large so that for all integers ò ? Òî, the E-core of the game [òn, (Ò, Ô)]

is nonempty.

Using the intuition and the ideas of the preceding Section, the reader Will perhaps easily
âåå how to prove the Theorem. The per capita payoff function Ô*(ò f)/IIT fll might not Üå
increasing, but it does have an increasing trend. Let L denote the limit of Ô*(ò f)/IIT fll as
ò becomes large. From the convergence, we ñàï get arbitrarily close to the limiting value
L with groups restricted in size. Therefore, we ñàï put à (sufficiently large) bound îï
group sizes and obtain the result Üó applying the analysis suggested Üó Figure 3.1 to the
approximating games with bounded group sizes.

The per capita boundedness condition is åàÂÓ to visualize in the replication ñàâå. It
"almost" suffices to ensure that all sufficiently large games have nonempty approximate
cores. The following example illustrates that it does not.

Example 3.1. Ðåã capita boundedness does not imply the approximate ñàãå
property {Wooders and Zame [113]): Consider à set Ò = {1, 2, 3, 4} of 4 elements and à

function .,\ : Z~ -t R+ defined as follows:

"\(f) = k2 if f = (k,k,0,k2), or
f = (k, Î, k, k2), or
f = (Î, k, k, k2).

"\(f) = Î otherwise.

This function is obviously not superadditive, but we ñàï define its superadditive cover
function .,\ * Üó setting:

"\*(f) = max}::j"\(p)
where the maximum is taken over all partitions {fj} of f. It is easily checked that .,\ * has

à per capita bound, in particular "\*(f) ~ Ilfll. We ñàï easily produce òàïó large games
for which the E-core is empty (for small Å). For example, the game n = (k, k, k, 2k2) has an

empty E-core for each Å < 1/12. .
The difficulty in the above example is that the percentages of players of types 1., 2, and

3 in the game n Üåñîøå arbitrarily relatively small -players of these types Üåñîøå scarce.
Moreover, relatively small groups of players of scarce types have significant effects îï per
capita payoffs. In contrast, this cannot ñàèÁå à problem for any sequence ofreplica games
or for sequences of games where the percentages of players of each type is bounded away

from zero.
The condition of small group effectiveness introduced in Secti<?n 3.1 ensures that scarce

types cannot have significant effects îï per capita payoffs of large groups. In view of our

work in Section 3.2, the following result is now easily proven: i','
i~Theorem 3.3. Small group eff.ectiveness -t uniform nonemptiness of approxi- ;~

mate cores of larg,e ga~es (Wooders [109]). Let (Ò, Ô) Üå à pregame satisfying small )!~Ii'
12 [103] treats games wlthout slde payments. j~~

,1,
~~
"i!i':4~1!.
~\

t";C; ~ -"
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group effectiveness. Then (Ò, Ô) has the approximate core property.

Proof of Theorem 3.3. Let (Ò, Ô) Üå à pregame. Suppose (Ò, Ô) satisfies small group

effectiveness. This implies that given Åî > Î there is à bound Â such that for any profile g,

for Áîòå partition of 9 into subprofiles, âàó {gk}, where Ilgkll ~ â for all k, it holds that:

Ô*(g) -Ek Ô(gk) < follgll .

Let (Ò, Ë) Üå à pregame with À defined Üó A(f) = øàõ Ek Ô(fk) where the maximum

is taken over all partitions {fk} of f with Ilfkll ~ â for each k. The pregame (Ò, Ë) has

bounded essential group sizes. From the nonemptiness of the f-core of à large game with

bounded essential gJouP sizes, Proposition 3.6, we ñàï select an integer 77( ÅÎ) sufficiently

large âî that all games [n; (Ò, À)] with Ilnll 2:: 77(ÅÎ) have nonempty fo-cores. We leave it 1

to the reader to verify that if õ is in the fo-core of [n.; (Ò, À)] then õ is in the 2fo-core of !

[n; (Ò, Ô)], which establishes the result.

Q.E.D.

The important difference between Theorems 3.2 and 3.3 is that 3.3 holds uniformly for

all sufficiently large games, while 3.2 is for replication sequences. The result in [109] is

obtained with à compact metric Áðàñå of player types. The proof èâåâ approximation Üó à

finite number of player types and argument Üó contradiction.

If we bound the percentages of players of each type that appear in à game away from

zero (i.e., if we rule out scarce types, or, in economic terms, if the player set is "thick")

then small group effectiveness is equivalent to per capita boundedness. À proof is provided

in Appendix 1.

Proposition 3.7. With "thickness", ðåã capita boundedness ~ small group ef-

fåñtivånåsslÇ: Let (Ò, Ô) Üå à pregame satisfying boundedness of per capita payoffs. For

each pair of real numbers ð > î and f > Î there is an integer 774 (ð, Å) such that for every

game f with ~ > ð or ft = Î for each t, for Áîòå partition {fk} of f with Ilfkll ~ 774(Ð, Å)

for each k, it holds that ,

Ô*(J) -Ek Ô(fk) ::; fllfll j 1::'

!!
ii

when arbitrarily small percentages of players are ruled out, the pregame satisfies small 1]

group effectiveness. :1

(!

We now have the following Corollary. I1

l'

Corollary 3.2. Let (Ò, Ô) Üå à pregame satisfying per capita boundedness. Given ð > î 11

and f > Î there is an integer 775(Ð, Å) such that for all games f with ~ > ð or ft = Î for 11

each t, if Ilfll > 775(Ð, Å) then the f-core of f is nonempty. I!

Small group effectiveness ñàï also Üå related to the condition in Wooders and Zame

[114] that "blocking power" is concentrated in small groupsj any feasible payoff that ñàï Üå

signifitantly improved upon ñàï Üå improved upon Üó à small group. This is an asymptotic

version of exhaustion of improving opportunities Üó bounded-sized groups. À pregame

13The author is indebted to Jean-Fran<;ois Mertens for suggesting this Proposition. 1.

-~ !;c"~'~ ~~c.
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(Ò, Ô) satisfies âòàè groèp effectiveness /îò iòproveòent if, for each Å > Î there is an

integer 176 (Å) with the following property:
For any game n determined Üó the pregame (Ò, Ô), if õ Å R~ is à feasible
payoff not in the E-core of n then there is à profile / ~ n such that 11/11 < 176 ( Å)

and
Å

Ô(/) ~ õ ./ + 211/11 .

Proposition 3.8. Small group effectiveness ~ small group effectiveness for
improvement: Let (Ò, Ô) Üå à pregame. Then (Ò, Ô) has effective small groups if and
only if (Ò, Ô) satisfies effectiveness of small groups for improvement.

.1
The proof is contained in Appendix 1. .i~!

:
Remark 3.1 Theorem 3.3 above extends à result in Wooders and Zame [113]. There à
more restrictive assumption îÏ boundedness of marginal contributions is used. À pregame
(Ò, Ô) has an individèal òarginal boènd if there is à constant Ì such that for all profiles

1

/ and for all types t it holds that i i

Ô*(J + Xt) -Ô*(J) ~ Ì .

The following Proposition relates individual marginal boundedness and effectiveness of

small groups.

Proposition 3.9 Boundedness of marginal contributions small -+ group effec- 1.
tiveness (Wooders [109]): Let (Ò, Ô) Üå à pregame with an individual marginal bound. !

Then (Ò, Ô) satisfies small group effectiveness.

The assumption of boundednes8" of marginal contributions is more restrictive than re-
quired for the approximate core property. Roughly, what is required is not that marginal
contributions are bounded but that "expected" marginal contributions are bounded. The
following is an example illustrating that small group effectiveness does not imply an indi-

vidual marginal bound.

Example 3.2. À pregame satisfying small group effectiveness but not bounded-
ness of marginal contributions Wooders ([109, Example 2]): The idea of the example
is simple. All players are identical. For large games, an additional player òàó make à very
large contribution to the total payoff. However, this happens very very seldom, so small

gr6ups are effective.
We consider à sequence of games where the kth game has 102k players. The marginal

contribution of à player to à group containing 102k -1 players for any positive integer k
will Üå at least 102k /10k, which goes to infinity as k becomes large. Per capita payoffs,

however, are bounded.
Precisely, let (Ò, Ô) Üå à pregame with Ò = 1. Define Ô Üó

Ô(Î) = Î
Ô(l) = 1

Ô(10) = 10

;:
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Ô(102k) = (102k) [~1/10'] for k = 1,2,. ..

For anó k it holds that Ô*(102k) = Ô(102k) = màõÅÔ(10V) for al1 partitions {102j} of

102k; it is optimal, when there are 102k players for Áîòå k, to have only one group in the
player partition. Note that Ô satisfies smal1 group effectiveness which, in the 1-player-
type case, is equivalent to per capita boundedness. This fol1ows from the observation that

Ô(102k) 1lim 2k = 1 + -9 ' As noted above, marginal contributions ñàï Üåñîòå arbitrarily
k-oo 10
large.

4 Market Games, Monotonicity, Convergence, and Ñîò-

petitive Pricing !
,\

We discuss the Shapley and Shubik [79] characterization of totally balanced games as mar- IJ
.ket games and provide an introduction to the characterization of Wooders [105,107] of large i

games as market games.14 That large games are market games suggests that for any large
economy with effective smal1 groups and substitution there is at least one set of "ñîò-
modities" such that relative to those commodities an approximate competitive equilibrium
exists.15 The market-like properties of large games with effective small groups include core
convergence and the "law of scarcity" (core payoffs to players of à given type do not increase
and òàó decrease when that type becomes more abundant). The concepts of an attribute i
game, where attributesjcommodities are taken as the players, and the f-attribute core
are introduced. The attribute core is related to competitive pricing and also subsidy-free

ðnñøg.

4.1 Market games and monotonicity

The next Proposition, 4.1, the first of our "law of scarcity" results, extends à result of
Scotchmer and Wooders [75].16 Proposition 4.3 treats the "law ofscarcity" in the continuum
limit and Proposition 4.4 provides an asymptotic treatment. 17

Proposition 4.1. Monotonicity of the ñàãå correspondence of finite games with
exhaustion (This paper): Let (Ò, Ô) Üå à pregame with minimum efficient scale of group
size bounded Üó Â. Let 1 and 9 Üå games with, for each t, 1t > Â and gt > Â. Suppose i

that õ is in the core of the game 1 and ó is in the core of the game g. Then

(õ -ó) .(1 -g) .$: Î .(4.1) I
I.
I

14The author is indebted to Robert J. Aumann, who encouraged this characterization. I
15We refer the reader to Wooders [107,108] for à òîãå complete discussion of the implications of the result

that large games àãå market games.
láIn [75] the exhaustion condition is òîãå restrictive and is à condition îï the entire pregame. Ñø

condition actually applies to à given game; the pregame structure is unnecessary. See a1so Wooders [110].
17Related results àððåàã in the "matching" literature; âåå Crawford [20] for à recent treatment. We do

not discuss these here. A1so, we will not discuss "partial" monotorucity results, where the changes in the
player population àãå restricted to changes in the relative scarcity of înå type (ñ.f.,[çî]).

II

_ñ, :;: '-
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Proof of Proposition 4.1. Let [fj (Ò, Ô)] Üå à garne satisfying the conditions of the
Proposition and let õ in the core of the game [fj (Ò, Ô)]. From the assumption that õ is,
the core of f, õ. h ~ Ô(h) for all profiles h with Ilhll ::; Â. Let 9 Üå à profile satisfying the

conditions required Üó the Proposition and let ó Üå in the core of [Ó; (Ò, Ô)].
We claim that õ .9 ~ ôÜ(g) (= Ô*(g) since the game [Ó; (Ò, Ô)] has à nonempty core).

Suppose not. From the minimum efficient scale assumption there is à balanced collection ,8
of subprofiles of 9 with weights Wh for h Å ,8, such that, for åàñÜ profile h in,8, Ilhll ::; â and
EhE{3Wh Ô(h) = ôÜ(g). Then õ .9 < ôÜ(g) implies that õ .(}::hE{3Whh) = }::hE{3Wh(X .h) <

}::hE{3Wh Ô(h). This implies that is à profile h with Ilhll ::; â such that õ. h < Ô(h). This
is à contradiction as, from our assumptions, h::; f and if õ .h < Ô(h), õ cannot Üå in the
core of [f; (Ò, Ô)]. Similarly, ó' f ~ ÔÜ(f). These observations yield the following estimate:

(õ -ó) .(f -g) ::;

x.f-x..g-y.f+y.g::;

ÔÜ(f) -ÔÜ(f) -ôÜ(g) + ôÜ(g) = Î .

Q.E.D.
ÒÎ show approximate monotonicity as à consequence of small group effectiveness and

.to provide further economic motivation, we introduce some results îï the representation of
garnes as markets. Shapley and Shubik [79] define à òarket as an exchange economy with
money and with the property that all agents have continuous, concave utility functions. À

òarket gaòe is à game derived from à market. À garne is derived from à market Üó assigning
to åàñÜ coalition the maximal total utility the members of that coalition ñàï realize Üó the
consumption of the total endowment of the coalition membership. Conversely, the authors
derive à market from à totally balanced game. Here we discuss only one special sort of

derived market, called the "direct market".
ÒÜå direct òarket derived from à balanced game is à market with the properties that

the number of commodities equals the number of player types; all agents have the âàòå
utility functionj åàñÜ agent is endowed with one unit of one goodj and all players of the
âàòå type are endowed with the âàòå commodity. ÒÜå utility function of every agent is the

characteristic function appropriately extended from Z~ to R~. Let (Ò, Ô) Üå à pregame
and let [n; (Ò, Ô)] Üå à game determined Üó the pregarne. Assume that the garne is totally
balanced -the garne and all its subgames are balanced.18 We construct à market from the :)

'.

garne Üó first assuming that there are Ò types of commodities and, in the market, à player '..':::
.""

of type t is endowed with one unit of the' tth commodity. Define à "utility function" è as ~;:i
.',

follows. For åàñÜ õ Å R~ define ii;
,,~( ) """"' 1Tr(f) (4 2) .':~,., è õ = øàõ L... "ó f 'J! , .;;wt

{'Y f } f<n t:f,jj -Ó. ,';;, ,
fEZT ,\1"+ ,~,~;

maximized over all sets of non-negative "ó f satisfying :;~~)
'. if411

""""' "Yf f = õ .(4.ç) ~~

L... ...!""f<n \,,'
-ò ),1:,;

fEZ+ ,t~'

required ""

.\r~
,,~

-';!::";~!;:~ '.;~;



Large Games and Econoòies with EfIective Sòall Groups 167

Shapley and Shubik show that u is à continuous and concave function. Note that we
have not expressly introduced money, the medium of transferring payoff. Òî do so would
require the addition of another variable, say I!;", and defining the utility function of an agent
as è( õ) + I!;". While money is implicitly one of the commodities of exchange, for our purposes
we need not keep this commodity explicitly in view. (See [82] for further analysis of the
role of money. )

Let n Üå à profile and let u denote the utility function constructed above. Taking
advantage of the concavity, and following Shapley and Shubik, we derive à game from the
market. For each subprofile f of n define õ! = {õÒ Å R~ : ~xt ft = f}; õ! is the set of
feasible allocations of goods with the equal treatment property for à subset of agents in the
market with endowment f (equivalently, à subset of players with profile f in the game).
Define the characteristic function v Üó

v(f) = øàõ Eftu(xt) .
õ!

Then (n, v) is the òarket gaòe determined Üó the market, where n is the profile of the j
agent set and v is the characteristic function. For totally balanced games, Shapley and I
Shubik show that for all profiles f ~ n, v(f) = ÔÈ) -the game generated Üó the market
coincides with the initially given game [n; (Ò, Ô)].

Shapley and Shubik show that the competitive payoffs of the direct market described
.above coincide with the core of the totally balanced game generating the direct market. i

11From the equivalence of the core and the competitive payoffs, our result shows that if ~
the game satisfies the conditions of Proposition 4.1, then (à) the competitive price corre- ~
spondence is monotonic in the sense that changes in quantities supplied of player types 1
and corresponding changes in competitive prices point in opposite directions and (Ü) the :..
competitive price vector is typically unique.

Wooders [105,111] introduces the construction of à "limiting direct premarket" derived
from à pregame. Òî construct à direct premarket from à pregame we need to define an
appropriate utility function. Let (Ò, Ô) Üå à pregame with effective small groups. For each
vector õ in R~ define È (õ) Üó

Ô*(fV)U(õ) = Ilxll vl~~ -1È1Ã (4.4)

where {fV} is any sequence of profiles such that Ilfvll ~ 00 and Ilxll (~) fv converges

to õ as II ~ 00.
The function È is 1-homogeneous, concave, and continuous.19 (See Wooders [105,111]

for proofs.) The concavity is à consequence of 1-homogeneity and superadditivity and the
continuity is à consequence of small group effectiveness.

Observe that when È is restricted to profiles (in Z~) then (Ò, È) is à pregame with the
property that every game [f; (Ò, È)] has à nonempty core. This is à consequence of the
Shapley and Shubik result that market games are totally balanced and the observation that
each game [f; (Ò, È)] is à market game.

19This concavity, for the side payments form of [103], was initially noted Üó Aumann [7]. The concavity
is shown to hold with à compact metric space of player types in [105].-"tk,;:'.","::f'~ 

-~-
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Note that given à profile n the Shapley-Shubik direct market utility function u deter-
mined Üó the game [n; (Ò, Ô)] does not necessarily equal the utility function Èj u depends
îï n. If the pregame has the property that all gains to group formation ñàï Üå realized
Üó groups bounded in size, (if, for example, there is à minimum efficient scale of group or,
equivalently, all improvement possibilities ñàï Üå realized Üó bounded-sized groups) and if
n contains enough players of each type, then it will Üå the case that è( õ) equals È (õ) for
all õ Å IR~. (See also Propositions 3.1 and Proposition 4.5 below.)

The following Proposition shows that when small groups are effective È (/) is uniformly

close to W for all sufficiently large profiles /. À proof is immediately clear from results
in Wooders [111]. '

Proposition 4.2. Uniform convergence to the limiting utility function (Wooders
[105,111]): Let (Ò, Ô) Üå à pregame.

(à) If (Ò, Ô) satisfies small group effectiveness then,.letting È denote the function defined

Üó (4.4),
for each Å > Î there is an integer 1]5(Å) such that for (4.5)

all profiles / with 11/11 > 1]5(Å) it holds that:

È(f) -Ô*(f) ~ EII/II .

(Ü) If È is à continuous, concave function satisfying (4.5) then (Ò, Ô) satisfies small

group effectiveness.

It is perhaps clear to the reader that, as already suggested Üó Aumann [7], the function
È, defined Üó (4.4), is Lipschitz continuous. We leave à proof of this to the reader.

The core correspondence of any market with à continuum of players, in which àll agents
have the âàòå continuous and concave utility function, satisfies monotonicity, as in Propo-
sition 4.3 below. Large games converge to continuum games representable as markets with
these properties, and the approximate cores of the games converge to the core of the lim-
iting market game [107]. It is thus natural to expect that large finite games derived from
pregames with effective âòàll groups will satisfy approximate monotonicity. We first state

Proposition 4.3.
In Proposition 4.3, for each t we interpret /t as the percentage of players of type t. The

(set valued) function ñ(.) is the core correspondence. The set Ñ(/) is interpreted as the
core of à game with an atomless measure Áðàñå of players of Ò different types, each of whom
has the utility function è. Alternatively, when each agent is endowed with one unit of à
commodity (perhaps his player type) we ñàï also regard the set ÑÈ) as the set ofWalrasian
prices for the commodities. The Proposition is an application of the monotonicity of the
sub-gradients of à proper concave function and, in fact, Propositions 4.2 and 4.3 ñàï Üå
strengthened to cyclic monotonicity. See Wooders [110].

Proposition 4.3. Monotonicity of the ñàãå correspondence of the continuum
limit (This paper): Let u Üå à continuous, concave, and 1-homog~neous function with
domain IR~. For each h Å IR~ let C(h) = {õ Å IR~ : õ .h = u(h) and õ .ò ~ è(ò) for àll
ò Å IR~, ò ~ h}. Then, for each / Å IR~+ the set Ñ(/) is nonempty and for any J and 9

;.;\"~k
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in IR~+, and any õ in O(f) and ó in O(g),

(õ -ó) .(! -g) ~ î. -

Proof of Proposition 4.3. Since è is concave, the set O(h) is nonempty for any h in the
interior of IR~. Let f and 9 Üå in IR~+. Let õ Üå in O(f) and let ó Üå in O(g). Since the

supports of f and 9 are equal, there is à positive real number >.. such that >..g ~ f. From
the definition of O(f) it holds that õ .(>..g) 2 è(>..g). From 1-homogeneity of è it holds
that õ .9 2 è(g). Similarly, it holds that ó .f 2 èÈ). As in the argument in the proof of
Proposition 4.1:

(õ -ó) .(! -g) ~

x.f-y.f-x.g+y.g~

è(f) -è(f) -è(g) + è(g) = Î .

Q.E.D
The next Proposition shows asymptotic monotonicity. Note that under any conditions

ensuring the nonemptiness of strong E-cores, the monotonicity applies to the strong E-core

as well as to the (weak) E-core.

Proposition 4.4. Asymptotic monotonicity (This paper): Let (Ò, Ô) Üå à pregame
satisfying small group effectiveness. Let áî and Ðî Üå positive real numbers. Then there is
à positive real number Åî and àï integer 1](áî, ðî, ÅÎ) such that:
(4.1) for all games [f; (Ò, Ô)] with Ilfll > 1](áî, Ðî, ÅÎ) the Eo-core is nonempty; and

(4.2) for all pairs' of games f and 9 with, for each t = 1, ...,Ò, iiff > Ðî and Û > Ðî and

with Ilfll > 1](áî, Ðî, ÅÎ) and Ilgll > 1](áî, Ðî, ÅÎ), if õ is à payoff in the Eo-core of f ana ó is

à payoff in the Eo-core of 9 then

1 1
(õ -ó) .((è)f -(û )g) ~ áî .

Proof of Proposition 4.4. Suppose the conclusion of the Proposition is false. From
Theorem 3.3 we cannot contradict the first conclusion of the Theorem. Therefore, since
we are supposing that the Proposition is false, there are positive real numbers áî and Ðî, à
sequence of positive real numbers {EV} with IIEv 11 -+ î as V -+ 00, and à pair of sequences

of games {fV} and {gV}, such that
(à) IlfV11 -+ 00 and IlgV11 -+ 00 as V -+ 00,

ff gf(Ü) ~ > Ðî and É > Ðî for each t and each Ó, and

( ñ) for each integer Ó, for some xV in the EV -core of fV and some yV in the EV -core of gV,

(xV -yV). ((~)fV -(é)gV) > áî.

-1
We ñàï suppose, Üó passing to à subsequence if necessary, that the sequences {( ~ ) fV}

and {(é)gV} converge. Let [* = vl~IIJo(~)fV and g* = vl~IIJo(é)gV. From small
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group effectivene88 and "thickne88", bounding the percentage8 of player8 of each type away

from zero, it follow8 that the approximate core payoff8 are bounded above. (Small group
effectivene88 en8ure8 per capita boundedne88. With thickne88, per capita boundedne88
dictate8 that approximate core payoff8 are bourided.) We ñàï 8èðð08å, Üó pas8ing to à
8ub8equence if nece88ary, that the 8equence8 {XV} and {yV} converge, 8àó to the vector8 õ*

and ó*.
Define the limiting utility function È as above. Given any vector h Å IR~+ the 8etO(h)

(defined as in Prop08ition 4.3)) coincide8 with the "core of the limiting game" introduced
in Wooder8 and Zame [114, Section 9], where, for each t, the percentage of player8 oftype t
in the limit game i8 ht and the characteri8tic function of the limit game i8 given Üó U. From
Wooder8 [105,111] the function U(.) i8 concave. À8 8tated in Theorem 4.1 below, 8ince the ,
core corre8pondence 0(.) i8 the limit of approximate core8, õ* i8 in O(f) and ó* i8 in O(g). :~

From Prop08ition 4.3, "
(õ* -ó*) .(f* -g*) ~ î ..

Let lIO Üå 8ufficiently large 80 that for allll ~ lIO it hold8 that

( * *)( fr j* ) < áà d
8~P Xt -Yt iIi"li -t -4ò an

,

( * *)( gr *) < áà
8~P Xt -Yt È -gt -4ò j

.
thi8 i8 p088ible 8ince f* = Ji~(~)fV and g* = v1i..~(é)gV. From Prop08ition 4.3

and the above, for allll 2 1I0 it hold8 that:

(õ* -ó*). ((~)fV -(é)gV)~

I(x* -ó*) .(( ~ )fV -f*)1 + I(x* -ó*) .(( ~ )gV -g*)1 + I(x* -ó*) .(f* -g*)1
Ilfvll IlgV11 -

~ áî/2 .

Let III Üå 8ufficiently large 80 that III 2 lIO and 80 that for alll1 2 lIl,
( V *) ( fr gr ) < áî d ( V *) ( fr gr ) < áà. h...

Ül8~P Xt -Xt iIi"li -è -4Ò' an 8UPt Yt -Yt iIi"li -è .:- 4Ò' t 1818 ð0881 å

8ince {XV} converge8 to õ* and {yV} converge8 to ó*. We now obtain an e8timate:

(XV -yv). ((~)fV -(é)gV) ~

l(xV -ó*). ((~)fV -(é)gV)1 + I(x* -ó*). ((~)fV -(é)gV)I+

l(yV -ó*). ((~)fV -(é)gV)1 ~ á'.

Thi8 i8 the de8ired contradiction. Q.E.D

" -:
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4.2 Convergence and typical smallness of approximate cores

There are many implications of the fact that large games with effective small groups are
market games. The fact that the utility function È is differentiable almost everywhere
implies that for "most" large games, the equal-treatment E-core is "small", and for almost
all distributions ofplayer types the "limit core" is à singleton set. In this Section we state àn
extension of the Wooders [99] and Wooders and Zame [114] results that approximate cores
of large games with à finite number of player types converge. Rather than the boupdedness
of marginal contributions of [114] we require only small group effectiveness as in [99]. For
the statement of the Theorem, we denote the E-core of à game [f; (Ò, Ô)] Üó C(fj Å) and
the set of core payoffs for the game [fj (Ò, È)] Üó Ï(f). The function È is as defined in the
preceding section.

Theorem 4.1. Convergence of approximate cores (Wooders [107]): Let (Ò, Ô) Üå à
pregame satisfying'small group effectiveness. Let 80 > Î, ÐÎ > Î, and Åî > Î Üå positive
real numbers. Then there is an Ål with Î < ÷ ~ Åî and an integer 1]7(80, Ðî, ÷) such that i

nt ifor all games n with Ilnll > 1]7(80, Ðî, Ål) and Ì 2: Ðî for each t, !

Ñ(n; Ål) # Ô and

dist [Ñ(n; Ål), Ï(n)] < 80 .20

In the Appendix, we indicate the extension of the proof of the convergence Theorem of
[114] to prove Theorem 4.1.

The set Ï(f) is equivalent to the set of competitive payoffs for the direct market where,
for each t, there are ft participants who each own only înå unit of the tth commodity and
all participants have the utility function U. Thus Theorem 4.1 shows convergence of the
core to competitive payoffs of representing markets.

À note worthy aspect of the above Theorem is the equal- treatment property îï the
E-core. In Appendix 1 we consider E-cores without this restriction. In this case, small
group effectiveness ensures that approximate co~es of large games treat most players of
the same type nearly equally. Thus, an E-core convergence result ñàï Üå obtained for the
unrestricted E-core: for large games and small Å, an (unrestricted) E-core payoff assigns most
players nearly their competitive payoffs.

It ñàï Üå shown that if the percentages of players of each type are bounded away
from zero then convergence of the core implies small group effectiveness (Wooders [107]).
This suggests that the condition of small group effectiveness defines à boundary of perfect ;

competition. !
If à pregame (Ò, Ô) has bounded essential group sizes (or à minimum efficient scale of i

igroup size) then the market game derived from à pregame has particularly nice properties.
These properties òàó help explain the above results. In addition to the 1-homogeneity and
concavity of the utility function È defined in the preceding section, with the assumption
of à minimum efficient scale, the function È is "piece-wise linear" -the commodity Áðàñå
R~ ñàï Üå partitioned into à finite number of ñîïåâ, and îï the domain of ànó înå of these
cones, the utility function is linear. More precisely, we have the following Proposition.

20see Hildenbrand [51] for à discussion of the Hausdorff distance.
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Proposition 4.5. Piece wise linearity of the utility function with exhaustion
Üó bounded sized groups (Winter and Wooders [96]): Let (Ò, Ô) Üå à pregame with à
minimum efficient scale of group size, and let È denote the derived utility function. Then .

È is piece-wise linear, that is,
for Áîòå collection of ñîïåâ, say Ñ1,.. ., Ck, with Ck ñ R~, with the vertex at

ê
the origin for each k, and with the property that R~ = U Ck, the function

k=1 i

È is à linear function îï Ck for each k = 1,..., Ê, that is, for any k and any ;!
,

õ, ó Å Ck it holds that

U(õ) + U(ó) = U(õ + ó) and

U(õ) ~ î for all õ Å Ck .\

For pregames with à minimum efficient scale of group size, Áîòå results are quite imme-
diate and very intuitive. Let / Üå in the simplex in R~, and suppose that / is in the interior
of one of the ñîïåâ Ck. Then the limiting utility function È is differentiable at /. In the
continuum economy with measures of agents of each type t given Üó /t, competitive prices
(and payoffs) in the limiting market are determined Üó the slope of the indifference curve
of È at the point / (Winter and Wooders [96], Proposition 2). Since the utility function
È is differentiable at the point / the competitive payoffs are uniquely determined. From
Proposition 4.2 and the fact that for each cone Ck for all population distributions õ in the
interior of Ck, the competitive payoff vector of the market game where all participants have
the utility function È is uniquely determined, we have the following conclusion, discussed

in [107].

Proposition 4.6. Typical smallness of approximate cores: Let (Ò, Ô) Üå à pregame "
with minimum efficient scale of group size Â. Let 60 > Î and ëî > î Üå given real numbers. ~jj

t

Then there is à su bset 8 ( 60, ëî) of the sim plex i~ R~ with the Le besgue measure of 8 ( 60, ëî) I
greater than.1 -ëî, à real num~er Å*, anf an mteger 17(60, ëÎ, Å*), such that for all games "'11
[/; (Ò, Ô)] wlth 11/11 ~ 17(60, ËÎ, Å ) and (è)/ Å 8(60, ëî)" ;\~:

the E*-core of [/; (Ò, Ô)] is nonempty and contained in à ball ~'
of radius less than 60. ~, 1;!'

À similar result ñàï Üå obtained for large games with effective small groups and "thick- }i~
"'([

ness", since the limiting utility function È is differentiable almost everywhere. For exchange :i
economies with òînåó where all agents have the same differentiable utility function, the :~;~
competitive payoff is unique, and competitive prices are given Üó the derivatives of the ;'!
utility function at the total endowment point (with the price of money equal to one).21 For (i:
our case, in à direct market when each agent is endowed with 1 unit of à single commodity, ::;
the competitive payoff of an agent ñàï Üå taken as the price of the commodity he owns. For :;

1,
the case of à pregame with small effective groups the limiting utility function È is differ- , ,:~
entiable except îï à set of measure zero. Asymptotic "typical" uniqueness results follows ..,~
from the concavity 2~f the limiting utility function È and the fact that it is differentiable :1':
almost everywhere. ',",

21 See Shapley and Shub~k [82) for related discussion. 1'lk
22See [107] for further dl8Cuss1on. :"1

ñ
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4.3 Competitive prices, subsidy-free prices, and the attribute ñîãå23

À 1ine of 1iterature most c1ose1y identified with cost al1ocation and Aumann-Shap1ey prices
defines characteristic functions îï amounts of commodities, andj or prices of commodities,
andj or other economica11y re1evant variables. This important 1ine of research, initiated in
Zajac [118] and Fau1haber [31], treats the assignment of prices andjor costs to economic
variables so that certain desiderata are satisfied.24 In Wooders [110] the research reported
in this paper is app1ied to problems of the endogenous determination of prices for attributes.

Suppose that (Ò, Ë) is à pregame. Now, however, interpret profiles as bund1es of ñîò-
modities andjor attributes. The word "attributes" is intended to Üå more genera1 than the
usua1 connotation of "commodities". For examp1e, an attribute òàó Üå the abi1ity to dis-
tinguish between fine wines or it òàó Üå Áîòå private information. When "sma11 amounts
of attributes are effective", however, attributes are equiva1ent to the commodities of genera1
equi1ibrium theory. This is further discussed in Wooders [108,110]. For the remainder of
this Section we wi11 use the word attributes, but the reader òàó wish to keep in mind that
the term "commodities" ñàï Üå taken as à substitute for "attributes".

In princip1e, the set of attributes cou1d Üå à compact metric Áðàñå as in Mas-Co1e11 [55],
or Wooders and Zame [11ç,114] for example. We discuss on1y the case where there is à
finite number Ò of types of attributes. We will assume that bund1es of attributes are points
in z-r, so we ñàï exact1y app1y all the resu1ts that we have obtained and the concepts we've
introduced. We assume that sòall aòoènts î/ attribètes are effective, that is, viewing Ë
as the characteristic function of à pregame with types, Ë satisfies smal1 group effectiveness.
(We have simp1y replaced the word "types" Üó "attributes").

Let Å ~ Î Üå given and 1et õ Üå à profi1e of attributes, õ Å IR~. Then à (price) vector
ð Å IR~ is in the attribète E-core (given the total endowment õ) if

ð' z ~ Ë(z) -Ellzll for al1 z ~ õ and ð' õ ~ Ë(õ) .

Given à (total) endowment z, we ñàï think of Zt as the number of type t p1ayers in the
game. The endowment õ ~ z represents à subgroup of p1ayers with Xt p1ayers of type t.
The attribute E-core is à natura1 concept, since it describes situations where commodities
form "coalitions". For examp1e, units of the attributes, 1abor and capita1, òàó Üå placed
in firms (i.e. coa1itions) containing units of other productive attributes. Another examp1e
is the p1acement of money into coalitions, mutual funds. Note that the attribute E-core is
simp1y the E-core when we revert to the interpretation of Ë as à function with domain the
profi1es of p1ayers. .

I

From our resu1ts îï the representation of 1arge games as markets with small effective
groups we ñàï define à limiting ðàóîÍ" (or uti1ity) function W to attributes just as we defined
the utility function U. The function W is superadditive, 1-homogeneous, and concave.

Recall that Theorem 4.1. states the convergence of approximate cores to competitive
payoffsjprices in à market where the player types were the goods. In our current interpre-
tation, the approximate attribute cores converge to competitive prices for attributes. (This
is precisely as in the approach abovej on1y the names of the components of profi1es have
changed.) All of our resu1ts for 1arge games app1y, inc1uding nonemptiness of (attribute)

2ÇWå are grateful to Ed Zajac and Yair Tauman for helpful discussions îï this topic.
24See Tauman [93] for à recent survey and Schotter and Schwodiauer [73] for à survey placing more

emphasis îï the core.
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f-cores for large games, core convergence, the representation of games as markets, and
asymptotic monotonicity of payoffs (now equivalent to prices for attributesjcommodities).

Òî relate the attribute core to competitive pricing and core convergence in economic
models where agents øàó own bundles of commodities, observe that the pair consisting
of the Ò types of attributes and the function À ñàï Üå regarded as the components of
à "pre-economy" where each agent has the same utility (or net revenue) function À. Òî
derive an economy from the pre-economy (Ò, À), let N Üå à finite set, interpreted as à set of
agents. Let å Üå à mapping from N into Z!, where å( i) is interpreted as the endowment of
agent i. An åñînîòó (N, å) is given Üó the agent set N and the assignment of endowments
å. Of course, the payoff function À øàó not Üå concave and à competitive equilibrium
øàó not exist. However, for large economies, in per capita terms the utility function
(for commodities) approaches the function W, and an approximate competitive pricing (of
attributesjcommodities) exists.

Let (N, å) Üå an economy. We derive à game from the economy in the usual way. Let S
Üå à coalition in N and let Zs denote the sum of the attributes owned Üó the members of
Â. Define V(S) = A(zs). Then the pair (N, V) is the game derived from the economy. It is

interesting to note that players in the derived game (N, V) are "syndicates" (of attributes)
in the attributes game with total endowment zN. (À syndicate is defined as à group of
players which has coalesced into 1 player. In the game îï attributes à syndicate is à
commodity bundle. See Wooders and Zame [114] for à formal definition of syndicates.)

In exchange economies with money competitive prices are independent of ownership of
commodities. This indicates that our convergence and monotonicity results for games apply
iòòediately to competitive prices for attributes in ecol:tomies. Approximate cores of derived

games, however, depend îï the assignment of control of bundles of attributes to individual
players. If assignments of attributes are bounded, the effectiveness of small amounts of
attributes of the pre-economy (Ò, À) ensures that approximate cores of econom~es converge
to competitive payoffs and the limiting core payoffs are the sums of the worths of the indi-
vidual endowments of attributes -the total payoff to each player is (approximately) the
value of his endowment at the competitive prices. Equivalently, if the sizes of syndicates are
bounded in the attributes game then the f-core payoff to à syndicate in à large game with
possibly "many" syndicates is approximately the âàøå as the sum of the payoffs to the syn-
dicate members in à game prior to syndication.25 The convergence is obtained in [110] for
the model discussed here Üó application of Theorem 4.1 and Aumann's Core-Equilibrium
Equivalence Theorem ([6]).26

In Wooders [110] an example is provided illustrating that when property rights àâ-
signments are unbounded, approximate cores of economies converge to price- equilibrium
payoffs but the prices are subsidy-free prices and distinct from competitive prices. Subsidy-
free prices are prices for attributes that are feasible and have the property that there exists
ïî alternative price system that is feasible for some group of participants and preferred Üó
all members of the group (c.f. Sharkey and Telser [83], Moulin [59,60], or Wooders [110]).

25 À related, and more subtle, result is obtained in [114]: if marginal contributions to coalitions are

bounded, then the Shapley value of à small syndicate in à large (finite) game is the âèò of the Shapley
values of the members of the syndicate in the game prior to syndication.

26 À related proposition was shown in Engl and Scotchmer [3Î] for sequences of economies with converging

distributions of attributes but with assumptions of differentiability of the limiting production function W
and of uniform convergence to W.
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Formally, let (N, å) Üå àn åñînîòó and, for each S Ñ N, let å( Â) = EiES å( i). À vector

ð Å JR.T is à sèbsidy-free eqèilibrièò ðïñå if

, ð' e(N) :::; A(e(N)) and

ð' å(Â) ~ À(å(Â)) for all S Ñ N .

F<?r an åñînîòó (N, å) where each participant is endowed with înå and only înå unit of
înå attribute, à subsidy-free price is an attribute core payofI. It appears that if à pregame
îï attributes satisfies small scale efIectiveness, then approximate cores of large derived
economies converge to approximate subsidy-free price payofIs, whether or not property

rights assignments are bounded.

5 Continuum Games with Effective Small Groups

Small group efIectiveness expresses the idea that all or almost all gains to group formation
ñàï Üå realized Üó small groups of participants. In à "limit version" of small group effec-
tiveness, all gains to group formation ñàï Üå realized Üó groups of measure zero in à game

with à continuum of players. À model with efIective groups of measure zero, specifically
finite groups, has Üåån developed Üó Mamoru Kaneko and this author [49,50,51].27 In this

section, we describe the model of the continuum with finite groups, state à theorem postu-
lating nonemptiness of the core, and provide Áîòå examples. We focus îï the model with
à finite number of types of players and indicate the extension to à compact metric Áðàñå of

player types.
The purpose of the continuum with finite coalitions is to provide an idealized model of à

large game or åñînîòó where, just as in finite games or economies, individual participants
ñàï interact înå with another and within small groups without afIecting aggregate outcomes.
The negligibility of individual participants and finite groups relative to the total player set
suggests àn atomless measure Áðàñå of participants as introduced Üó Aumann [6] to model
situations where individual participants are negligible relative to economic aggregates. That
individual participants attempt to pursue their own self-interest, and in doing âî, interact
with and influence each other, suggests that individuals are atomistic. These sorts of
ideas, of à large total player set not subject to the influence of small numbers of players,
and atomistic self-interested participants actively engaged in the pursuit of personal gains, iappear in early descriptions of competitive economies. These ideas are suggested, perhaps, ,

Üó Adam Smith [90]. The difficulty is the reconciliation of the apparent paradox of àn :

atomless measure Áðàñå of players with atomistic individual players and efIective small
groups. À reconciliation of the apparent paradox is achieved Üó the adding-up of finite
coalitions in à manner consistent with the measure îï the total player set. Kaneko and :,
Wooders [51] introduces the concept of measurement-consistent partitions for this purpose. iH

Most of this Section discusses the model and result of Kaneko and Wooders for contin-
uum games with finite coalitions. We remark, however, that àn axiomatization of the core
of games with finite coalitions is provided in Winter and Wooders [97]. The games include
both finite games and games with à coritinuum of players and finite coalitions. :l!!

27 (and also Hammond -âåå [41,42] and Winter and WooderB [97].

,
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5.1 Continuum games with à finite set of player types

The pregame construct used in the preceding sections will also Üå used here. In games with
à continuum of players the possibilities open to any finite group are exactly the âàòå as
those open to that group in à game with à finite total player set. Òî describe à game with
à continuum of players we must describe the total player set and the permissible partitions
of the total player set into finite groups (of measure zero, of course).

Let Ò Üå à given number of player types. Let N = (N1, ..., NT) denote the distribution
player types in the total player set, with IINII = 1. For each t, Nt is the proportion of
players of type t. Our interpretation is that there is à continuum of players of each type,
and Nt is the òeasère of players of type t in the player set. Each player in à game is viewed
as an individual. The player is "small" relative to the total player set and also relative to
the set of players of the âàòå type, but two players (or the members of any finite group)
are the âàòå size and àÛå to meet, face to face, and engage in collective activities. Groups
are also small relative to the total player set. Payoffs to (finite) groups are small relative to
aggregate payoffs to large masses of players. But the payoff to an individual player is the
âàòå size relative to the player as in à finite game.28

Just as in the preceding sections, we will denote à group Üó à profile f Å Z~j ft is again
interpreted as the absolute number of players of type t in the group. Clearly, the total
player set N, which contains à continuum of players, ñàï form into à continuum of groups.
The problem is to partition players into groups in such à way that the "relative scarcitie~"
given Üó the measures of players of each type 'in the game N are preserved. Òî address
this problem we first index the collection of all profiles. Since there is à finite number of
types and since profiles ûå vectors of integers, the collection of all profiles is countable. We
next assign weights to profiles. These weights determine the proportion of players of each
type in each kind of group. The weights are consistent with the proportions, given Üó the
measure, of players of each type.

Throughout the remainder of this Section let (Ò, Ô) Üå à pregame and let N Üå à
continuum player set. Let {fk}~l Üå the collection of all profiles. Let {ëk}~l Üå à
countable collection of non-negative real numbers, called weights. À collection {ëk} of
weights is òeasèreòent-consistent if

~këkfk=N=(Nl,N2,...,Nò) .

À measurement-consistent collection of weights describes à measurement-consistent par-
tition of the players in N into finite groups with profiles in the set {fk}. For each t the
number ëk ftk jNt is interpreted as the proportion of players of type t in members of the
partition with profile fk. We stress that à profile fk describes à finite group Üó the numper
of players of each type in the group, exactly as in the preceding sections. À measurement-
consistent weighting describes à partition of the total player set into à continuum of groups.
For anó profile fk with à positive weight ëk, in the partition there is à continuum of groups
with profile fk.

Example 5.1. À matching model: Let (Ò, Ô) Üå à pregame where Ò = 2. The pregame
is à matching pregame with Ô(f) = min(h, f2) for each profile f. Let N = (N1, N2) and

28This sort of description also applies to recent bargaining models of economies with à continuum of
agents, c,f. Ñøå [34,35].

~ ~
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suppose that N1 = N2. Let f1 = (0,1), f2 = (1, Î), and fç = (1,1). Let ë Üå some number
less than or equal to N1. Then {ëk} is à measurement-consistent collection of weights,
where ë1 = ë, ë2 = ë, ëç = (N1 -ë) and ëk = Î for all profi1es f ~ {f1, f2, fÇ}.

Think of the measure Nt as identical to the interval [Î, Nt). Observe that we ñàï
associate à partition of the total player measure N with the weighting. Înå such partition

, ð is given Üó: i

ð= {{i}: i Å N1UN2,i ~ ë}u{{i,j}: i Å [ë,N1),j Å [ë,N2) and i =j}.

This partition leaves the fractions ë/ N 1 = ë/ N2 of participants of each type unmatched
and matches the fraction (N1 -ë)/N1 = (N2 -ë)/N2 of players of each type to players of

i
the other type.

In à continuum game with finite coalitions players cooperate only within finite coalitions.
The total payoff is the result of such cooperation. Òî describe feasible payoffs, as in the ;1
preceding sections we consider only equal-treatment payoffs. Let {fk} denote the set of all I1
distinct profiles. À payoff vector õ Å R~ is feasible and there is à measurement-consistent ';
collection of weights {ëk} such that õ .fk ~ Ô(fk) for each k with ëk > î. This definition
ensures that, except possibly for à set of measure zero, there is à partition of the total
player set into groups so that each group in the partition ñàï achieve the payoff given Üó õ
for its membership. In interpretation, if ëk = Î à partition of the total player set consistent
with {ëk} will contain at most à negligible portion of groups with profile fk.

À payoff vector õ is in the core, called the f -core, of the game N if it is feasible and
there does not exist à profile fk such that Ô(fk) < õ .fk.

The following Theorem is proved in[50], for games without side payments.

Theorem 5.1 Nonemptiness of the ñîãå (Kaneko and Wooders [50]): Let (Ò, Ô) Üå
à pregame satisfying per capita boundedness. Let N Üå à player set as described above.
Then the f-core of the game is nonempty.

Sketch î! the Proo! Suppose, for simplicity, that for each t the measure of players of type
t, Nt, is à rational number. Let r Üå à positive integer and let rf = (rN1,... ,rNT) Üå à
profile describing à group of players with the sàùå percentage of players of each type as
there is in the total player set. The set ofweights where the profile r f has weight 1 and all
other profiles have weight Î is measurement-consistent. [For example, suppose N1 = 1/3
and N2 = 2/3. Then we ñàï partition the players into à continuum of finite groups, each
consisting of r players of type 1 and 2r players of type 2. While groups are finite, there is à
continuum of groups with profile (r,2r).] From Theorem 3.2,given ànó integer v there is àn
integer r(v) such that for all r ~ r(v) the (l/v)-core of the finite game with player profile
r f is nonempty. Let XV Üå à payoff in the (l/v)-core. Observe that XV is à feasible payoff I
for the continuum game. Also, xV. 9 ~ Ô(g) + (l/v)llgll for all profiles 9 with 9 ~ rf. It I

ñàï Üå shown that the sequence XV is bounded, i.e., there is à constant ñ such that Xt ~ ñ I
for each t = 1,..., Ò and for all Vj otherwise per capita boundedness would Üå violated. ,1
Let õ* Üå the limit of à converging subsequence of {XV}. We leave it to the reader to verify
that õ* is in the f-core of the game.

We remark that the proof for continuum games without side payments is quite similar.
In the case of games with side payments additional results ñàï Üå shown. We state

some here. For almost all distributions N of player types in the simplex, the f-core consists

~II1i-,;c;:,,:;;;;:;d:~
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of à single element, èð to sets of measure zero. That is, if õ is in the f-core and ó is in
the f-core, then typically (for almost àll proportions of player types) õ and ó differ only
îï à set of measure zero. The typical uniqueness ñàï Üå demonstrated as à consequence
of the feature that the limiting utility function è is concave ([105,107]) and approximate
cores converge to the f-core (Kaneko and Wooders [49,51]). It ñàï easily Üå shown that
the f-core has the equal treatment propertYj except possibly for à set of measure zero, all
players of the sàøå type are assigned the âàòå payoff Üó an f -core payoff. As indicated Üó
Proposition 4.3, the f-core satisfies monotonicity.

5.2 Measurement-consistent partitions

The concept of measurement-consistent partitions is central to the model of the continuum
with finite coalitions. I.n the finite type case discussed above, our treatment with weightings
of profiles is equivalent to the treatment of Kaneko and Wooders. For situations where the
set of types is not finite, the definition of measurement-consistent partitions is more difficult.
We provide à general definition of measurement-consistent partitions, which the reader ñàï
compare with the definition above.

For the remainder of this subsection let (N,,8,.è) Üå à measure Áðàñå, where N is à
Borel subset of à complete separable metric Áðàñå, ,8 is the a-algebra of àll Borel subset of
N, and .è is à nonatomic measure, with Î < .è < 00.

Example 5.2 We begin with à simple example. Let N = [Î, 3). À measurement~consistent
partition is given Üó

ð = {{i, 1 + i} : i Å [Î, 1)} U {{i} : i Å [2, 3)}.

This satisfies measurement consistency because the mapping i ~ i + 1 of players in [Î, 1) to
their partners is measure preserving. An example of à partition which is not measurement- :
consistent is given Üó [.;

q = {{ i, 1 + 2i} : i Å [0,1)}. 1~

This partition fails measurement consistency since one-third of the players in the total )~
player set are "matched", in à one to one matching, to the remaining two-thirds of the !
players. I

"~.~
Let F Üå the set of àll finite subsets of N. Áàñh element 8 in F is called à finite coalition '~1~1

or simply à coalition. Let ð Üå à ~artition of N in~o. fini~e coalitions. For each integer k jJ~l
define Nk as the subset of players m k-member coal1tlons m ð; we have Nk = U 8. ",/1

8 181 k "1'Åð, = ;:1:;

The pa:tition ð is òeasèreòent-consistent if for each positive integer k, ,:11
Nk IS à measurable subset of N j and (:~~~
each Nk has à partition into measurable sets {Nkt}f=l, such that there are measure- ~;~

preserving isomorphisms 0kl,'..' 0k2, ...,0kk from Nkl to Nkl,'..' Nkk respectively and ,~;'
{0 (.) 0 ( ' )} L" all ' N 29 ",!,! kl ~ ,..., kk ~ Å Ð lor ~ Å kl' '~~}~

For any 8 Å Ð with 181 = k, we have 8'= {0kl(i),..., 0kk(i)} for Áîòå i Å Nkl' For ;!}~!{r
each integer k, the set Nk consists of all the members of k-player coalitions and Nkt consists rfj,'
of the tth members of these coalitions. The measure-preserving isomorphisms dictate that %~

,'~
29Let À and Â Üå s~ts in.B, À function Ô ïîò À and Â is à òeasère-preserving isoòorphisò ïîò À to ~(

Â if Ô is 1 to 1, onto, and òåàýèãàÛå in both directions, and J1.(C) = J1.(Ô(Ñ)) for all Ñ Ñ À with Ñ Å .â. ;\~

'.. !t
':~:;
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coalitioïs of size k should have as "many" (the sàøå measure) first members as second
members, as òàïó second members as third members, etc.

II
I11

S 0kl .
.0kk(i)
.

...

i
Figure ÕII.2: Measurement-consistency for k-member coalitions. ':

! I

Figure ÕÏ.2 illustrates measurement consistency. The set of players in k-player coali-
tions is the union ofthe sets Nkl,"", Nkk, all ofequal cardinality. The isomorphism 0kl(i)
maps i to himselfj he is the "first member" of the coalition S = {0~1(i),. .., 0kk(i)}. The i

second member is given Üó 0kl(i), etc. Kaneko and Wooders [50, Lemma 1] shows that the
set of measurement-consistent partitions of à Borel measurable subset is nonempty. In ad-
dition to the nonemptiness of the core of à game with finite coalitions, it is also shown that
the set of allocations which ñàï Üå achieved in an exchange åñînîòó Üó trade within finite
coalitions coincides with the set of allocations that ñàï Üå achieved Üó aggregate trading
(the integral of the allocation equals the integral of the endowment, as in Aumann [6]). I

With bounded essential group sizes and an additional assumption ensuring that if înå
player in à coalition ñàï Üå made better off, all players in the coalition ñàï Üå made better
off, the nonemptiness of the core result of Theorem 5.1 ñàï Üå obtained when the Áðàñå
of player types is àn arbitrary compact metric Áðàñå. This holds for both games with and

without side payments ([51]).
Òî conclude this section we present à simple åõàøðlå of the f-core of à game with à

continuum of players.

Example 5.3. (Kaneko and Wooders [50]). Let N = [0,3) Üå the total player set, with

Lebesgue measure. Each point in the interval is à player. The players in the interval (0,1]
are called "women" and the players in the interval (1,3] are called "men". Suppose the
marriage of the ith woman and the jth òàï yields à payoff of i + j utils, while remaining l'
single has à payoff of zero. All other finite coalitions ñàï realize only the total payoffs that !~ 1

could Üå obtained Üó partitioning into man-woman coalitions and singleton coalitions. Àn 1:[

outcome in the f -core is given Üó the function ~i~
..~!il[ 2+i ifiE[O,l), .!'i~

x(i)=.O .if~E[1,2). rl~
1, -2 1f 1, Å [2, 3), 1'1

only the òån with high index numbers are married, and the higher the index number of à ' !-i'S;'!
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married player, the higher the index number of his partner.
Figure ÕII.3 depicts the f-core payoff õ.
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Figure XII.3: À payoff in the f-core of the marriage game.

6 Economies with Effective Small Groups

Economists have applied the concept of the core in several branches of economic theory.
For example, the Shapley -Shubik [81] Theorem îï the nonemptiness of the core of an
assignment game has been used in connection with housing markets (c.f. [48]). The core has
also been applied to matching firms and workers (c.f. [21]), and to placement of students
and medical interns (c.f., [68]). The equivalence of the core and the set of competitive
payoffs is of major importance in the study of competitive markets in general equilibrium
theory. In the following, we indicate Áîòå relationships of the notion of effectiye small
groups to the asymptotic equivalence of the core and the Walrasian equilibrium, and to
economies with shared goods, with asymmetric information, and with coalition production.
Special emphasis is given to economics structures with shared goods since they provide à
rich framework for the study of small group effectiveness.

6.1 Edgeworth equivalence theorems

Because of the important role of exchange economies in the literature we discuss the rela-
tionship of the game-theoretic ideas reported in the preceding section to the equivalence of
cooperative outcomes and Walrasian outcomes in exchange economies. The discussion is
informal and directed towards establishing connections between core convergence and small
group effectiveness. Other literature îï core convergence is discussed in Chapter 5.

The model of à continuum game with finite coalitions has been applied to the study
of competitive economies. The classic example of à competitive economy is à market with
òàïó ðartiñiðànts.ÇÎ Since there are many participants, all small relative to the total

30See, for example, Stigler [92] for à discussion.

-
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economy, it is argued that each participant will view his own actions as unimportant to
others, and therefore each participant will individually (and non-strategically) optimize.

The most widely accepted test of the hypothesis of perfect competition against coali-
tion formation is the convergence of the core to the set of Walrasian payoffs in exchange
economies, originating in Edgeworth [26]. The relationship of the core to Edgeworth 's con-
tract curve was noted Üó Shubik [84], and the convergence of the core to the Walrasian
allocations was elegantly shown Üó Debreu and Scarf [24]. Asymptotically, in these models
individual participants Üåñîòå negligible relative to the total player set. Since all coali-
tions are allowed, neither the models nor the results address questions concerning the size
of effective coalitions.

One model capturing the idea of à negligible trader is that of Aumann [6]). His model
of. an exchange economy has à continuum of traders, so that the effect of any one trader
is negligible. Coalitions are "large"; all admissible coalitions consist of non-negligible pro- '1

portions (positive measures) of the total player set. Aumann shows that the core coincides
with the set of competitive equilibrium payoffs. In the context of an exchange economy or "

market with à continuum of participants this result establishes that even if large groups of
participants act together, the large number of participants willlead to free competition.31
This is à very important result, and important for the implications of the research we have
reported. It will Üåñîòå apparent however that the small group effectiveness property of
exchange economies provides an explanation of Aumann 's result.In exchange economies with à continuum of participants all gains to collective activities '

ñàï Üå realized Üó finite groups of participants (Kaneko and Wooders [50]).32 In economies
with òàïó agents, large groups cannot improve upon the set of outcomes attainable Üó
collective activities of small groups -large groups are not essential. Small groups cannot
influence broad economic aggregates, including prices -small groups are price takers.
Small group effectiveness thus suggests that neither large nor small groups ñàï influence
economic aggregates; the core with non-negligible coalitions, the core with finite coalitions
(called the f-core), and the Walrasian outcomes are all equivalent (Hammond, Kaneko and
Wooders [42]).

The continuum limit results for games and economies with effective small groups have
asymptotic analogues. Mas-Colell [56] shows that in exchange economies small groups are
effective for improvement -any outcome that ñàï Üå significantly improved upon ñàï Üå
improved upon Üó à small coalition.33 Building îï the result that smaIl groups are effective
for the achievement of feasible outcomes in exchange economies, Kaneko and Wooders
[49] show that small groups are effective for both improvement and feasibility (when there
are ïî widespread externalities) and demonstrate that the f-core is the limit of E-cores 1

!
when coalitions are constrained to Üå relatively small.34 These results together suggest ~

11;

31 Àâ pointed out to us Üó Joseph Ostroy, this depends îï our interpretation of the continuum. In Ostroy's

interpretation, individuals ñàï infl.uence prices even in à continuum economy unless the economy satisfies à

differentiability assumption (see Ostroy [66]). .'
32The exchange economy model in [50] does allow ordinal preferences but does not allow infinite dimen- '111

sional commodity spaces, the subject of much current interest. It would Üå of interest to establish conditions !~,
îï ec?nomies with infinite ?imensional c~m~od~ty sp~~ showing when finite groups of participants àãå ~I(
effectlve. Anderson [4] provldes examples mdlcatmg thlS IS à subtle problem. ~I

3~See also Khan [53], where it is shown that in exchange economies relatively small groups are effective 1111

for lmprovement. ~!:i

34The relationship between the continuum with finite coalitions and with coalitions of positive measure is '
111
,1,

"1
i 11

I"
1'1
'1
1!
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the equivalence shown in Proposition 3.8 of small group effectiveness for improvement and

small group effectiveness for feasibility.
Since finite groups are negligible, it is reasonable to suppose that à finite group views

widespread externalities -i.e., externalities determined Üó the aggregate outcomes of indi-
vidual behaviours -as independent of its own activities. In the above referenced papers îï
continuum games with finite groups, the possibility of widespread externalities is allowed.
In the presence of .widespread externalities, small groups are not effective -there òàó Üå
significant gains in the coordination of the activities of all members of the economy. Despite
that small groups are not effective under these circumstances, it òàó Üå that there is ïî
mechanism to coordinate the activities of all participants, and thus only small groups actu-
ally form. In :this ñàâå, even with widespread externalities, the equivalence of the Walrasian

equilibrium and the f-core still holds. :1
In related work, Gretsky, Ostroy, and Zame [40] consider an assignment game with à ~

continuum of players, focusing îï the characterization of optimal outcomes as solutions
to optimal programming problems. They thus extend the programming characterization
for finite economies of Shapley and Shubik [81]. Gretsky, Ostroy, and Zame also relate
the "distributional core" (the core with coalitions of positive measure and à statistical or
probabilistic interpretation), and "integral" assignments (where each seller sells to at most
one buyer and each buyer buys from at most one seller). This is similar to the result
discussed above, that the notion of feasibility used in Aumann [6] and the feasibility notion
introduced in Kaneko and Wooders [50], where trade ñàï take place only within finite

groups, give the same feasible outcomes.
Rather than core-equilibrium equivalence as à criterion for price-taking behaviour, Os-

troy [66] discusses the "no-surplus condition", the condition that each agent ñàï Üå paid
his marginal contribution. Roughly, for totally balanced games, no-surplus is assured if the
core is à singleton. Since the limiting utility function introduced in Section 4 is concave,
and thus differentiable almost everywhere, and approximate cores of large finite games are
typically small, à limit model of games or economies with effective small groups as à contin-
uum would "typically" have à core containing only one point. Thus, there is apparently à
close relationship between effectiveness of small groups and no-surplus. Since the relation-
ship of small group effectiveness to Ostroy's concept of "no-surplus" has not been formally

investigated, we do not discuss this further here.

6.2 Values of large economies and games with effective small. groups .

In Wooders and Zame [114], using the framework ofthis paper and assuming boundedness of
individual marginal contributions to coalitions, it is shown that for sufficiently large games
with sufficiently òanó players of each type, values are in approximate cores. Recall that
boundedness of individual marginal contributions implies small group effectiveness. From
results îï large games as market games, and the fact that approximate cores converge to
limiting Walrasian payoffs, we have the conclusion that the values of large games converge
to limiting Walrasian payoffs. As discussed in Section 4, since the Walrasian payofI to
the limiting game is typically unique, asymptotically the value payoff,s and the Walrasian
payofIs usually coincide. It is an open question if small group effectiveness suffices for

furth~r discussed in Hammond [41].

::f1'::i":~ ;-:" ~~
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the resu1t that va1ues are in approximate cores of 1arge games. We refer the reader to à
suggestive examp1e in [116].

For à further discussion of values of large economies, see Chapters VII, IX and Õ in
Part Â of this vo1ume.

6.3 Economies with public goods and shared goods

The problem of how to determine the optimal1eve1 of public good provision is of centra1

interest in public economics. À public good is one with the property that al1 members
of an economy ñàï consume the total output. Examples are radio and te1evision, where

an increase in consumption of one person has ïî effect îï the amount supplied to others.
As pointed out Üó Samue1son [70], optima1 provision of à public good requires that each .

participant in the economy revea1 his true wil1ingness to ðàó for the public good. This ,.'
1eads to the "free-rider problem". Each individual has an incentive to under-represent his i
willingness to ðàó, and, in consequence, the public good is under-provided. ;~

Tiebout [94] conjectured that when public goods are "loca1", the free-rider problem 11,
!

disappears, and there is à "market-type", near-optimal outcome. À local public good is à .11
public good subject to exclusion and congestion. As the popu1ation joint1y consuming à !~
loca1 public good increases in size, eventually the congestion effects outweigh the advantages ~:'
of sharing costs of providing the good among the membership of à 1arger population.

In the remainder of this subsection we provide à brief discussion of research îï price-
taking equi1ibria and cores in economies with congestible shared goods. We refer the reader
to Wooders [112] for à rigorous treatment extending and unifying à number of previous

resu1ts îï 1arge economies with public goods and effective sma11 groups.

There are two problems in app1ying the test of core convergence to the "Tiebout Íó-
pothesis". The first is that, as has been noted Üó several authors, the core of an economy
with loca1 public goods, or shared goods more genera11y, òàó we11 Üå empty and à ñîò-
petitive equi1ibrium òàó not exist (c.f., [27,67]). It was recognized that this was à serious
impediment to the analysis of eqèilibrièm notions for economies with shared goods (c.f.
Atkinson and Stig1itz [5]). The other problem is that in economies with shared goods, the
"appropriate" notion of à competitive eqèi1ibrièm òàó not Üå immediate1y apparent. One
way to determine whether or not an eqèi1ibrièm concept is competitive is to ask if it satisfies
the core convergence property -the property that the core converges to the eqèilibrièm
payoffs. If the core is typica11y empty, sèch à procedère cannot Üå app1ied.

The problems of the emptiness of the core and an appropriate notion of à competitive
eqèi1ibrium for economies with pèblic goods have been attacked in à series of papers.
Techniques re1ated to those of this paper have been èsed to stèdy eqèilibria and cores (both :

exact and approximate).35 The pèblic goods are sèbject to congestion and exc1èsion.36 The I
production possibi1ities and/or èti1ities of agents òàó depend îï the nèmbers of agents of Ijeach type with whom the co1lective goods are joint1y prodèced/ consumed, that is, crowding I

màó Üå differentiated.37 A1ternative1y, the dependence màó Üå just îï the tota1 nèmber of

35 ]c.f. [74,98,101,102,104,106.
3áÌîdåls with similarities include McQuire [57], Atkinson and Stiglitz [5], Berglas [16], and Bewley [14].
37This has also been called "discriminatory" crowding and "non-anonymous" crowding. The term "dis-

criminatory" òàó have unintended connotations, and the term "nonanonymous" is inaccurate in this context
(only types, not names, of participants are relevant âî âîòå anonymity holds). The term "differentiated" is

.~=: "
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agents jointly producing and/ or consuming the goods, that is, crowding òàó Üå anonyòoès.
Several notions of equilibrium are considered. Here, we focus îï an equilibrium with Lindahl
(benefit) prices for the public goods provided within groups and "participation prices" -

payments for participation in groups -for agents themselves.38 These participation prices,
which màó Üå positive or negative, are essentially payments from Áîòå types of ðàrtiñiðýäts
in à group to agents of other types to keep those receiving the payments from leaving.39
Agents who receive positive payments are relatively scarce economically and thus àÛå to
command à payment for joining à group. Agents who ðàó positive prices to belong to
groups are relatively abundant economically. In free-entry equilibrium, ïî entry of new
producers of the public goods implies that "profits" must Üå paid back to participants in
equilibrium groups. In the case of constant returns to scale in production (so that there are
zero profits) the sum of the participation prices within an equilibrium group is zero, since i
the benefits produced for group members are consumed Üó group members. Analogues of i
the results of Debreu and Scarf [24] and Foley [33] are obtained for à model with possibly
several private and public goods and with possible complementarities between agent types
(See especially [108,112] and also [106]).

For the special case of anonymous crowding, for all sufficiently large economies all
states of the economy with payoffs in the co:re have groups consisting of agents with the i

Áàòå demands (although all agents in the sàøå group are not necessarily of the sàøå type)
(Wooders [98, Theorem 3(iv)]). Again with anonymous crowdin& the participation pricesare equal shares of the surplus generated Üó the group, i.e., profit sharesj free entry of firms .

(or of groups) producing the public goods would make any other profit sharing scheme
unstable ([98, pefinition 10 and Theorem 4, showing equivalence]). In [101] it is shown
that ïî matter how taxes (admission fees to groups) for public goods are determined, if
an equilibrium with taxation is stable against entry Üó profit-maximizing firms and entry
is easy, in large economies the taxes must Üå approximately equal to Lindahl prices times
quantities plus group participation prices. (À similar result is obtained in [106] for à broader

class of situations.)
ÒÜå convergence results are of uncertain value without nonemptiness results. For the

case of anonymous crowding, conditions showing nonemptiness of the core are given in [98,
Theorem 3], and nonemptiness of approximate cores is shown in [101]. For the case of
complementarities between agent types, the approximate core theory introduced in [103]
is applied in Shubik and Wooders [88] and Wooders [101,104] to show nonemptiness of
approximate cores of large economies with shared goods. These nonemptiness results,
through the convergence of approximate cores to equilibrium payoffs, enable the test of the
Tiebout Hypothesis and of the competitiveness of the equilibrium~

Related core convergence results have been obtained Üó Conley [19], who shows that
when consumers are ultimately satiated with public goods, the core converges to the Lindahl
payoffs. (For Conley's model, joint consumption Üó the group of the whole is optimal -

used since types of participants àãå analogous to types of differentiated commodities (c.f., Mas-Colell [65]).
38The price-taking equilibrium was initially defined in Wooders [98, Definition 10] for situations with

anonymous crowding.
39 An example of such participation prices is the premium paid Üó university departments to department

members who generate externalities for other researchers in the department. All such externalities àãå both
produced and consumed Üó department members (Üó definition, for this example) , so the net payments

must sum to zero.

...
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there is ïî congestion.) In Conley's model, the Lindahl prices all converge to zero.
Other literature focuses îï pricing schemes in economies with small effective groups. 'Scotchmer and Wooders [74] apply the methods described in this paper and above to an '

economy with à public good and anonymous crowding. Their equilibrium concept has à ,
single admission price for each type of agent in each group, as is usual in "club theory" i,
(see also Bennett and Wooders [13]). In an equilibrium the admission price for an agent to ,!,
à group is his Lindahl tax (Lindahl price times quantity). Scotchmer and Wooders obtain 1;
similar results for the admission price system to those of Wooders [98] and demonstrate li
à "Second Welfare Theorem". They also provide an example where in equilibrium agents ~fi
with different preferences (but the âàòå demands) òàó share jurisdictions in equilibrium t
states of the economy. ñè

Barro and Romer [10] emphasize that in à variety of economic models -ski-lifts, ijJ'
amusement parks, labor markets, congested roads -à number of pricing schemes òàó Üå '..:1
consistent with the notion of competitive equilibrium. In economies with shared goods, l'
t~ese pricing schemes òàó su~erficiall~ appear ~uite differen~ from the Wal~~ian equilib- ,:
ïèò. Barro and Romer descnbe posslble co-eXlstence of vanous sorts of pncmg systems, j
such as lump sum admission prices or admission prices to the facility plus à per-unit-of-use '1-

fee (similar to the participation prices and Lindahl pricing for economies with local ðöbliñ
goods). As in the coalition production literature (c.f., [46]) or in economies with shared
goods Barro and Romer also conclude that when effective groups are small and providers
of the goods and services ñàï freely enter the industry, à competitive equilibrium has the
property that to the extent wages and prices leave positive surplus,.-this surplus must Üå
distributed to the workers (more, generally, to the "group members"). Bennett and Wood-
ers [13] stress that even in non-capitalist economies, if firms (or "groups") ñàï freely form,
and if participants in the economy are not rewarded according to participation prices40
(determined Üó each agent for each group to which he might belong and based îï opportu-
nities in other groups), then endogenous divisions of the participants in the economy into .

groups òàó not Üå optimal.
Wooders [112] introduces à model comparable in generality to Debreu and Scarf [63]

but with the added features of differentiated crowding and public goods. It is shown that
asymptotically the core, the Lindahl equilibrium outcomes, and the admission equilibrium
outcomes coincide. Admission pricing has appealing properties and provides an explanation
of the asymptotic equivalence of Lindahl outcomes and the core. À group will only accept
an additional member if he pays at least the cost he imposes îï the groupi this places à
lower bound îï an entrance fee for that potential member. An upper bound îï what an
individual will ðàó to join à group is determined Üó his opportunities elsewhere. With small
group effectiveness, in large economies these two bounds ñîòå together, thus determining
equilibrium admission prices. Asymptotically equilibrium admission prices are Lindahl
prices times quantities plus participation prices.

Our conclusion is that economies with public goods and effective small groups are
"market-like" and cores and approximate cores converge to competitive equilibrium out-
comes with Lindahl pricing within groups that share the public good and with participation
prices for agents. While à number of questions are still to Üå answered, it appears that

4oThese participation prices were called "reservation prices". For situations with nonempty cores, the
participation prices ìå equivalent to core payoffs.
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when public goods are local, and economies are large, optimizing individuals reveal their
preferences much as they do for private goods. Since an individual cannot affect the prices
that prevail, he chooses the communityjclubjjurisdiction where his wants are best satisfied,

subject to his b.udget constraint.
À number of related models appear in the literature. Ellickson [28] considers local public

goods as indivisible private goods and shows the existence of à competitive equilibrium when
group composition and size affect only the technology and when there is à small efficient
scale of jurisdiction. Silva and Kahn [89] study the effects of deviations from situations

ñ-

where exclusion is costless, in particular the monitoring problem facing à provider of public
goods in this situation. Since their model allows the possibility of profit, in an equilibrium
with potential entry of competitors the profits must Üå distributed to the users of the facility.
Schweizer [72] studies à model in which communities with immobile populations compete
with each other for agents who are mobilej while the model clearly has Áîøå relationships to
the ones above these have not been fully worked out. À number of other authors have used
characterizations of the core to study how various pricing systems lead to outcomes that
differ from competitivejcore outcomesj consistent with our focus îï competitive equilibrium
and cooperative solution concepts we do not review these papers here (Indeed, we have not
attempted to survey the area of local public goods or shared goods.)

Remark 6.1
Greenberg and Weber [39] consider à different sort of "Tiebout problem". They assume

that within each group that forms, all members must ðàó the same tax. This feature of
the model leads to the use of consecutive games. Because of the restrictions îï taxation,
even if there is ïî congestion or crowding in public good consumption or production, more
than one group øàó appear in an equilibrium. Unlike much of the "Tiebout literature",
the question of optimality of the equilibrium or the convergence to optimal outcomes is
not addressed. It seems reasonable to conjecture that if preferences and endowments are
constrained to Üå in some compact metric Áðàñå and crowding is anonymous, then the core
(constructed requiring equal taxation within jurisdictions) converges to an outcom.e in the
core of the economy when taxation is determined endogenously.- This conjecture is based
îï the observation that in the model ofWooders [98], with congestion andjor satiation and
anonymous crowding, in à state of the economy in the core (withoèt exogenous constraints
îï taxation), all members of à jurisdiction ðàó the sàøå tax.

Remark 6.2
There are many other sorts of shared goods. Information is à particularly interesting

åõàøðlå. Some recent papers include Allen [2,ç], Koutsougeras and Yannelis [54], and

Yannelis [117].

6.4 Coalition production

In à coalition production economy, the production possibility set available to à group of
participants depends îï the membership of the group. Some research studying the con-
vergence of the core to the competitive payoffs includes B6hm [17] and Hildenbrand [43]].
B6hm [17] considered replica economies where the possibilities open to à large group were
defined as those available to the group when it divided into groups with profiles ïî larger
than the profile of the original economy. In our language, B6hm made an assumption--~":;~,~f;;-
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of "boundedness of essential productive groups". Hildenbrand assumed additivity of the
production correspondence. Non-equivalence of the core and the competitive payoffs with
"increasing returns" was shown Üó Sondermann [91] and Oddou [64].

Results îï nonemptiness of approximate cores of large games have Üåån used to show
nonemptiness of approximate cores of replicated coalition production economieswith vir-
tually ïî assumptions îï the production technologies ([88]).

Recently, Florenzano [32], has shown that in à coalition production åñînîòó with few
restrictions, equivalence of the ñîòå and the set of "Edgeworth equilibria" obtains. Àn
"Edgeworth equilibrium" is an attainable allocation whose r-fold replication belongs to
the core of the r-fold replica of the original economy, for all integers ò. 'Alternatively, àn
Edgeworth equilibrium ñàï Üå defined as an attainable allocation which cannot Üå blocked
Üó anó coalition in which agents participate for possibly only à rational amount of time q for --

ànó q in [Î, 1]. We remark that the approach used ensures that all gains to group formation
are rea:iized Üó the finite groups -ïî new production opportunities Üåñîòå available as the
åñînîòó is replicated, so ïî further gains to scale are possible. With the interpretation of
the Edgeworth åqöiliÜrium as one in which groups ñàï operate "part-time", all (rational)
distributions of group composition àòå possible in the finite economy and gains to group
formation are exhausted. These two properties seem to underlie the results.

À different approach to the study of the concept of equilibrium, initiated Üó Ichiishi
[47], òàó perhaps Üå fruitfully extended to large economies. In his model, members ñî-
operate within groups but ñàï also Üå influenced Üó members outside the group. Ichiishi
combines the concept of the Nash equilibrium and the core to describe social outcomes. "

i'

À balancedness assumption is made to ensure the existence of an equilibrium. It seems :1
òåàÂînàÛå that in à large society this balancedness assumption could Üå relaxed, but this ii

has not been demonstrated.

6.5 Demand commitment theory

Another body of related literature is work îï "demand commitment" vectors,/c.f. Albers [1],
Selten [76], Bennett and Wooders [1ç]41, and Bennett [11]42. The "demand commitment"
theory is an attempt to model observed behaviour suggestive of "price taking" behaviour
in coalition formation. The idea is that each player in à game takes as given à set of "payoff
demands", înå for each of the other players. The demand of à player is then the maximal
amount he could realize if he could hire any subset of the remainder of the players at their
stated demands. À demand vector (payoff) has the property that the amount stated for
each player is his demand, given the demands of the other players. Roughly, à demand
vector is "stable" if dependencies are mutual ~ if player i needs player j to achieve his

demand, then j similarly needs i.
Demand commitment theory has the appealing properties of price- taking behaviour -

each individual acts independently, and the total demands will Üå at least as great as the
maximal total payoff. Theoretically, there is an obvious unsatisfactory aspect of demand i
commitment theory. Consider, for example, à 3-person simple majority game. Every pair of r
players ñàï realize $1.00 Üó cooperating. The total payoff to the game is $1.00. Yet, the set 1
of stable demand vectors includes (1/2,1/2,1/2) -stable demand isnot necessarily feasible. ,:1

i
41 Where they àãå called "equilibrium reservation prices". i
42Where they àãå called "aspirations". !

f
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The demand commitment approach might Üå criticized îï the basis that in small economies
or games, the lack of strategic behaviour is unrealistic. Yet the demand commitment theory
was suggested Üó observations in the laboratory. Moreover, recent research indicates that
demand commitment vectors arise as descriptors of noncooperative equilibrium outcomes
in theoretical models of coalition formation (c.f., [12,58,76]). These noncooperative models
suggest that coalitions which ñàï ðàó out stable demands to their members will form, for
example, ànó 2-person coalition in the simple majority game.

In large games, nonemptiness of approximate cores ensures that some demand commit-
ment vectors (those that are in the core of the balanced cover game) Üåñîøå approximately
feasible. Moreover, as we've indicated, games are like markets, where we might expect
price-taking behaviour. This øàó provide some explanation of why the behaviour of sub-
jects in experimental situations resembles price-taking behaviourj it øàó Üå à carry-over
from experiences in markets.

7 Conclusions

The research presented has been motivated Üó the study of competitive economies. In
this concluding section 1 will attempt to describe the intuition 1 perceive as underlying the
results and the role of small group effectiveness in competitive economies.

In à competitive economy each of the participants is of the opinion that his own trans-
actions do not affect prevailing prices. Each of the participants is aware of his small share
of the market and he knows or thinks that ïî other participant will feel any tangible effects
of his actions. In view of his own unimportance to the market outcome, each participant
ñàï assume that other participants will not react to his actions. Thus each participant ñàï
behave non-strategically in his individual optimizing.

In à private goods economy with à large number of participants and enough substi-
tutability of goods, if one agent refuses to trade with another agent at the competitive Iprice that agent still has à virtually limitless number of alternative trading partners. In
an economy with excludable public goods, the total price that à group ñàï successfully
demand of à new member is bounded below Üó the costs the new member would impose
îï the group, and bounded above Üó the opportunities of the potential new member to
join other groups. Price-taking behaviour arises as à consequence of two features -the
individual cannot influence economic aggregates and there is à virtually limitless supply of
trading partnersfgroups. In any economy with effective small groups the âàøå phenomena
occur. If an agent cannot get the "right" deal from one group he ñàï go to another. Since
effective groups are small, in à large economy there is (at least potentially) à large supply
of groups. Thus both individuals and groups are price-takers. Again since effectiv~ groups
are small, price-taking. behaviour, with sufficient opportunities for group formation if it is
beneficial, leads to optimal outcomes.43
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Àðð. 1: Approximate Equal Treatment and Other Proofs

We provide the remaining proofs and conclude Üó showing that small group effectiveness

implies an approximate equal-treatment property of the (not-necessarily-equal-treatment)

core of à large gaine.

Proof of Proposition 2.2.44

Let Å > Î Üå given and let n Üå à game determined Üó the pregame (Ò, Ô). Suppose

that the game n is E-balanced. The vector õ = (õl,... ,ÕÒ) belongs to the E-core of n if

Õ .n ::; Ô*(n) and (à)

Õ .J ~ \If(J) -EIIJII (Ü)

for every subprofile J of n. We consider the linear programming problem of minimizing

Õ .n subject to the system of linear inequalities given Üó (Ü). À solution to this linear

programming problem will belong to the E-core ofn ifthe minimum ofthe objective function

is less than or equal to Ô* (n). In order to determine if this is âî, we consider the duallinear

programming problem with variables W f' The duallinear programming problem consists of

maximizing the linear function ~! Wf(Ô(J)-ÅIIJII) subject to the system oflinear equations

W f ~ Î for all subprofiles J of n, and

~fwfJ=n,

where the sum is over all subprofiles J of n. Note that the dual constraints are equations

which are not inequalities since the primal variables , i.e., the Xt, are not restricted in sign.

44The proof is à modification of à proof of the Bondareva-Shapley result in [45]._;i~I
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Denote à solution to the dual problem Üó {wj}. The duality theorem oflinear programming
states that, when õ is à solution to the primal,

õ .ï = }:::! wj(\If(l) -Ellfll).

Consider the family ,â of those subprofiles for which wj > Î. The constraints of the
dual require that this family is balanced with the weights wj. Therefore we have õ .ï =

}:::! wj(\If(f) -Ellfll) :5: Ô*(ï) since the game is E-balanced, and õ is in the E-core.
Now suppose that the game n has à nonempty E-core. Let õ Üå in the E-core of the

game. For all subprofiles f of ï we then have

\If(f) -Ellfll :5: õ. f .!

Let ,â Üå any balanced collection of subprofiles of ï with weights wf for f Å ,Â. For each
subprofile f we have

wf(\If(l) -Ellfll) :5: wfx .f and

}:::! Wf(Ô(f) -Ellfll) :5:}:::! WfX' f = õ. (Å! wff) = õ. ï:5: Ô*(ï)

since õ is in the E-core. This implies that the game is E-balanced.

Q.E.D.

Proof of Proposition 3.1
Let (Ò, Ô) Üå à pregame with à minimum efficient scale bound Â. Let [ï; (Ò, Ô)] Üå

à game and let õ Üå à feasible payoff that ñàï Üå improved upon Üó Áîòå group f with
f :5: ï, that is, õ .f < \If (1). From our choice of f and õ and from the minimum efficient

scale assumption there is à balanced collection {fk} of subprofiles of f with Ilfkll :5: â for
each k, and Áîòå set of balancing weights wk for fk such that

Ek wk\If(fk) ~ Ô(l) > Õ. (Ek wkfk) = Ek Wk(X .fk) .

It follows that there is at least one group fk for which \If(fk) > Õ .fk. Since Ilfkll :5: â it
follows that (Ò, Ô) satisfies exhaustion of improvement possibilities Üó groups bounded in
size Üó Â.

Let (Ò, Ô) Üå à pregame satisfying exhaustion of improvement possibilities Üó groups
bounded in size Üó Â. Let Ë Üå the function îï profiles defined Üó

Ë(I) = max}:::k wk \If(fk)

where {fk} is à balanced collection of subprofiles of f with weights Wk for fk and with
Ilfkll :5: â for each k and where the maximum is taken over all such balanced collections.
Note that (Ò, Ë) has à minimum efficient scale bound Â and ànó derived game [ï; (Ò, Ô)]
is balanced.

Suppose that Â is not à minimum efficient scale bound for (Ò, Ô). Then there is à

profile f such that \Ifb(f) > Ë(f). Let õ Üå in the core of [fj (Ò, Ë)], so Õ is feasible for
the game [f; (Ò, Ë)] and for the game [f; (Ò, Ô)]. Since Õ cannot Üå improved upon Üó any
group h with Ilhll :5: Â, from the boundedness of sizes of improving groups õ cannot Üå

improved upon in the game [fj (Ò, Ô)]. Therefore õ is in the core of the game [f; (Ò, Ô)].
But this implies that \Ifb(f) = õ .f = Ë(f), à contradiction.

I

-~:
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Q.E.D.

Proof of Proposition 3.6: Let (Ò, Ô) Üå à pregarne satisfying boundedness of essentia1
group sizes with bound Â. Suppose that statement (à) of the Proposition is false. Then,
given Áîòå Åî > Î, for each integer 11 there is à profi1e fll with that properties that Ilfllll ~ 11

and fll has an empty (weak) Eo-core.
We first obtain à bound îï ÔÜ(fIl) -Ô*(fll). Let {gk} denote the co11ection of al1 profi1es

with Ilgkll :::; Â. Since (Ò, Ô) satisfies boundedness of essential group sizes with bound Â,
for each 11 there is à balanced co11ection ,811 of subprofi1es of fll where each 9 Å ,811 is in {gk}

and
ÔÜ(fIl) = L WkÔ(gk)

k:gk E{3v

for Áîòå co11ection of balancing weights {wk}. For each k such that gk ~ ,811 define wk := Î.

We then have Ek wkgk = fll and ÔÜ(fll) = Ek WkÔ(gk).
Since there is à finite number of distinct profiles in the set {gk}, we ñàï write each wk

as an integer p1us à fraction, say wk = lk+qk where qk Å [0,1). Intuitively, we think ofthe

p1ayers Ek qkgk as "leftovers" -it òàó not Üå possible to fit these p1ayers (or any subprofi1e
of them) into groups that ñàï achieve core payofIs (for the core of the ba1anced cover game)

for their memberships.
Since the pregame satisfies boundedness of essentia1 group sizes, for each fll there are

non-negative integers Tk satisfying }::;k Tkgk = fll and }::;k ÒkÔ(gk) = Ô*(fll).

Now consider the difIerence ÔÜ(fll) -Ô*(fll). Let Ê denote the cardinality of the set
{gk} of profi1es with norm 1ess than or equal to Â and 1et Ì Üå à positive number with
Ì > ò:õ Ô(gk). Note that Ô*(fll) ~ Ek lkÔ(gk) from the fact that fll ~ lkgk and from

the definition of Ô* (in particu1ar, its superadditivity). Since Ô(g) ~ Î for all profi1es g, it

fo11ows that:
ÔÜ(fll) -Ô*(fll) = Ek WkÔ(gk) -Ek ÒkÔ(gk)

:::; Ek WkÔ(gk) -}::;k lkÔ(gk) = }::;k qkÔ(gk)

:::; ÊÌ .

Let Xll Üå in the core of the balanced cover game [JII, (Ò, ÔÜ)]. We construct another
payofI which wi11 be1ong to the Eo-core of [Jllj (Ò, Ô)] for àll sufficient1y 1arge 11. Define the

payofI yll for each 11 Üó yll = Xll -(ÅÎ/ Â)1ò.
We c1aim yll cannot Üå significant1y improved upon Üó any subprofi1e of fll. Suppose,

îï the contrary, that there is à profile h with h :::; fll and with Ô(h) > yll .h + Eollhll. From
boundedness of essential group sizes there is à partition {hk} of h satisfying Ek Ô(hk) =

Ô(h) and, for each hk in the partition, Ilhkll :::; Â. From the inequality Ô(h) > yll. h+ Eollhll
it follows that Ek Ô(hk) > yll .(}::;k (hk + Eollhkll)) = Ek yll .(hk + Eollhkll). We then have,

for at 1east one hk, that

Xll .hk ~ Ô(hk) (since Xll is in the core of the balanced cover of fll),

> yll .hk + Eollhkll (since hk ñàï improve upon yll Üó at 1east Åî per capita),

= Xll .hk -~hk. 1ò + Eollhkll (Üó construction of yll),
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;:::: xV .hk(since hk .1ò = Ilhkll ~ Â)

which is à contradiction. We next show that for all sufficiently large games yV is feasible.
Since xV .fv = ÔÜ(fV) and from the construction of yV, it follows that

Ô*(fV) -yV .fv

;:::: Ô*(fV) -(ÔÜ(fV) -~lT .fV)

> -ÊÌ+ :Qlll1
-Â

which, for all v sufficiently large, is positive. Therefore for àll sufficiently large yV is feasible

and cannot Üå Eo-improved upon (per capita) and for àll v sufficiently large yV is in the
Eo-core of fV. This is the required contradiction.

Òî prove part (Ü) of the Proposition, we èâå the sàøå proof èð to (and including) the
definition ofyV. However, we choose Å* ~ Åî, Å* > Î and sufficiently âòàll so that Ô(õt) > Å*
for each t. We then show nonemptiness of the strong E*-cOrej this suffices since the E*-core
is contained in the Eo-core for any Å* ~ Åî.

We claim that under the conditions of (Ü), yV is in the strong E*-core for àll sufficiently

large games. As shown above, yV is feasible for [fVj (Ò, Ô)] for each sufficiently large v.
We need to show that yV cannot Üå significantly improved upon Üó any subprofile of fV.
Suppose, îï the contrary, that there is à profile h with h ~ fv and with Ô (h) > yV .h + Å*.
We first show that this implies Ilhll ~ Â.

If yV .h > Î it is immediate that Ilhll ~ Â. If yV .h ~ Î then for at least one type t
with ht > Î it holds that Yt ~ î. Òî obtain à contradiction we âèððîâå that for Áîòå type
t, Î ;:::: yV .(Xt) = (xV -~lT) .(xt) = ~ ;:::: xr -Å*. Since Ô(õt) -Å* > î, if follows that

Ô(õt) > xr. This is à contradiction, since Xt ñàï improve upon xV (and xV is in the core of
[fVj (Ò, ÔÜ)]). From the contradiction, we ñàï âèððîâå that Ilhll ~ Â.

We now have that

xV .h ;:::: Ô(h) (since xV is in the core of the balanced cover of fV),

> yV .h + Å* (since h ñàï improve Üó at least Å*)

Å*
= xV .h -Bh. 1ò + Å* (Üó construction of yV),

;:::: xV .h (since h. 1ò = Ilhll ~ Â)

which is à contradiction. Therefore, for all sufficiently large v, yV is in the strong E*-core,
and therefore in the strong Eo-core.

Q.E.D.

Proof of Proposition 3.7: Let (Ò, Ô) Üå à pregame with bounded per-capita payoffs.

Suppose that the Proposition is false. Then there are real numbers ðî and Åî and à sequence
of profiles {fV} such that:

Ilfll -+ 00 as v -+ 00;
fv j

for each t, either UR ;:::: ðî or fr = î; and '.

for each fv, for every partition {fvk} of fv with Ilfvkll < v for each k, 1:

\

.
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w*(fV) -}::;k W(fvk) > 3fOllfvll.

Without 10ss of generality we ñàï suppose that ~ ~ Ðî for al1 v = 1,... and for a11

t= 1,...,Ò.

Âó passing to à subsequence if necessary, we ñàï suppose that the sequence {( ~ )fV}

converges, say to f Å IR.~+. Again passing to à subsequence if necessary, from per-capita

w*(fV)boundedness we can suppose that the sequence {171} converges, say to the real number

L. Since the sequence {W} converges, there is an integer vo sufficient1y 1arge so that

for a11 v ~ vo it ho1ds that
I W*(fV) I-éï- -L < Åî and

I w*(fV) Ô*(fVÎ) I--Wr --1i7";:;Ql! < 2åî .

Let vl Üå sufficient1y 1arge so that for each v ~ Vl, for Áîòå integer Tv and profi1e mv it

ho1ds that
fv = Tvfvo + mv , and

Ilmvllè(L + ÅÎ) ~ åî;

as is shown Üó Wooders and Zarne [114, Lemma 2] this is possible when the percentage
of p1ayers of each type is bbunded away from zero. From the above inequa1ities, for a11 v

sufficient1y 1arge we obtain the estimate:

I ô* (fV) ô* (fVO)I ;; --Wr -ò V -IUVII j~

";~

~IW-WI+IW-TVWII

w*(fvo) Ilmvll i~J< 2åî + {~

-Ilfvoll Ilfvll i1~.1i!
\)f~

11 m V 11 ;~f~
~ 2åî + (L + fO)-llf v ll ~ 3åî .'*~~

,~~~

This yie1ds à contradiction since for al1 v sufficient1y 1arge it fo11ows that .

;~I
w*(fV) -TvEk Ô(fVÎ) -Et mrw(Xt) ~ 3fOllfvII .~~;;I~

; {:';' ,

We 1eave the other direction to the reader. ~:'~
,t' ;;Q.E.D. :i,1
('
"'"

Proof of Proposition 3.8: Let (Ò, Ô) Üå à pregarne satisfying smal1 group effectiveness [~
for improvement. Suppose that the pregarne does not satisfy effectiveness for feasibi1ity !;

"

(sma11 group effectiveness). Then there is à sequence of profi1es {fV} with Ilfvll -+ 00, and :;
,

\.
'L" ; ; "'"

-
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à real number Åî > Î such that, for each 1I, for ànó partition {fl.lk} of f with Ilfvkll ~ 1I for

each k it holds that:

Ô*(fl.l) -Ek \If(fl.lk) > 2Eol1fl.lll .

Let 1]6(ÅÎ) Üå the integer given in the definition ofeffectiveness for improvement. Define
another pregame (Ò, Ë) Üå setting Ë(f) = øàõ Å \If(g) where the òøòèò is taken over

Ð gEP

all partitions Ð with Ilgll ~ 1]6(ÅÎ) for all 9 in Ð. Note that (Ò, Ë) has à minimum efficient
scale with bound Â. From Proposition 2.2 and 3.6 it holds that for allll sufficiently large
I ËÜ{fll) Ë.{f") I 1

lrFIr -IIf"11 < Åî.

\Ifb(fV) Ë*(fl.l)Suppose that for arbitrary large terms 1I it holds that -1È~ --117~ < Åî. From :

this relationship, since \Ifb(fl.l) ~ \If*(fl.l) ~ Ë *(fl.l), it follows that for arbitrarily large

terms 1I, IW -WI < Åî and, for Áîòå partition {fl.lk} of fv into subprofiles

where Ilfl.lkll ~ 1]6(ÅÎ) for each fl.lk in the partition, \If*(fl.l) -Ek \If(fl.lk) < Eollfvll; à
contradiction. Therefore, passing to à subsequence if necessary, we suppose that, for allll,

\Ifb(fl.l) Ë*(fV)--"Ì- --11711 > Å î .

For each lIlet xl.l denote à payoff in the core of [fl.l; (Ò, ËÜ)]. From the assumption that

~è -~:lLl > Åî we claim it follows that for allll sufficiently large xl.l is feasible for
Ilfl.lll Ilfvll I

[fl.l; (Ò, Ô)]. If xl.l is not feasible for [fl.l; (Ò, Ô)], then xl.l. fl.l = W > W. But since !

ëÜ (fl.l) Ë*(fl.l) * *. 1 \If*(fI.l) Ë*(fl.l) I-l~- --]711 < Åî and \If (f) ~ ë (f), lt follows that -liFiI- -11711 > Åî. If

this holds for arbitrarily large 1I we again have à contradiction to the supposed properties of

{fV}. Therefore for allll sufficiently large \If*(fl.l) ~ ËÜ(fI.l) and xl.l is feasible for [fl.l; (Ò, Ô)].

We next show that xl.l is in the Eo-core of [fl.l; (Ò, Ô)] for allll sufficiently large. If xl.l is
not in the Eo-core of [fl.l; (Ò, Ô)] then, from effectiveness for improvement, there is à profile

9 with 11911 ~ 1]6(ÅÎ) and \If(g) > Xl.l.g+~. This, however, contradicts the assumption that

xl.l is in the core of [fl.l; (Ò, ËÜ)]. Therefore xl.l is in the Eo-core of [fl.l; (Ò, Ô)].
We now have that \Ifb(fl.l)-xl.l.fl.l ~ Eollfl.lll from Proposition 2.2. Since xl.l.fl.l = ËÜ(fl.l),

\Ifb(fl.l) ~ ô* (fl.l) , and IËÜ(fl.l) -Ë*(fl.l) I < Eollfl.lll it follows that 1\If*(fl.l) -Ë*(fl.l)1 ~
2ÅÎ 11 fl.lll. This contradicts our suppositions îï the sequence {fl.l} and completes the first

part of the proof.
Òî prove the other direction, we again will suppose the implication does not hold and

obtain à contradiction. Let (Ò, Ô) Üå à pregame satisfying effectiveness of small groups (for
feasibility). Suppose that the pregame does not satisfy effectiveness for improvement. Then
there is à real number Åî > Î, à sequence of games {fl.l} and à corresponding sequence of
payoffs {xl.l} such that, for each 1I, xl.l is à feasible payoff for fl.l, xl.l is not in the Eo-core of

11.1, and for all profiles 9 ~ fl.l with Ilgll ~ 1I, \If(g) ~ xl.l .9 + ~llgll.

Let 1]3 (~) Üå the integer given in the definition of small group effectiveness of the
2"',...~~
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pregame (Ò, ô) and choose v > 7]3(~). Since:l?lI is not in the fo-core of fll it holds that

there is Áîòå profile h such that w(h) > Xll .h + follhll. From effectiveness for feasibility

and the choice of 7]3(~) there is à partition {hk} of h such that Ilhkll ~ 7]3(~) for âàñÜ k

and }::;k(W(hk) + ~llhkll) ~ w(h). But w(h) > Xll .h + follhll = Ek(XIl .hk + follhkll). This

implies that for at least înå k, W(hk) > Xll .hk + ~llhkll, the required contradiction.

Q.E.D.

Proof of Theorem 4.1. We indicate how the result follows ïîm Wooders and Zame
[114, Theorem 4]. Suppose the claim of the Theorem is false. Then there ìå real numbers
80 > Î and ðî > Î, à sequence of profiles {fll} satisfying the condition that Ilfllll -+ 00 and
ff /llfllll > ðî for each t, and à sequence of real numbers {fll} such that limll-oo fll = Î

and, for each v, either:
for âàñÜ v' there is à v* ~ v' such that

* ,
(à) C(fll ,fll)=ôîr
(Ü) dist[C(fll* j fll'), Ï(fll*)] > 80'
From Theorem 3.3 we ñàï exclude the first possibility. Without loss of generality we òàó

assume that {~fll} converges. For ànó vector h in the simplex in IR~ the set Ï(h~

equals the set C(h) defined in Wooders and Zame [114, Theorem 4]. Òî prove the Theorem
we now need only obtain à contradiction to the Wooders and Zame result. Looking at the
proof in their paper, we âåå that we need only to show that, under small group effectiveness,
there is à real number À such that if õ Å Ñ (fll , f), then for each t,

Xt ~ W(fll)/ff':::; Allfllll/fr

Since small group effectiveness implies per capita boundedness we ñàï take À to Üå the
bound îï per capita payoffs. Following the proof in [114], we reach à contradiction.

Q.E.D.
We next redefine the f-core so that players who ìå of the Áàòå type òàó Üå treated

unequally. Let (Ò,Ô) Üå à pregame. Given ànó profile n define the player set N = {(t,q):
t = 1,..., Ò and q = 1,..., nt for each t}. Let õ Üå à function ïîò N to IR, called à payoff
fènction. For each nonempty subset S of N define x(S) = }::;(t,Q)EsxtQ. For anó f ~ Î à
payoff function õ is in the f-core of the derived game with player set N if x(N) ~ Ô*(n)
and if, for all nonempty subsets S ñ N(coalitions), x(S) ~ w(s) -fllsll, where s is the

profile given Üó:
St = I{(t, q) Å S : q = 1,..., st}1

for each t.
For replications òn ofthe game n, define the set Nr Üó Nr = {(t, q) : t = 1,..., ò and q =

1,. .., rnt for each t}. Clearly, the above definitions of à payoff function and the f-core ñàï

Üå applied to replications of à game.

Proposition À.1.1.45 Let (Ò, Ô) Üå à pregame satisfying per capita boundedness and let
n Üå à game. Given anó real numbers 8 > Î and ë > (;)" there is à real number f* andan

,

45This Proposition originally appeared in [99].

_~C
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integer ò* such that for each Å Å [Î, Å*] and for ànó r ~ ò*, if õ Å ]RN is in the E-core of òn
then

I{(t, q) : Ixtq -Ztl > 8}I < ër ,

1 rnt
for each t, where Zt = -L xtq, the average payoff received Üó players of type t.

rnt q=l j

Proof of Proposition À.l.l: Given real numbers ë and 8 greater than zero, select Å*,

ò*, and Òî ~ ò* so that:

Å*ÒÎ ë
( à ) -;:;- < 2ij"nli j

(Ü) * Î d * . { ë8 8nt
}Å > àn Å < mtm 4jfnli' 2ij"nli where the minimum is over all t with nt # î; and

Ô*(rn) ÔÜ(rîn) *( ñ) for all r ~ Òî, --:;:jj-;;jl ---;;;1~ ~ Å .

.Ô*(rn) ÔÜ(rîn)Smce ë > Î and 8 > Î, and --:;:11-;;j1 --;~11-;;r -+ Î as r -+ 00 and ÒÎ -+ 00, such à

selection is po~sible.

Select r ~ ò* and let õ Üå in the E*-core of òn. For each t, define Zt as in the statement
of the Proposition. It ñàï Üå verified that Z is in the equal-treatment E*-core of the game
òn (the E-core is convex). It follows then that for all profiles s ~ òn, Z .s ~ Ô(s) -E*llsll
and z. òn ~ Ô*(rn).

It is convenient to establish the convention that for each coalition S Ñ Nr, St denotes
the subset of players in S of type t, i.e., St = {(i, q) : (i,.q) Å S and i = t} for each
t = 1,..., Ò. We define the profile 01 à coalition S Üó s Å Zt with ith component given Üó

1St! for each t (where IStl denotes the cardinal number of the set).
Select à subset W of Nr so that the profile of W is òîï and W contains the "worst-off" '1

players of each typej i.e., if (t, q) f;t W then xtq ~ xtq' for all q' with (t, ÷) Å W. Suppose !
that, for Áîòå type t*,

I

IWn{(t*,q) Å Nr: xt"q < Zt.. -8}I = rOnt..;

i.e. all players of type t* in W receive less than the average payoff for players of that type

minus 8. We then have

Ü( ) * 11 I Ô*(rn) Ô òîï -Å ÒÎ n I ~ x(W) < ro(z' n) -8ront.. ~ ÒÎ -8ront.. .
r

'1The first inequality follows from the fact that õ in in the E-core of Nr. The second follows ."

from the facts that Zt.. ~ xt"q -8 for each q with (t*, q) in Wt and x(Wt) ~ rOZtnt for each
t. The final inequality is from the feasibility of Zj Z .òn ~ Ô*(rn). It now is apparent that

the following relationships hold:

Ü( * Ô*(rn)Ô òîï) -Å rollnll < ÒÎ -8ront" .
r-..1,'.'.:1::';
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Subtracting ÔÜ(òîn) from both sides of the expression, adding {jTOnt* to both sides, and,
dividing Üó Tollnll we obtain

{jnt* * ô* ( òn ) ôÜ ( òîï)
--å <-
Ilnll IITnl1 IITonll.

, From (Ü) above, 1Ãï1Ò -å* > å* which, along with the preceding expression, implies that

* Ô*(òn) ÔÜ(òîn) d'. ( ) Th 1: 1: h * 1 Ò . h ldå < -ll;:~ --]~ÒÃ' à contra lctlon to ñ. erelore, lor âàñ t = ,..., lt î s

that
I W n {( t*, q) Å N r : xt* q < Zt* -Á} I < TOnt* j

of the worst off players of type t*, fewer than TOnt* ñàï Üå treated worse than the average ;
payoff for that type minus Á. This means that {(t, q) : xtq -zt < -Á} ñ W, !

From the facts that:

Ô*(òn)
Òî -2e*Tollnll ~ ÔÜ(òîn) -e*Tollnll (from (ñ)),.

Ò

~ x(W) (since õ is in the e*-core),

~ Òî .n (from the definition of W),

~ TO!~~ (from feasibility of õ),
Ò

it follows that
Î ~ TOZ .n -x(W) ~ 2e*Tollnll .

Informally, the above expression says that, for âàñÜ t, îï average players of type t in W are
.receiving payoff.s within 2å* of Zt. , t

We now turn to those players who are receiving payoffs significantly more (more than ; !

Á) than the average for their types and put an upper bound îï the number of such players,
Define the set of "best off" players Â Üó

Â = {(t,q) Å Nr : xtq > Zt + Á} .

Define the set of "middle class" players Ì Üó

Ì = Nr/(B U W) .

Observe that, since Å (xtq -Zt) = Î, it follows that
(t,q)eNr j

{jIBI ~ L (xtq -Zt) = L (Zt -xtq) .'!

(t,q)eB (t,q)eWUM

From the preceding paragraph and the above expression, ;,

{jIBI < e*Tollnll + L (Zt -xtq) .
(t,q)eM
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Obviously, the larger the value of Å (Zt -xtq), the larger it is possible for IBI to Üå.
(t,q)eM

We claim that Å (Zt -xtq) ::; 2e*IMI. This follows from the fact that the players in W
(t,q)eM

are the worst off, and they are, îï average, each within 2å* of the average payoff for their
types. Since those players in Ì are better off, they must receive îï average ïî less than
the average for their types minus 2å*. Therefore, Å (Zt -xtq) ::; 2e*IMI. It now follows

(t,q)eM
that

81BI ::; 2e*rollnll + 2e*IMI .

From IMI + IBI = rllnll- rollnll, IMI ::; rllnll- rollnll, and

81ÂI ::; 2e*rollnll + 2e*(rllnll -rollnll) ::; 2e*rllnll ,

.IBI å*
lt follows that ;:jj;;lj ::; 2Á .

Counting the number of players who òàó Üå treated significantly differently than the
average we âåå that:

IWI 'ÂI å*òî 2å* ë
ij;:;;1i + ij;:;;1i ::; ~ + ò < ì from (à) àÜîóå.

The conclusion of the Proposition is immediate from the observation that if õ is in the
e-core of òn for r ~ ò* and Î ::; å ::; å*, then õ is in the e*-core of òn.

Q.E.D.
We ñàï remove the restriction to replication sequences when we assume small group

effectiveness.

Proposition À.l.2. Let (Ò, Ô) Üå à pregame satisfying small groups effectiveness. Given
any real numbers t5 > Î and ànó ë > î there is à real number å* and an integer ð( 8, ë, å*)
such that for each å Å {Î, å*] and for every game n with Ilnll ~ ð(á, ë, t:*), if õ is in the e-core
of the derived game with \.player se.t N then .--) I

I{(t, q) : Ixtq -Ztl ,> 8}1 < ëllnll ,

1 rnt
where Zt = -L xtq, the average payoff received Üó players of type t.

rnt q=l

Proof of Proposition À.2: The proof of the Proposition ñàï Üå obtained Üó contradiction.
The critical feature is that à large game is approximately à replica game and with small
group effectiveness, we ñàï ignore the part of the total player set that does not fit into the
replicated profile. In other words, if à profile ! equals rh + m for Áîòå large multiple r of
à profile h, and Ilmll/II!11 < ë for Áîòå small ë, when we calculate the maximal number
of players who ñàï Üå treated significantly differently than average, we ñàï just assume
that the "leftovers" are also treated significantly differently than the average. We omit the
details.

Propositions À.l and À.2 indicate that only à relatively small set of players ñàï Üå
treated significantly different than the average for their types. Theorem 4.1 says that the
average payoffs must Üå close to Walrasian payoffs. Thus, for sufficiently large groups in à
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player population, the per capita payoff to à group in an approximate ñàãå payoff must Üå
approximately the per capita payoff imputed to the group Üó Áîòå Walrasian payoff and

conversely.

Àðð. 2: Pregames with Compact Metric Space of Types

We indicate the extension ofthe framework and results to à compact metric Áðàñå oftypes.46
Let Ï Üå à compact metric Áðàñå, and let 1 Üå à function from Ï to the non-negative

integers with finite support. As in the previous section, the function 1 is called à profile,
and describes à group of players Üó the numbers of players of each type in the group. Let
Ô Üå à function from profiles into R+. Then the pair (ï, Ô) is à pregaòe with à coòpact
òetric space 01 types.

The reader ñàï verify that the definitions introduced so far for pregames with à finite
set of types and for games determined Üó such pregames ñàï Üå applied to à pregame with
à compact metric Áðàñå of types. For example, the definitions of the balanced cover, replica
games, bounded essential group sizes, and small group effectiveness extend immediately.
Payoff functions ñàï replace payoff vectors, where à payoff function is à mapping from Ï
to R.

The topology used is the weak * topology îï the Áðàñå of profiles.47 With appropri-
ate continuity conditions, ensuring that players who are similar types are approximately
substitutes, Theorem 3.3 continues to hold. The proof of non-emptiness is Üå obtained
Üó approximation Üó finite types and contradiction. Most other Propositions also extend,
including 4.1 and 4.3.

The continuity condition required to enable the approximation Üó à finite number of
types is given Üó: Let 1 Üå à profile îï ï. Then for any f > Î there is à 8 > Î such that
for all Wl, W2 in Ï with dist(Wl, W2) < 8, it holds that IÔ(I + XW1) -Ô(I + ~2)I < Å. Since
small group effectiveness implies that we ñàï approximate games Üó ones with bounded
norms, and since the Áðàñå of norm-bounded probability measures is compact, this mild
continuity condition suffices.

.,

46The compact metric ýðîñå framework was introduced in Wooders and Zame [113] for games with side
paymerits, and in Kaneko and Wooders [51] for games without side payments.

47See [43] or [55] for discussions of the weak-star topology. For à further discussion in our context, see

[105].
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