### Vanderbilt Math Circle

September 3, 2019

(日) (四) (전) (전) (전) (전)

,

,



Vanderbilt Math Circle

,

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

,

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Questions

• What is the sum of each row?

Vanderbilt Math Circle Magic Squares

,



### Questions

- What is the sum of each row?
- Can you arrange the numbers so that the sum of each row is the same?

,



### Questions

- What is the sum of each row?
- Can you arrange the numbers so that the sum of each row is the same?
- What is the sum now?

#### Definition

An order 3 Magic Square is a  $3 \times 3$  square grid filled with the numbers 1 through 9 without repeats so that each row, column, and diagonal sums to 15.

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

ヘロン 人間 とくほう くほう

э.

#### Definition

An order 3 Magic Square is a  $3 \times 3$  square grid filled with the numbers 1 through 9 without repeats so that each row, column, and diagonal sums to 15.

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Strategies

• What combinations of 3 numbers sum to 15?

#### Definition

An order 3 **Magic Square** is a  $3 \times 3$  square grid filled with the numbers 1 through 9 without repeats so that each row, column, and diagonal sums to 15.

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Strategies

- What combinations of 3 numbers sum to 15?
- Is there a certain number that must go in the center?

#### Definition

An order 3 Magic Square is a  $3 \times 3$  square grid filled with the numbers 1 through 9 without repeats so that each row, column, and diagonal sums to 15.

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 | 9 |

#### Strategies

- What combinations of 3 numbers sum to 15?
- Is there a certain number that must go in the center?
- What other patterns are there?

### Solutions to magic squares

| 2 | 9 | 4 |
|---|---|---|
| 7 | 5 | 3 |
| 6 | 1 | 8 |

### Solutions to magic squares



#### Questions

• Given a solution, can you use it to find a different one?

Vanderbilt Math Circle Magic Square

・ロト ・日ト ・ヨト ・ヨト

### Solutions to magic squares



#### Questions

- Given a solution, can you use it to find a different one?
- How many solutions are there?

Vanderbilt Math Circle Magic

・ロト ・日ト ・ヨト ・ヨト

| 4  | 5  | 6  |
|----|----|----|
| 7  | 8  | 9  |
| 10 | 11 | 12 |

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

| 4  | 5  | 6  |
|----|----|----|
| 7  | 8  | 9  |
| 10 | 11 | 12 |

#### Questions

 $\bullet$  Can you construct a magic square with the numbers 4–12 instead of 1–9?

《曰》 《卽》 《臣》 《臣》

ъ

| 4  | 5  | 6  |
|----|----|----|
| 7  | 8  | 9  |
| 10 | 11 | 12 |

### Questions

• Can you construct a magic square with the numbers 4–12 instead of 1–9?

< ロ > < 回 > < 回 > < 回 > < 回 > <

ъ

• What strategies did you use before?

| 4  | 5  | 6  |
|----|----|----|
| 7  | 8  | 9  |
| 10 | 11 | 12 |

### Questions

 $\bullet$  Can you construct a magic square with the numbers 4–12 instead of 1–9?

< ロ > < 回 > < 回 > < 回 > < 回 > <

ъ

- What strategies did you use before?
- What should the sum be now?



Vanderbilt Math Circle Magic Squares



#### Questions

• Do order 2 magic squares exist?

Vanderbilt Math Circle Magic Squares



#### Questions

- Do order 2 magic squares exist?
- What if we use a different sequence of 4 consecutive numbers?



#### Questions

- Do order 2 magic squares exist?
- What if we use a different sequence of 4 consecutive numbers?
- What if we use 4 even numbers?

# Higher order magic square

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

## Higher order magic squares

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

#### Questions

• Do order 4 magic squares exist?

・ロン ・回と ・ヨン ・ヨン

Э

## Higher order magic squares

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

### Questions

- Do order 4 magic squares exist?
- What strategies can we use from before?

・ロン ・日ン ・ヨン ・ヨン

э

## Higher order magic squares

| 1  | 2  | 3  | 4  |
|----|----|----|----|
| 5  | 6  | 7  | 8  |
| 9  | 10 | 11 | 12 |
| 13 | 14 | 15 | 16 |

### Questions

- Do order 4 magic squares exist?
- What strategies can we use from before?
- What strategies can we not use?

・ロン ・日ン ・ヨン ・ヨン

| 5  | 10 | 9  |
|----|----|----|
| 12 | 8  | 4  |
| 7  | 6  | 11 |

| 3  | 17 | 7  |
|----|----|----|
| 13 | 9  | 5  |
| 11 | 1  | 15 |

◆□ > ◆酉 > ◆臣 > ◆臣 > ○ ● ● ●

Vanderbilt Math Circle Magic Squares

| 5  | 10 | 9  | 3  | 17 | 7  |
|----|----|----|----|----|----|
| 12 | 8  | 4  | 13 | 9  | 5  |
| 7  | 6  | 11 | 11 | 1  | 15 |

#### Strategies

• If N is the sum of a magic square, call N a **magic number**.

(日) (圖) (필) (필) (필)

| 5  | 10 | 9  | 3  | 17 | 7  |
|----|----|----|----|----|----|
| 12 | 8  | 4  | 13 | 9  | 5  |
| 7  | 6  | 11 | 11 | 1  | 15 |

#### Strategies

- If N is the sum of a magic square, call N a **magic number**.
- What are the order 3 magic numbers?

| 5  | 10 | 9  | 3  | 17 | 7  |
|----|----|----|----|----|----|
| 12 | 8  | 4  | 13 | 9  | 5  |
| 7  | 6  | 11 | 11 | 1  | 15 |

#### Strategies

- If N is the sum of a magic square, call N a **magic number**.
- What are the order 3 magic numbers?
- If k is a magic number is 2k also a magic number?

< ロ > < 回 > < 回 > < 回 > < 回 > <