A categorical Connes' $\chi(M)$ A UBTC from a II₁-factor

Quan Chen The Ohio State University

May 9, 2023

A categorical Connes' $\chi(M)$ (arXiv: 2111.06378) Gauging theory for categorical Connes' $\chi(M)$ (in preparation, 2023)

Corey Jones

 $\tilde{\chi}(M)$: UBC from II₁-factor

A tensor category C is a \mathbb{C} -linear category with a bilinear tensor structure $\otimes : C \times C \to C$.

Examples:

- ▶ Vec, Vec(G), Rep(G)
- ▶ Bim(M) with \boxtimes_M

$$\begin{array}{ll} \alpha: G \to \operatorname{Aut}(M) & \Rightarrow & F_{\alpha}: \operatorname{Hilb}(G) \to \operatorname{Bim}(M) \\ g \mapsto \alpha_{g}, & \mathbb{C}_{g} \mapsto L^{2}M_{\alpha_{g}}. \end{array}$$

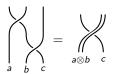
Let $N \subset M$ be a finite depth finite index II₁-subfactor, which means its even part of standard invariant $Std(N \subset M) := \langle NM_N \rangle \subset Bim(N)$ under $\boxtimes_N, \oplus, \subset$ is a unitary fusion category.

イロト イヨト イヨト

Braided tensor category

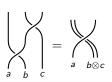
A braided tensor category is a tensor category with a braiding:

$$\beta_{a,b} = \bigvee_{a \ b} \in \mathcal{C}(a \otimes b \to b \otimes a)$$



 $f \in \mathcal{C}(a \rightarrow b)$

イロト イヨト イヨト イ



Quan Chen

 $\tilde{\chi}(M)$: UBC from II₁-factor

[Connes 75] Let M be a II₁-factor, $\alpha \in Aut(M)$ is

► Approximately Inner: if $\exists \{u_n\} \subset U(M)$ such that $\|\alpha(x) - \operatorname{Ad} u_n(x)\|_2 \rightarrow 0$ for all $x \in M$. \rightsquigarrow group $\overline{\operatorname{Int}(M)}$

► Centrally Trivial: if for all central sequences $\{a_n\} \subset M$, $\|\alpha(a_n) - a_n\|_2 \rightarrow 0$ \longrightarrow group Ct(M) $\chi(M) := \left(\overline{\operatorname{Int}(M)} \cap \operatorname{Ct}(M)\right) / \operatorname{Int}(M)$ is an abelian group.

[Jones 80] Quadratic form $\kappa : \chi(M) \to U(1)$.

 \rightsquigarrow by (Eilenberg–MacLane), ($\chi(M),\kappa$) gives a UBTC.

イロト イ団ト イヨト イヨト

Categorical $\tilde{\chi}(M)$

Notice that $\alpha \in \operatorname{Aut}(M) \iff L^2(M)_{\alpha} \in \operatorname{Bim}(M)$

[Popa 94] Let $H \in Bim(M)$ be a right finite Hilbert bimodule.

Approximately Inner: if there exists an approximate inner Pimsner-Popa basis {b_iⁿ}_{1≤i≤K} ∈ H^o_M, such that

$$\sup_{i,n} \|L_{b_i^n}\| < \infty$$

$$||ab_i^n - b_i^n a||_H \rightarrow 0 \ \text{for all } a \in M.$$

► Centrally Trivial: if for all central sequences $\{a_n\} \in M$ such that $||a_n\xi - \xi a_n||_H \rightarrow 0$ for all $\xi \in H$. \rightsquigarrow UTC $\text{Bim}_{ct}(M)$

$$\tilde{\chi}(M) = \operatorname{Bim}_{\operatorname{ai}}(M) \cap \operatorname{Bim}_{\operatorname{ct}}(M)$$
 is a UTC.

< ロ > < 同 > < 回 > < 回 >

Theorem (C, Jones, Penneys 21)

Let $X \in \text{Bim}_{ai}(M)$ with approximately inner P-P basis $\{b_i^n\}$, and $Y \in \text{Bim}_{ct}(M)$ with P-P basis $\{c_j\}$ $u_{X,Y} := \lim_{n \to \infty} (L_{c_j} \otimes L_{b_i^n}) \circ (L_{b_i^n}^* \otimes L_{c_j}^*) : X \boxtimes_M Y \to Y \boxtimes_M X$ exists and is a unitary centralizing structure satisfying all the coherences.

Therefore, $\tilde{\chi}(M)$ is a UBTC, which is a full subcategory of Bim(M).

- $\chi(M) \subset \tilde{\chi}(M)$ as a braided subcategory.
- ▶ If *M* and *N* are Morita equivalent, then $\tilde{\chi}(M) \cong \tilde{\chi}(N)$ as UBTCs.

イロト イヨト イヨト イヨト

Examples

- ► Let *R* be the hyperfinite II₁-factor and *N* be a non-gamma II₁-factor, $\tilde{\chi}(R) \cong \tilde{\chi}(N) \cong \tilde{\chi}(R \overline{\otimes} N) \cong$ Hilb
- ▶ Let $N \subset M$ be a finite depth finite index non-gamma II₁-subfactor. Let $M_0 = N \subset M = M_1 \subset M_2 \subset \cdots$ be the Jones Tower and

$$M_{\infty} := \varinjlim M_n = \overline{\bigcup_n M_n}^{\text{SOT}}$$

Suppose standard invariant $C := C(N \subset M)$, we show that

Theorem (C, Jones, Penneys 21)

 $ilde{\chi}(M_\infty)\cong \mathcal{Z}(\mathcal{C})$ as UBTCs

<u>Conjecture</u>: If II₁ factor $M \cong M \otimes R$ and $\tilde{\chi}(M) \cong$ Hilb then $M \cong R \otimes N$ for some non-gamma II₁ factor N.

Corollary 1: Let $N_1 \subset N_2$ and $M_1 \subset M_2$ be non-gamma II₁-subfactors. If $\overline{\operatorname{Std}(N_1 \subset N_2)}$ and $\operatorname{Std}(M_1 \subset M_2)$ are not Morita equivalent, then N_∞ and M_∞ are not isomorphic.

<u>Corollary 2</u>: By Popa's subfactor reconstruction theorem/GJS construction, every unitary fusion category can be realized as a standard invariant of non-gamma II₁-subfactor. Therefore, every Drinfeld center of a UFC can be realized as $\tilde{\chi}(M)$ for some II₁-factor.

イロト イヨト イヨト

Let G be a finite group and $\psi : G \to Aut(M)$ be an outer action on a II₁ factor M. Suppose ψ is neither approximately inner nor centrally trivial.

Theorem (Connes)

There is a short exact sequence:

$$0 \to \operatorname{Char}(G) \to \chi(M \rtimes_{\psi} G) \to \bigcup_{g \in G} g\operatorname{Ct}(M) \cap \overline{\operatorname{Int}(M)} \to 0$$

where $\alpha \in g \operatorname{Ct}(M)$ if $\psi_{g^{-1}} \alpha \in \operatorname{Ct}(M)$.

イロト イ団ト イヨト イヨト

Theorem (Muger 04)

(

 $\left\{ \begin{array}{l} \text{braided tensor categories} \\ \text{containing } \mathsf{Rep}(G) \end{array} \right\} \xrightarrow[]{D}$

$$\overbrace{\textit{Equivariantization}}^{\textit{De-equivariantization}} \left\{ \begin{array}{c} \textit{G}\text{-} \text{crossed braided} \\ \text{tensor categories} \end{array} \right\}$$

	(ł	nen	

Suppose ψ is neither centrally trivial nor approximately inner.

- ▶ $\tilde{\chi}_G(M) := \bigoplus_{g \in G} g \operatorname{Bim}_{\operatorname{ct}}(M) \cap \operatorname{Bim}_{\operatorname{ai}}(M)$ is a *G*-crossed braided unitary tensor category (with faithful grading).
- ▶ $\operatorname{Rep}(G) \subset \tilde{\chi}(M \rtimes_{\psi} G)$ as fully braided subcategory.
- Fun(G)-mod in \$\tilde{\chi}\$(M \times_\psi G)\$ is equivalent to \$\tilde{\chi}\$G(|Fun(G)|) as G-crossed braided unitary tensor categories.

Note that $M \subset M \rtimes_{\psi} G \subset |\operatorname{Fun}(G)|$ is Jone's basic construction, so $|\operatorname{Fun}(G)|$ is Morita equivalent to M, $\tilde{\chi}_G(|\operatorname{Fun}(G)|) \cong \tilde{\chi}_G(M)$.

Theorem (C, Jones, Penneys 23) $\tilde{\chi}(M \rtimes_{\psi} G) \cong (\tilde{\chi}_{G}(M))^{G}.$

Thank you!

Q		C		