Prime numbers

Nashville Math Club

September 17, 2019

Sieve of Eratosthene

Last time, we ended by talking about the Sieve of Eratosthenes. What did that allow us to do?

Last time, we ended by talking about the Sieve of Eratosthenes. What did that allow us to do? If this allows us to find all primes up to a certain point, why else do we want to study primes?

Last time, we ended by talking about the Sieve of Eratosthenes. What did that allow us to do? If this allows us to find all primes up to a certain point, why else do we want to study primes?

- Often want infinitely many primes of a certain form

Last time, we ended by talking about the Sieve of Eratosthenes. What did that allow us to do? If this allows us to find all primes up to a certain point, why else do we want to study primes?

- Often want infinitely many primes of a certain form
- Can take too long

Last time, we ended by talking about the Sieve of Eratosthenes. What did that allow us to do? If this allows us to find all primes up to a certain point, why else do we want to study primes?

- Often want infinitely many primes of a certain form
- Can take too long
- There are many interesting questions it doesn't answer!

Prime gaps

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.

Prime gaps

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.
Problem: What are the first 15 prime gaps?

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.
Problem: What are the first 15 prime gaps?
Answer: The first 16 primes:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53$

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.
Problem: What are the first 15 prime gaps? Answer: The first 16 primes:

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
$$

The first 15 prime gaps:

$$
1,2,2,4,2,6,2,4,6,2,6,4,2,4,6
$$

Prime gaps

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.
Problem: What are the first 15 prime gaps? Answer: The first 16 primes:

$$
2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53
$$

The first 15 prime gaps:

$$
1,2,2,4,2,6,2,4,6,2,6,4,2,4,6
$$

Problem: Come up with a reason for why all the prime gaps after the first one appear to be even.

Prime gaps

List out the primes as $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ in ascending order. The $n^{\text {th }}$ prime gap is $p_{n+1}-p_{n}$.
Problem: What are the first 15 prime gaps? Answer: The first 16 primes:
$2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53$
The first 15 prime gaps:

$$
1,2,2,4,2,6,2,4,6,2,6,4,2,4,6
$$

Problem: Come up with a reason for why all the prime gaps after the first one appear to be even.
Question: What kind of prime gaps can occur in general?

We want to show that the collection of prime gaps is not bounded.

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Arbitrarily long

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Proof.

Consider the set of numbers

$$
(n+1)!+2,(n+1)!+3,(n+1)!+4, \ldots,(n+1)!+(n+1) .
$$

Arbitrarily long

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Proof.

Consider the set of numbers

$$
(n+1)!+2,(n+1)!+3,(n+1)!+4, \ldots,(n+1)!+(n+1) .
$$

We claim that all of these numbers are composite.

Arbitrarily long

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Proof.

Consider the set of numbers

$$
(n+1)!+2,(n+1)!+3,(n+1)!+4, \ldots,(n+1)!+(n+1) .
$$

We claim that all of these numbers are composite. For $2 \leq k \leq n+1$, k divides both $(n+1)$! and itself, so it divides $(n+1)!+k$.

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Proof.

Consider the set of numbers

$$
(n+1)!+2,(n+1)!+3,(n+1)!+4, \ldots,(n+1)!+(n+1) .
$$

We claim that all of these numbers are composite. For $2 \leq k \leq n+1$, k divides both $(n+1)$! and itself, so it divides $(n+1)!+k$. Since this number is bigger than k, it must be composite.

We want to show that the collection of prime gaps is not bounded. In other words, given a number n, we want to show that there is a prime gap of size at least n.

Proof.

Consider the set of numbers

$$
(n+1)!+2,(n+1)!+3,(n+1)!+4, \ldots,(n+1)!+(n+1) .
$$

We claim that all of these numbers are composite. For $2 \leq k \leq n+1$, k divides both $(n+1)$! and itself, so it divides $(n+1)!+k$. Since this number is bigger than k, it must be composite. Why does this finish the proof?

We now have talked about long gaps between numbers.

We now have talked about long gaps between numbers. What about short ones?

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

Twin primes are a pair of primes of the form p and $p+2$.

Twin Primes

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

Twin primes are a pair of primes of the form p and $p+2$.
Problem: Use the prime gaps we wrote down before to find 6 pairs of twin primes.

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

Twin primes are a pair of primes of the form p and $p+2$.
Problem: Use the prime gaps we wrote down before to find 6 pairs of twin primes.

Question: How many pairs are there in the set of all prime numbers?

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

Twin primes are a pair of primes of the form p and $p+2$.
Problem: Use the prime gaps we wrote down before to find 6 pairs of twin primes.

Question: How many pairs are there in the set of all prime numbers?

Conjecture

There are infinitely many pairs of twin primes.

We now have talked about long gaps between numbers. What about short ones? What's the smallest gap we could have?

Twin primes are a pair of primes of the form p and $p+2$.
Problem: Use the prime gaps we wrote down before to find 6 pairs of twin primes.

Question: How many pairs are there in the set of all prime numbers?

Conjecture

There are infinitely many pairs of twin primes.

Question: Can you find examples of primes p such that $p+2$ and $p+4$ are both also prime? How many?

It turns out that you can ask about the "average" prime gap.

It turns out that you can ask about the "average" prime gap. In other words, we have the $n^{\text {th }}$ prime p_{n}, we can ask how far away the next prime p_{n+1} should "typically" be.

It turns out that you can ask about the "average" prime gap. In other words, we have the $n^{\text {th }}$ prime p_{n}, we can ask how far away the next prime p_{n+1} should "typically" be.

Theorem

The "average" prime gap for p_{n} is $\ln p_{n}$.

How many primes

How many primes

We know that there are infinitely many.

How many primes

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

How many primes

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red?

How many primes

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

How many primes

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even?

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even? Given how we calculated proportion in the problem above, does this question make sense?

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even? Given how we calculated proportion in the problem above, does this question make sense?
Problem: What proportion of the numbers up to 10 are even?

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even? Given how we calculated proportion in the problem above, does this question make sense?
Problem: What proportion of the numbers up to 10 are even? Up to 15 ?

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even? Given how we calculated proportion in the problem above, does this question make sense?
Problem: What proportion of the numbers up to 10 are even? Up to 15 ? Up to 20 ?

We know that there are infinitely many. But is there still a way to count what "proportion" of numbers are prime?

Problem: Suppose I have an urn with 5 red balls, 6 blue balls, and 8 green balls. What proportion of the balls are red? What proportion are not green?

Question: What proportion of the natural numbers are even? Given how we calculated proportion in the problem above, does this question make sense?
Problem: What proportion of the numbers up to 10 are even? Up to 15 ? Up to 20 ? Up to 25 ?

Proportion of number are even

Let $E(n)$ be the number of even numbers up to n.

Let $E(n)$ be the number of even numbers up to n. For example, $E(15)=7$.

Let $E(n)$ be the number of even numbers up to n. For example, $E(15)=7$.

What we just found was that the proportion of even numbers up to n is $\frac{E(n)}{n}$.

Proportion of number are even

Let $E(n)$ be the number of even numbers up to n. For example, $E(15)=7$.

What we just found was that the proportion of even numbers up to n is $\frac{E(n)}{n}$. Let's graph the values of this to see what happens.

Proportion of number are even

Let $E(n)$ be the number of even numbers up to n. For example, $E(15)=7$.

What we just found was that the proportion of even numbers up to n is $\frac{E(n)}{n}$. Let's graph the values of this to see what happens.

Proportion of number are prime

Let's come back to our original question: what proportion of numbers are prime?

Proportion of numbe

Let's come back to our original question: what proportion of numbers are prime?
Problem: What proportion of numbers up to 10 are prime?

Proportion of numbe

Let's come back to our original question: what proportion of numbers are prime?
Problem: What proportion of numbers up to 10 are prime? Up to 15 ?

Proportion of numbe

Let's come back to our original question: what proportion of numbers are prime?
Problem: What proportion of numbers up to 10 are prime? Up to 15 ? Up to 20 ?

Proportion of number are prime

Let's come back to our original question: what proportion of numbers are prime?
Problem: What proportion of numbers up to 10 are prime? Up to 15 ? Up to 20 ? Up to 25 ?

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

Proportion of number are prime

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

The proportion of prime numbers up to n is $\frac{\pi(n)}{n}$. Let's graph these values.

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

The proportion of prime numbers up to n is $\frac{\pi(n)}{n}$. Let's graph these values.

Proportion of number are prime

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

The proportion of prime numbers up to n is $\frac{\pi(n)}{n}$. Let's graph these values.

Proportion of number are prime

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

The proportion of prime numbers up to n is $\frac{\pi(n)}{n}$. Let's graph these values.

Proportion of number are prime

As before, define $\pi(n)$ be the number of primes up to n. For example, $\pi(15)=6$.

The proportion of prime numbers up to n is $\frac{\pi(n)}{n}$. Let's graph these values.

Proportion of number are prime

This doesn't appear to be as easy to see what happens but perhaps goes to 0 , which doesn't tell us too much. Can we say anything more?

This doesn't appear to be as easy to see what happens but perhaps goes to 0 , which doesn't tell us too much. Can we say anything more? Let's instead look at the graph of $\frac{\pi(n) \ln n}{n}$.

This doesn't appear to be as easy to see what happens but perhaps goes to 0 , which doesn't tell us too much. Can we say anything more? Let's instead look at the graph of $\frac{\pi(n) \ln n}{n}$.

This doesn't appear to be as easy to see what happens but perhaps goes to 0 , which doesn't tell us too much. Can we say anything more? Let's instead look at the graph of $\frac{\pi(n) \ln n}{n}$.

Proportion of number are prime

This doesn't appear to be as easy to see what happens but perhaps goes to 0 , which doesn't tell us too much. Can we say anything more? Let's instead look at the graph of $\frac{\pi(n) \ln n}{n}$.

Prime Number

Theorem 1 (Prime Number Theorem)

The quantity $\frac{\pi(n) \ln n}{n}$ "approaches" 1 .

Theorem 1 (Prime Number Theorem)

The quantity $\frac{\pi(n) \ln n}{n}$ "approaches" 1 .
Question: What does this mean?

Theorem 1 (Prime Number Theorem)

The quantity $\frac{\pi(n) \ln n}{n}$ "approaches" 1 .
Question: What does this mean?
Answer: $\frac{1}{\ln n}$ is a better and better approximation for the proportion $\frac{\pi(n)}{n}$ as n gets larger.

Theorem 1 (Prime Number Theorem)

The quantity $\frac{\pi(n) \ln n}{n}$ "approaches" 1 .
Question: What does this mean?
Answer: $\frac{1}{\ln n}$ is a better and better approximation for the proportion $\frac{\pi(n)}{n}$ as n gets larger.
Alternate answer: $\frac{n}{\ln n}$ is a better and better approximation for the number of primes $\pi(n)$ up to n as n gets larger.

Primes of certain for

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$.

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$. We also said that there had to be infinitely many primes of each form.

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$. We also said that there had to be infinitely many primes of each form.
Question: What proportion of primes are of the form $4 n+1$? $4 n+3$?

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$. We also said that there had to be infinitely many primes of each form.
Question: What proportion of primes are of the form $4 n+1$? $4 n+3$?
Let $\pi_{4,1}(n)$ be the number of primes up to n that are of the form $4 n+1$.

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$. We also said that there had to be infinitely many primes of each form.
Question: What proportion of primes are of the form $4 n+1$? $4 n+3$?
Let $\pi_{4,1}(n)$ be the number of primes up to n that are of the form $4 n+1$. The graph of $\frac{\pi_{4,1}(n)}{\pi(n)}$ is given:

We said last time that every prime (other than 2) had to be of the form $4 n+1$ or $4 n+3$. We also said that there had to be infinitely many primes of each form.
Question: What proportion of primes are of the form $4 n+1$? $4 n+3$?
Let $\pi_{4,1}(n)$ be the number of primes up to n that are of the form $4 n+1$. The graph of $\frac{\pi_{4,1}(n)}{\pi(n)}$ is given:

Primes of certain for

It turns out this value approaches $\frac{1}{2}$! The same is true of primes of the form $4 n+3$.

Primes of certain for

It turns out this value approaches $\frac{1}{2}$! The same is true of primes of the form $4 n+3$. This means that as n gets larger, they occur roughly the same proportion.

It turns out this value approaches $\frac{1}{2}$! The same is true of primes of the form $4 n+3$. This means that as n gets larger, they occur roughly the same proportion.

However, even though they occur in the same proportion, whenever we try to count $\pi_{4,1}(n)$ and $\pi_{4,3}(n)$, it turns out that $\pi_{4,3}(n)$ is usually bigger!

It turns out this value approaches $\frac{1}{2}$! The same is true of primes of the form $4 n+3$. This means that as n gets larger, they occur roughly the same proportion.

However, even though they occur in the same proportion, whenever we try to count $\pi_{4,1}(n)$ and $\pi_{4,3}(n)$, it turns out that $\pi_{4,3}(n)$ is usually bigger! In other words, the proportions might be the same, but there are still usually more primes of the form $4 n+3$.

It turns out this value approaches $\frac{1}{2}$! The same is true of primes of the form $4 n+3$. This means that as n gets larger, they occur roughly the same proportion.

However, even though they occur in the same proportion, whenever we try to count $\pi_{4,1}(n)$ and $\pi_{4,3}(n)$, it turns out that $\pi_{4,3}(n)$ is usually bigger! In other words, the proportions might be the same, but there are still usually more primes of the form $4 n+3$. This is known as Chebyshev's bias.

