Problems for Math Circles

February 25, 2019

1 Take-Home Problems

1. Prove that $p(n)<p(n+1)$ for all $n \geq 1$.
2. a). If λ is a partition of n with no distinct parts (in other words, every part that appears in the sum shows up at least twice), what can we say about its conjugate? (Hint: Think about the example where we found that having one as a part meant that the conjugate had a distinct largest part and vice versa. Try to find a similar meaning here.)
b). Write down a product formula that gives the generating function for the number of partitions of n with no distinct parts.
3. An overpartition of a number n is a partition of n where the first occurrence of any part may be overlined. For example, the overpartitions of 2 are

$$
2, \overline{2}, 1+1, \overline{1}+1,
$$

and the overpartitions of 3 are

$$
3, \overline{3}, 2+1,2+\overline{1}, \overline{2}+1, \overline{2}+\overline{1}, 1+1+1, \overline{1}+1+1
$$

a). What are the overpartitions of 4 ?
b). Let $\bar{p}(n)$ be the number of overpartitions of n. What is the generating function for $\bar{p}(n)$? (Hint: Recall how we found the generating function for $p(n)$.)
4. A partition λ is said to be self-conjugate if the conjugate of λ is λ itself. Using Ferrers Diagrams, prove that the number of self-conjugate partitions of a number n is the same as the number of partitions of n into distinct odd parts. (Hint: try "folding" Ferrers diagrams of partitions with distinct odd parts.)
5. Let n be a positive whole number, and for any number x, let $[x]$ be the largest whole number less than or equal to x. For instance, $\pi=3.14 \ldots$.., so $[\pi]=3$, and $[5]=5$ since 5 is already a whole number.
a). Find a formula for the sum of the numbers $1+2+\ldots+[\sqrt{n}]$. Conclude that this sum is less than n.
b). Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a collection of numbers from the set $\{1,2, \ldots,[\sqrt{n}]\}$ Show that there is a partition of n which starts with $s_{1}+s_{2}+\ldots+s_{k}$. For instance, if $n=101$, so that $[\sqrt{101}]=10$, if S is the collection $S=1,3,4,9$ of whole numbers less than or equal to 10 , then $1+3+4+9+84$ is a partition of 101 which "starts" with $1+3+4+9$.
c). Recall from an earlier math club meeting that the number of collections of numbers from $\{1,2, \ldots,[\sqrt{n}]\}$, that is, the number of subsets, is $2^{[\sqrt{n}]}$.
Conclude that the number of partitions of n grows exponentially with n , and give a function $f(n)$ such that $f(n)<p(n)$.
d). Can you find better approximations to $p(n)$? How many partitions are "missed" by this procedure? Can you find an upper bound for $p(n)$, that is, a function $g(n)$ such that $p(n)$ is always less than $g(n)$?

