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Generating Functions

“A generating function is a clothesline on which we hang up a
sequence of numbers for display.”

What does this mean?

Another way to think about it: “Infinite polynomial”

Example: 1 + x+ x2 + x3 + . . . = GF (1)

Example: GF (n) = 0 + x+ 2x2 + 3x3 + . . .

Example: GF (2−n) = 1 + 1
2x+ 1

4x
2 + 1

8x
3 + . . .

Applications:

create formulas,

make estimations,

establish divisibility properties,

and more
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A problem to work on

Question: What is the value of 0.9999 . . . ?

Answer: Set x = 0.9999 . . . . Then 10x = 9.999 . . . , so
10x− 9 = 0.999 · · · = x. Solving for x tells us that x = 1.

Do you believe this?
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Finding Infinite Sums

Problem 1: 1 + 1
2 + 1

4 + 1
8 + . . .

Problem 2: 1 + a+ a2 + a3 + . . .
Does your answer for Problem 2 always work?

Problem 3:

√
1 +

√
1 +

√
1 +
√
1 + . . .

Problem 4:

2 +
1

1 +
1

2 +
1

1 +
1

2 +
1

· · ·
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Recap

From Problem 2, we have: GF (1) = 1
1−x .

Remember: This is formal.
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Rabbit problem

It takes one month for rabbits to mature, and after they have
matured, every pair of rabbits produces another pair of rabbits, one
boy and one girl.

If we start with a pair of baby rabbits,

how many pairs of rabbits are there after one month?

two months?

three months?
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Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Fibonacci Numbers

Fibonacci Numbers: We let F1 = 1, F2 = 1, and
Fn = Fn−1 + Fn−2 for n ≥ 2.

Example: F1,000 = 4.34665576 · · · × 10208

Example: F10
F9

= 55
34 ≈ 1.6176470588 . . .

Example: F100
F99

= 354224848179261915075
218922995834555169026 ≈ 1.6180339887 . . .

The ratio of Fibonacci numbers Fn+1/Fn approaches the golden
ratio:

φ =
1 +
√
5

2
≈ 1.6180339887 . . .

Vanderbilt Math Circle Generating Functions and Partitions



Generating Functions
Partitions

Formula for Fn

Let f(x) = GF (Fn+1) = F1 + F2x+ F3x
2 + F4x

3 + . . . .

Question: Write down:

xf(x)

x2f(x)

What do you notice? What is f(x)− xf(x)− x2f(x)?

We can solve and get GF (Fn+1) = f(x) = x
1−x−x2 .

What does this tell us about Fn?
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Formula for Fn

How do we factor 1− x− x2?

What are its roots?

Let φ = 1+
√
5

2 , φ′ = 1−
√
5

2 . Then

GF (Fn) =
x

1− x− x2
=

x

(1− φx)(1− φ′x)

=
1

φ− φ′

(
1

1− φx
− 1

1− φ′x

)
=

1√
5

((
1 + φx+ φ2x2 + . . .

)
−
(
1 + φ′x+ (φ′)2x2 + . . .

))
.

Comparing like terms on each side:

Fn+1 =
1√
5

((
1 +
√
5

2

)n

−

(
1−
√
5

2

)n)
.
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Generating Functions
Partitions

Lucas Numbers

Lucas numbers are defined similar to Fibonacci numbers:

L1 = 1, L2 = 3, and Ln = Ln−1 + Ln−2 for n ≥ 3.

Problem: Find a formula for Ln in the same way as for Fibonacci
numbers.
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Generating Functions
Partitions

Fibonnaci Problems

We have a formula for Fn.

Does that tell us everything about these numbers?

Open Problem: Show that there are infinitely many Fn that are
prime.

Recently Solved Problem: Show that there are finitely many Fn

that are of the form ab for integers a, b with b > 1.
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Generating Functions
Partitions

Partition Function p(n)

A partition of a positive integer n is a way of writing n as a sum of
positive integers.

Example: 4 + 1 is a partition of 5

Example: 1 + 4 is the same partition (order doesn’t matter)

Example: 2 + 2 + 1 is a different partition of 5

Problem: How many partitions are there of 4?

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

p(n) is the number of partitions of n, so p(4) = 5.
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Generating Functions
Partitions

Partition Function p(n)

Problem: Find:

p(0)

= 1

p(1) = 1

p(2) = 2

p(3) = 3

p(4) = 5

Look at the sequence p(n) so far.

Is there a pattern?

What is p(5)?
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Generating Functions
Partitions

More partitions

Problem: What is p(7)?

p(9)? p(99)?

n p(n) n p(n)

4 5 54 386155
9 30 59 831820

14 135 64 1741630
19 490 69 3554345
24 1575 74 7089500
29 4565 79 13848650
34 12310 84 26543660
39 31185 89 49995925
44 75175 94 92669720
49 173525 99 169229875

Do you notice anything about these values?
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Generating Functions
Partitions

Euler Products

Figure: Leonard Euler (1707-1783)
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Generating Functions
Partitions

Euler’s Product

Generating functions consider formal infinite sums.

What about infinite products?

What does
∞∏
n=1

(1 + qn) mean?

Let’s start by writing down finite products:
1∏

n=1
(1 + qn) = 1 + q

2∏
n=1

(1 + qn) = 1 + q + q2 + q3

3∏
n=1

(1 + qn) = 1 + q + q2 + 2q3 + q4 + q5 + q6
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Generating Functions
Partitions

Euler’s Product

Question: How do we determine the coefficient of q10 for
∞∏
n=1

(1 + qn) without multiplying out the first 10 terms?

Counting Interpretation: How many partitions are there of 10
with each number in the sum distinct?

10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1, 6 + 4, 6 + 3 + 1

Hence,
∞∏
n=1

(1 + qn) = 1 + q + · · ·+ 7q10 + . . . .
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with each number in the sum distinct?

10, 9 + 1, 8 + 2, 7 + 3, 7 + 2 + 1,

6 + 4, 6 + 3 + 1

Hence,
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