Review Ferrers Diagrams Pentagonal Number Theorem

Partitions, part 2

Vanderbilt Math Circle

February 25, 2019

Vanderbilt Math Circle Partitions, part 2

イロン イヨン イヨン イヨン

E

"Infinite polynomials"

Vanderbilt Math Circle Partitions, part 2

イロン イヨン イヨン イヨン

"Infinite polynomials"

•
$$GF(1) = 1 + x + x^2 + x^3 + \cdots$$

イロン イヨン イヨン イヨン

"Infinite polynomials"

•
$$GF(1) = 1 + x + x^2 + x^3 + \cdots$$

•
$$GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \cdots$$

イロン イヨン イヨン イヨン

"Infinite polynomials"

- $GF(1) = 1 + x + x^2 + x^3 + \cdots$
- $GF(2^{-n}) = 1 + \frac{1}{2}x + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \cdots$
- $GF(F_{n+1}) = 1 + x + 2x^2 + 3x^3 + 5x^4 + \cdots$

イロト イポト イヨト イヨト

A *partition* is a way of writing a positive number as a sum of positive numbers.

イロン イヨン イヨン イヨン

A *partition* is a way of writing a positive number as a sum of positive numbers.

Partitions of 4:

イロト イポト イヨト イヨト

э

A *partition* is a way of writing a positive number as a sum of positive numbers.

Partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

イロト イポト イヨト イヨト

E

A *partition* is a way of writing a positive number as a sum of positive numbers.

Partitions of 4:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1

Hence, p(4) = 5.

イロト イポト イヨト イヨト

Review

Ferrers Diagrams Pentagonal Number Theorem

Partitions

n	p(n)	n	p(n)
4	5	54	386155
9	30	59	831820
14	135	64	1741630
19	490	69	3554345
24	1575	74	7089500
29	4565	79	13848650
34	12310	84	26543660
39	31185	89	49995925
44	75175	94	92669720
49	173525	99	169229875

メロン スポン スラン スラン 一日

Infinite Products

We considered infinite products like

$$\prod_{i=1}^{\infty} (1+q^n)$$

by writing down finite products first.

イロン イヨン イヨン

Infinite Products

We considered infinite products like

$$\prod_{i=1}^{\infty} (1+q^n)$$

by writing down finite products first.

•
$$\prod_{n=1}^{1} (1+q^n) = 1+q$$

•
$$\prod_{n=1}^{2} (1+q^n) = 1+q+q^2+q^3$$

•
$$\prod_{n=1}^{3} (1+q^n) = 1+q+q^2+2q^3+q^4+q^5+q^6$$

Infinite Products

We considered infinite products like

$$\prod_{i=1}^{\infty} (1+q^n)$$

by writing down finite products first.

•
$$\prod_{n=1}^{1} (1+q^n) = 1+q$$

•
$$\prod_{n=1}^{2} (1+q^n) = 1+q+q^2+q^3$$

•
$$\prod_{n=1}^{3} (1+q^n) = 1+q+q^2+2q^3+q^4+q^5+q^6$$

How did we find the 10^{th} coefficient of the infinite product?

イロト 不同 トイヨト イヨト

э

Review Ferrers Diagrams Pentagonal Number Theorem

Take Home Questions

Vanderbilt Math Circle Partitions, part 2

イロン 不同 とくほと 不良 とう

Goal:

Vanderbilt Math Circle Partitions, part 2

イロン イロン イヨン イヨン 三日

Goal: Represent partitions by pictures.

イロン イヨン イヨン イヨン

Goal: Represent partitions by pictures.

Example: 4 + 2 + 1 is a partition of 7.

イロト イポト イヨト イヨト

э

Goal: Represent partitions by pictures.

Example: 4 + 2 + 1 is a partition of 7.

Goal: Represent partitions by pictures.

Example: 4 + 2 + 1 is a partition of 7.

Problems:

• Draw a Ferrers diagram for the partition 8 + 4 + 2 + 2 + 1 + 1 of 18.

イロン イヨン イヨン

Goal: Represent partitions by pictures.

Example: 4 + 2 + 1 is a partition of 7.

Problems:

• Draw a Ferrers diagram for the partition 8 + 4 + 2 + 2 + 1 + 1 of 18.

イロト イポト イヨト イヨト

• Draw all Ferrers diagrams for partitions of 6.

Open-ended Question: How do we create new diagrams/partitions from a given one?

イロト イポト イヨト イヨト

э

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

• Does this always give a new partition?

Open-ended Question: How do we create new diagrams/partitions from a given one?

Example: Move a block from the last row to the end of the first row.

- Does this always give a new partition?
- Is this process "invertible"?

Another Example:

Vanderbilt Math Circle Partitions, part 2

イロン イヨン イヨン イヨン

Another Example: Turn the rows into columns and vice versa.

イロト イポト イヨト イヨト

Another Example: Turn the rows into columns and vice versa.

Another Example: Turn the rows into columns and vice versa.

イロト イボト イヨト

Another Example: Turn the rows into columns and vice versa.

Another Example: Turn the rows into columns and vice versa.

Another Example: Turn the rows into columns and vice versa.

• Is this process "invertible"?

Another Example: Turn the rows into columns and vice versa.

- Is this process "invertible"?
- Does this always give a new partition?

Another Example: Turn the rows into columns and vice versa.

- Is this process "invertible"?
- Does this always give a new partition?

We call this process conjugation.
Question: If a partition has a one in it, what does this mean about the conjugate partition?

イロン イヨン イヨン

Question: If a partition has a one in it, what does this mean about the conjugate partition?

• Draw some examples to try to figure it out.

イロト イポト イヨト イヨト

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?
- Why do we care about this?

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?
- Why do we care about this?

Similar Question: What about if a partition has at most five parts? What does this tell us about the conjugate?

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?
- Why do we care about this?

Similar Question: What about if a partition has at most five parts? What does this tell us about the conjugate?

• Draw some examples to try to figure it out.

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?
- Why do we care about this?

Similar Question: What about if a partition has at most five parts? What does this tell us about the conjugate?

- Draw some examples to try to figure it out.
- If the parts of a partition are at most five, does its conjugate have at most five parts?

Question: If a partition has a one in it, what does this mean about the conjugate partition?

- Draw some examples to try to figure it out.
- If a partition has a unique largest part, does this mean the conjugate has a one in it?
- Why do we care about this?

Similar Question: What about if a partition has at most five parts? What does this tell us about the conjugate?

- Draw some examples to try to figure it out.
- If the parts of a partition are at most five, does its conjugate have at most five parts?

イロト イポト イヨト イヨト

• What does this tell us about certain types of partitions?

Instead of saying 4+2+1 is a partition of 7, we can also say $\lambda=(4,2,1)$ is a partition of 7.

イロト イポト イヨト イヨト

Instead of saying 4+2+1 is a partition of 7, we can also say $\lambda = (4,2,1)$ is a partition of 7. This allows us to define properties of partitions more easily.

イロト イボト イヨト

Instead of saying 4+2+1 is a partition of 7, we can also say $\lambda=(4,2,1)$ is a partition of 7. This allows us to define properties of partitions more easily.

Example: $\#(\lambda)$ denotes the number of parts of λ .

Instead of saying 4+2+1 is a partition of 7, we can also say $\lambda=(4,2,1)$ is a partition of 7. This allows us to define properties of partitions more easily.

Example: $\#(\lambda)$ denotes the number of parts of λ .

• What is #(4,4,3,3,3,1)?

Instead of saying 4 + 2 + 1 is a partition of 7, we can also say $\lambda = (4, 2, 1)$ is a partition of 7. This allows us to define properties of partitions more easily.

Example: $\#(\lambda)$ denotes the number of parts of λ .

- What is #(4, 4, 3, 3, 3, 1)?
- What is $\#(\lambda)$ if λ is represented by the following Ferrers Diagram?

Example: $\ell(\lambda)$ denotes the largest part of λ .

• What is $\ell(4, 4, 3, 3, 3, 1)$?

イロト イヨト イヨト イヨト

Example: $\ell(\lambda)$ denotes the largest part of λ .

- What is $\ell(4, 4, 3, 3, 3, 1)$?
- What is $\ell(\lambda)$ if λ is represented by the following Ferrers Diagram?

イロト イポト イヨト イヨト

Example: $\ell(\lambda)$ denotes the largest part of λ .

- What is $\ell(4, 4, 3, 3, 3, 1)$?
- What is $\ell(\lambda)$ if λ is represented by the following Ferrers Diagram?

We can restate what we noticed earlier: the number of partitions λ of n with $\ell(\lambda) \leq 5$ is the same as the number of partitions λ' of n with $\#(\lambda') \leq 5$.

イロト イポト イヨト イヨト

Example: $s(\lambda)$ denotes the smallest part of λ .

イロン イヨン イヨン イヨン

Example: $s(\lambda)$ denotes the smallest part of λ .

Consider partitions with distinct parts. Example: $\sigma(\lambda)$ denotes the number of consecutive parts of a partition at the beginning of the partition.

Example: $s(\lambda)$ denotes the smallest part of λ .

Consider partitions with distinct parts. *Example:* $\sigma(\lambda)$ denotes the number of consecutive parts of a partition at the beginning of the partition.

• What is $\sigma(8, 7, 6, 5, 3, 2, 1)$?

Example: $s(\lambda)$ denotes the smallest part of λ .

Consider partitions with distinct parts.

Example: $\sigma(\lambda)$ denotes the number of consecutive parts of a partition at the beginning of the partition.

- What is $\sigma(8, 7, 6, 5, 3, 2, 1)$?
- What is $\sigma(\lambda)$ if λ is represented by the following Ferrers Diagram?

Review Ferrers Diagrams Pentagonal Number Theorem

Another Way of Creating Diagrams

Let's continue to only consider partitions with distinct parts.

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

イロト イボト イヨト

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

イロト イポト イヨト イヨト

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

イロト イポト イヨト イヨト

Let's continue to only consider partitions with distinct parts.

If $s(\lambda) \leq \sigma(\lambda),$ we can move the bottom row to the ends of the first rows.

Example:

Review Ferrers Diagrams Pentagonal Number Theorem

Another Way of Creating Diagrams

If $s(\lambda) > \sigma(\lambda)$, we can do "the opposite".

Vanderbilt Math Circle Partitions, part 2

イロン 不同 とくほと 不良 とう

If $s(\lambda) > \sigma(\lambda),$ we can do "the opposite". Example:

If $s(\lambda) > \sigma(\lambda),$ we can do "the opposite". Example:

					X
				X	
\overline{Y}	\overline{Y}	\overline{Y}	\overline{Y}		

イロン 不同 とくほと 不良 とう

If $s(\lambda) > \sigma(\lambda),$ we can do "the opposite". Example:

イロト イボト イヨト

If $s(\lambda) > \sigma(\lambda)$, we can do "the opposite". *Example:*

If $s(\lambda) > \sigma(\lambda)$, we can do "the opposite". *Example:*

If $s(\lambda) > \sigma(\lambda)$, we can do "the opposite". *Example:*

If $s(\lambda) > \sigma(\lambda)$, we can do "the opposite". Example:

• Does this process always work?
Let's try this process on:

イロン イヨン イヨン イヨン

E

Let's try this process on:

イロン イヨン イヨン イヨン

э

Let's try this process on:

What goes wrong when we try to move the row?

イロト イボト イヨト イヨト

Let's try this process on:

What goes wrong when we try to move the row?

This happens exactly when $\sigma(\lambda) = r$ and $s(\lambda) = r$ for some r.

Let's try this process on:

What goes wrong when we try to move the row?

This happens exactly when $\sigma(\lambda)=r$ and $s(\lambda)=r$ for some r. In which case,

$$n = r + (r+1) + \dots + (2r-1)$$

イロト イポト イヨト イヨト

Let's try this process on:

What goes wrong when we try to move the row?

This happens exactly when $\sigma(\lambda)=r$ and $s(\lambda)=r$ for some r. In which case,

$$n = r + (r+1) + \dots + (2r-1) = \frac{1}{2}r(3r-1).$$

・ロト・西ト・西ト・西・シック

Similarly, we try the process on:

イロト イヨト イヨト イヨト

э

Similarly, we try the process on:

イロン イヨン イヨン イヨン

э

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

イロン イヨン イヨン

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

This happens exactly when $\sigma(\lambda) = r$ and $s(\lambda) = r + 1$ for some r.

イロト イポト イヨト イヨト

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

This happens exactly when $\sigma(\lambda)=r$ and $s(\lambda)=r+1$ for some r. In which case,

$$n = (r+1) + (r+2) + \dots + 2r$$

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

This happens exactly when $\sigma(\lambda)=r$ and $s(\lambda)=r+1$ for some r. In which case,

$$n = (r+1) + (r+2) + \dots + 2r = \frac{1}{2}r(3r+1).$$

Similarly, we try the process on:

What goes wrong when we try to move the end elements?

This happens exactly when $\sigma(\lambda)=r$ and $s(\lambda)=r+1$ for some r. In which case,

$$n = (r+1) + (r+2) + \dots + 2r = \frac{1}{2}r(3r+1).$$

Numbers of the form $\frac{1}{2}r(3r\pm 1)$ are called **pentagonal numbers**.

Another Way of Thinking of Pentagonal Numbers

Source: (Author: Aldoaldoz)

Vanderbilt Math Circle Partitions, part 2

Another Way of Thinking of Pentagonal Numbers

Source: (Author: Aldoaldoz) Formula:

$$\frac{r \cdot (3r-1)}{2}.$$

• What does this teach us about partitions?

- What does this teach us about partitions?
- $\bullet\,$ Recall that the generating function for p(n) is

$$f(q) = \frac{1}{(1-q)(1-q^2)(1-q^3)\dots}.$$

- What does this teach us about partitions?
- $\bullet\,$ Recall that the generating function for p(n) is

$$f(q) = \frac{1}{(1-q)(1-q^2)(1-q^3)\dots}.$$

Thus,

$$\frac{1}{f(q)} = (1-q)(1-q^2)(1-q^3)\dots,$$

Э

and so

- What does this teach us about partitions?
- $\bullet\,$ Recall that the generating function for p(n) is

$$f(q) = \frac{1}{(1-q)(1-q^2)(1-q^3)\dots}.$$

Thus,

$$\frac{1}{f(q)} = (1-q)(1-q^2)(1-q^3)\dots,$$

and so

$$f(q) \cdot [(1-q)(1-q^2)(1-q^3)\dots] = 1 + 0q + 0q^2 + \dots$$

イロト イポト イヨト イヨト

The Pentagonal Number Theorem

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

The Pentagonal Number Theorem

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

• What would an interpretation for

$$(1-q)(1-q^2)(1-q^3)(1-q^4)\dots$$

be?

The Pentagonal Number Theorem

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

• What would an interpretation for

$$(1-q)(1-q^2)(1-q^3)(1-q^4)\dots$$

be?

• **Exercise:** Find the number of partitions of 11 into distinct parts.

The Pentagonal Number Theorem

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

• What would an interpretation for

$$(1-q)(1-q^2)(1-q^3)(1-q^4)\dots$$

be?

• **Exercise:** Find the number of partitions of 11 into distinct parts. How many of these have an even number of parts? How many of these have an odd number of parts?

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

• What would an interpretation for

$$(1-q)(1-q^2)(1-q^3)(1-q^4)\dots$$

be?

- **Exercise:** Find the number of partitions of 11 into distinct parts. How many of these have an even number of parts? How many of these have an odd number of parts?
- **Exercise:** Find the number of partitions of 12 into distinct parts.

• Last time, we talked about a "counting" interpretation of

$$(1+q)(1+q^2)(1+q^3)(1+q^4)\dots$$

• What would an interpretation for

$$(1-q)(1-q^2)(1-q^3)(1-q^4)\dots$$

be?

- **Exercise:** Find the number of partitions of 11 into distinct parts. How many of these have an even number of parts? How many of these have an odd number of parts?
- **Exercise:** Find the number of partitions of 12 into distinct parts. How many of these have an even number of parts? How many of these have an odd number of parts?

• What does this phenomenon tell us?

イロン 不同 とくほう イヨン

- What does this phenomenon tell us?
- Answer: The n^{th} coefficient of

$$(1-q)(1-q^2)(1-q^3)\dots$$

is 0 except for pentagonal numbers.

- What does this phenomenon tell us?
- Answer: The n^{th} coefficient of

$$(1-q)(1-q^2)(1-q^3)\dots$$

is 0 except for pentagonal numbers.

• The coefficient for the pentagonal number $\frac{1}{2}r(3r\pm1)$ is $(-1)^r.$

- What does this phenomenon tell us?
- Answer: The n^{th} coefficient of

$$(1-q)(1-q^2)(1-q^3)\dots$$

is 0 except for pentagonal numbers.

- The coefficient for the pentagonal number $\frac{1}{2}r(3r\pm1)$ is $(-1)^r.$
- In other words,

$$(1-q)(1-q^2)(1-q^3)\ldots = 1-q-q^2+q^5+q^7-\ldots$$

Recursive Relation for p(n)

• Combining all the steps above,

$$(1+p(1)+p(2)q^2+p(3)q^3+\ldots)\cdot(1-q-q^2+q^5+q^7-\ldots)=1$$

イロン イヨン イヨン イヨン

3

where $1, 2, 5, 7, 12, 15, \ldots$ are the pentagonal numbers.

Recursive Relation for p(n)

• Combining all the steps above,

$$(1+p(1)+p(2)q^2+p(3)q^3+\ldots)\cdot(1-q-q^2+q^5+q^7-\ldots)=1$$

イロト イポト イヨト イヨト

Э

where $1, 2, 5, 7, 12, 15, \ldots$ are the pentagonal numbers.

• Exercise: Use this to compute p(n) for n = 1, 2, ..., 10. What patterns do you notice?

Recursive Relation for p(n)

• Combining all the steps above,

$$(1+p(1)+p(2)q^2+p(3)q^3+\ldots)\cdot(1-q-q^2+q^5+q^7-\ldots)=1$$

イロト イポト イヨト

where $1, 2, 5, 7, 12, 15, \ldots$ are the pentagonal numbers.

- Exercise: Use this to compute p(n) for n = 1, 2, ..., 10. What patterns do you notice?
- Can you compute p(50) now without finding all of the partitions? What about p(100)? Could you teach a computer to compute big values of p(n)?

• How to represent partitions with diagrams

イロン イヨン イヨン イヨン

- How to represent partitions with diagrams
- How to change these diagrams to create new types of partitions

- How to represent partitions with diagrams
- How to change these diagrams to create new types of partitions
- Relations between different properties of partitions

・ロト ・回ト ・ヨト

- How to represent partitions with diagrams
- How to change these diagrams to create new types of partitions
- Relations between different properties of partitions
- Pentagonal numbers and what they tell us about distinct partitions
What We've Learned

- How to represent partitions with diagrams
- How to change these diagrams to create new types of partitions
- Relations between different properties of partitions
- Pentagonal numbers and what they tell us about distinct partitions
- A way to compute p(n)

イロト イポト イヨト イヨト