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Generating Functions

“Infinite polynomials”

GF (1) = 1 + x+ x2 + x3 + · · ·
GF (2−n) = 1 + 1

2x+ 1
4x

2 + 1
8x

3 + · · ·
GF (Fn+1) = 1 + x+ 2x2 + 3x3 + 5x4 + · · ·
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Pentagonal Number Theorem

Partitions

A partition is a way of writing a positive number as a sum of
positive numbers.

Partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Hence, p(4) = 5.
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Partitions

n p(n) n p(n)

4 5 54 386155
9 30 59 831820

14 135 64 1741630
19 490 69 3554345
24 1575 74 7089500
29 4565 79 13848650
34 12310 84 26543660
39 31185 89 49995925
44 75175 94 92669720
49 173525 99 169229875
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Infinite Products

We considered infinite products like

∞∏
i=1

(1 + qn)

by writing down finite products first.

1∏
n=1

(1 + qn) = 1 + q

2∏
n=1

(1 + qn) = 1 + q + q2 + q3

3∏
n=1

(1 + qn) = 1 + q + q2 + 2q3 + q4 + q5 + q6

How did we find the 10th coefficient of the infinite product?
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Take Home Questions
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Ferrers Diagrams

Goal:

Represent partitions by pictures.

Example: 4 + 2 + 1 is a partition of 7.

Problems:

Draw a Ferrers diagram for the partition 8 + 4 + 2 + 2 + 1 + 1
of 18.

Draw all Ferrers diagrams for partitions of 6.
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Pentagonal Number Theorem

Creating New Diagrams

Open-ended Question: How do we create new
diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first
row.

Does this always give a new partition?

Is this process “invertible”?
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Creating New Diagrams

Another Example:

Turn the rows into columns and vice versa.

Is this process “invertible”?

Does this always give a new partition?

We call this process conjugation.
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Conjugation

Question: If a partition has a one in it, what does this mean
about the conjugate partition?

Draw some examples to try to figure it out.

If a partition has a unique largest part, does this mean the
conjugate has a one in it?

Why do we care about this?

Similar Question: What about if a partition has at most five
parts? What does this tell us about the conjugate?

Draw some examples to try to figure it out.

If the parts of a partition are at most five, does its conjugate
have at most five parts?

What does this tell us about certain types of partitions?
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Pentagonal Number Theorem

Partition Properties

Instead of saying 4 + 2 + 1 is a partition of 7, we can also say
λ = (4, 2, 1) is a partition of 7.

This allows us to define properties
of partitions more easily.

Example: #(λ) denotes the number of parts of λ.

What is #(4, 4, 3, 3, 3, 1)?

What is #(λ) if λ is represented by the following Ferrers
Diagram?
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Partition Properties

Example: `(λ) denotes the largest part of λ.

What is `(4, 4, 3, 3, 3, 1)?

What is `(λ) if λ is represented by the following Ferrers
Diagram?

We can restate what we noticed earlier: the number of partitions λ
of n with `(λ) ≤ 5 is the same as the number of partitions λ′ of n
with #(λ′) ≤ 5.
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Further Partition Properties

Example: s(λ) denotes the smallest part of λ.

Consider partitions with distinct parts.
Example: σ(λ) denotes the number of consecutive parts of a
partition at the beginning of the partition.

What is σ(8, 7, 6, 5, 3, 2, 1)?

What is σ(λ) if λ is represented by the following Ferrers
Diagram?
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Another Way of Creating Diagrams

Let’s continue to only consider partitions with distinct parts.

If s(λ) ≤ σ(λ), we can move the bottom row to the ends of the
first rows.
Example:
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Another Way of Creating Diagrams

If s(λ) > σ(λ), we can do “the opposite”.

Example:

Does this process always work?
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Pentagonal Numbers

Let’s try this process on:

What goes wrong when we try to move the row?

This happens exactly when σ(λ) = r and s(λ) = r for some r. In
which case,

n = r + (r + 1) + · · ·+ (2r − 1)

=
1

2
r(3r − 1).
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Pentagonal Numbers

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

This happens exactly when σ(λ) = r and s(λ) = r + 1 for some r.
In which case,

n = (r + 1) + (r + 2) + · · ·+ 2r

=
1

2
r(3r + 1).

Numbers of the form 1
2r(3r± 1) are called pentagonal numbers.
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Another Way of Thinking of Pentagonal Numbers

Source: (Author: Aldoaldoz)

Formula:
r · (3r − 1)

2
.
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Thinking Again about Infinite Products

What does this teach us about partitions?

Recall that the generating function for p(n) is

f(q) =
1

(1− q)(1− q2)(1− q3) . . .
.

Thus,
1

f(q)
= (1− q)(1− q2)(1− q3) . . . ,

and so

f(q) ·
[
(1− q)(1− q2)(1− q3) . . .

]
= 1 + 0q + 0q2 + . . . .
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The Pentagonal Number Theorem

Last time, we talked about a “counting” interpretation of

(1 + q)(1 + q2)(1 + q3)(1 + q4) . . . .

What would an interpretation for

(1− q)(1− q2)(1− q3)(1− q4) . . .

be?

Exercise: Find the number of partitions of 11 into distinct
parts. How many of these have an even number of parts?
How many of these have an odd number of parts?

Exercise: Find the number of partitions of 12 into distinct
parts. How many of these have an even number of parts?
How many of these have an odd number of parts?
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The Pentagonal Number Theorem

What does this phenomenon tell us?

Answer: The nth coefficient of

(1− q)(1− q2)(1− q3) . . .

is 0 except for pentagonal numbers.

The coefficient for the pentagonal number 1
2r(3r ± 1) is

(−1)r.

In other words,

(1− q)(1− q2)(1− q3) . . . = 1− q − q2 + q5 + q7 − . . . .
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Pentagonal Number Theorem

Recursive Relation for p(n)

Combining all the steps above,(
1 + p(1) + p(2)q2 + p(3)q3 + . . .

)
·
(
1− q − q2 + q5 + q7 − . . .

)
= 1

where 1, 2, 5, 7, 12, 15, . . . are the pentagonal numbers.

Exercise: Use this to compute p(n) for n = 1, 2, . . . , 10.
What patterns do you notice?

Can you compute p(50) now without finding all of the
partitions? What about p(100)? Could you teach a computer
to compute big values of p(n)?
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What We’ve Learned

How to represent partitions with diagrams

How to change these diagrams to create new types of
partitions

Relations between different properties of partitions

Pentagonal numbers and what they tell us about distinct
partitions

A way to compute p(n)
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