Take home problems

Nashville Math Club

February 11, 2019

1 Take-Home Problems

1. Show that the number of partitions into odd parts is the same as the number of partitions into distinct parts. For example, the partitions of 9 into odd parts are $9,7+1+1,5+3+1,5+1+1+1+1,3+3+3,3+3+1+1+1,3+1+$ $1+1+1+1+1,1+1+1+1+1+1+1+1+1$ and the partitions of 9 into distinct parts are $9,8+1,7+2,6+3,6+2+1,5+4,5+3+1,4+3+2$. There are 8 partitions of each type.
2. (Andrews) The number of partitions of n in which only odd parts may be repeated equals the number of partitions of n in which no part appears more than three times. For example the partitions of $n=5$ of the first type are $5,4+1,3+2,3+1+1,2+1+1+1,1+1+1+1+1$, and the partitions of 5 of the second type are $5,4+1,3+2,3+1+1,2+2+1,2+1+1+1$. In both cases, there are 6 such partitions.
3. Prove that the greatest common divisor of F_{n} and F_{n+1} is 1 for all n.
4. (For those who know what mathematical induction is:) Find a formula for the sum of the first n Fibonacci numbers. (Hint: Try writing down the first few sums and see if you can come up with a guess for the answer. Then trying proving the result by induction.)
5. Define a sequence by $a_{0}=0$ and $a_{n+1}=2 a_{n}+1$ for $n \geq 0$. Can you write down a closed formula for a_{n} ? (Hint: Consider $G F\left(a_{n}\right)$ as we did when trying to find F_{n}.)
