Take home problems:

1. Turn the fish around by moving only 3 matches without overlapping:

2. Move 2 matches to get only 4 squares:

3. Remove a square by moving only 3 matches to be left with only 4 squares:

4. A square can be turned into an equilateral triangle by cutting into 4 pieces and rearranging as follows:

Find a way to cut up an octagon into pieces and rearrange them to get a square.
How few can you use?
Challenge: It can be done using only 5 pieces!

5. A grasshopper jumps on the road, left or right. He jumps 1 inch, then 2 inches, $3 \ldots$ and his last jump is 10 inches.
Is it possible that he ends up exactly where he started?
6. $(\star \star \star)=$ challenge

Let $S_{n}=1^{2}+2^{2}+\ldots+N^{2}$ be the sum of the first n squares. Show that $6 S_{n}=N(N+1)(2 N+1)$ by "stacking corners" in a rectangular solid of dimensions $N \times(N+1) \times(2 N+1)$.
7. You have 2 fuses. Each burns in exactly one hour. But, the rate is uneven, and you don't know how long it takes to burn $1 / 2,1 / 3$, etc. of the fuse.
Can you make a timer that burns exactly 45 minutes?

