Wreath-like product groups and rigidity aspects of their von Neumann algebras

(with D. Drimbe, A. Ioana, D. Osin, and B. Sun)

Ionuț Chifan

(yonootz keyfun)

The University of lowa
NCGOA Spring Institute: von Neumann Algebras
Vanderbilt University, Nashville, May 8-11, 2023

Group von Neumann algebras (Murray-von Neumann '43)

Def: G - countable discrete group and $u: G \rightarrow \mathscr{U}\left(\ell^{2} G\right)$ left regular rep. Group von Neumann algebra

$$
\mathrm{L}(G)=\overline{\mathbb{C}}[G]^{\text {sot }}={\overline{\operatorname{span}\left\{u_{g}: g \in G\right\}}}^{\text {sot }} \subset \mathscr{B}\left(\ell^{2} G\right)
$$

- $\mathrm{L}(G)$ admits a faithful, normal, tracial state: $\tau\left(u_{g}\right)=\delta_{g, 1}, \forall g \in G$.
- A von Neumann algebra \mathcal{M} that admits a trace and cannot be decomposed as a direct sum (trivial center) is called a II_{1} factor.
- $\mathrm{L}(G)$ is a II_{1} factor iff G is icc $\left(\left|\left\{h g h^{-1}: h \in G\right\}\right|=\infty, \quad \forall g \neq 1\right)$.
- If \mathcal{M} is II_{1} factor so is $p \mathcal{M} p$ for any projection $0 \neq p \in \mathcal{M}$; the isom class of $p \mathcal{M} p$ depends only on $\tau(p)=t$ and is denoted by \mathcal{M}^{t}.

Central problems: (a) Classify $L(G)$ in terms of G !
(b) Compute: $\operatorname{Out}(\mathrm{L}(G))=\operatorname{Aut}(\mathrm{L}(G)) / \operatorname{Inn}(\mathrm{L}(G))$

$$
\mathcal{F}(\mathrm{L}(G))=\left\{t \in \mathbb{R}_{+}: \mathrm{L}(G)^{t} \cong \mathrm{~L}(G)\right\}
$$

(1) \exists unique approx. finite dimensional II_{1} factor $\mathcal{R}=\overline{\bar{U}_{n} \mathbb{M}_{2^{n}}(\mathbb{C})^{\text {sot }}}$.
(2. For any locally finite icc group G (e.g. \mathfrak{S}_{∞}) we have $L(G) \cong \mathcal{R}$.

Theorem (Connes '76): $\forall G$ icc amenable we have $L(G) \cong \mathcal{R}$.
$\leadsto G$-amenable if $\exists\left(\xi_{n}\right)_{n} \subset\left(\ell^{2} G\right)_{1}$ so that $\lim _{n}\left\|u_{g}\left(\xi_{n}\right)-\xi_{n}\right\|=0, \forall g \in G$ Examples: abelian, solvable, loc. finite, closed under ext/subgr.
\leadsto in this case all algebraic information on G (rank, torsion, gen/rel) is lost when passing to $\mathrm{L}(G)$.
\leadsto Thus Out $(\mathrm{L}(G))$ is "huge" and $\mathcal{F}(\mathrm{L}(G))=\mathbb{R}_{+}^{*}, \quad \forall G$ icc amenable
Theorem (Connes '80): For every G icc property (T) group, Out $(\mathrm{L}(G))$ and $\mathcal{F}(\mathrm{L}(G))$ are countable.

Def: (Kazhdan '67) G has prop. (T) if any unitary rep. of G that has almost invariant vectors must have a nonzero invariant vector.
Examples: (a) $S L_{n}(\mathbb{Z}), \quad P S L_{n}(\mathbb{Z}), \quad n \geq 3$
(b) unif. lat. $\Gamma<\operatorname{Sp}(n, 1)=\left\{A \in M_{n+1}(\mathbb{H}): A^{*} J A=J\right\}$, $J=\left(\begin{array}{cc}I_{n} & 0 \\ 0 & -1\end{array}\right)$
(c) prop. (T) passes to quotients
(d) (Shalom '00, Olivier-Wise '05, de Cornulier '05) Every prop. (T) group is a quotient of a torsion free, word hyperbolic prop. (T) group

Factors of property (T) groups

Connes Rigidity Conjecture '82: Whenever $G \nsubseteq H$ are icc prop (T) groups we have $\mathrm{L}(G) \nsubseteq \mathrm{L}(H)$.
$\leadsto($ Cowling-Haagerup '89) holds \forall lat. $G<\operatorname{Sp}(n, 1), H<\operatorname{Sp}(m, 1) n \neq m$.
\leadsto (Ozawa '02) \exists uncountably many nonisom. prop. (T) group factors.
\leadsto (Popa '06) the map $G \rightarrow \mathrm{~L}(G)$ is countable-to-one.
Problem (Connes '94): If G is icc prop (T) compute $\mathcal{F}(\mathrm{L}(G)$).
Outer Automorphisms Conjecture (VFR Jones '00, Popa '06): If G is icc prop (T) then $\operatorname{Out}(\mathrm{L}(G))=\operatorname{Char}(\mathrm{G}) \rtimes \operatorname{Out}(\mathrm{G})$, (i.e. $\left.u_{g} \rightarrow \rho(g) u_{\delta(g)}\right)$.
Popa's strengthening of Connes Rigidity Conjecture '06:
Let G be any icc prop (T) group and let H be any group.
If $\Theta: \mathrm{L}(G)^{t} \rightarrow \mathrm{~L}(H)$ is any *-isomorphism then $t=1$ and there is a group isomorphism $\delta: G \rightarrow H$, a character $\rho \in \operatorname{Char}(G)$, and a unitary $w \in \mathrm{~L}(H)$ so that $\Theta\left(u_{g}\right)=w\left(\rho(g) v_{\delta(g)}\right) w^{*}, \forall g \in G$.

Deformation/rigidity theory

Popa's deformation/rigidity theory (\approx '01) led to huge progress towards the classification of group factors and computation of their invariants.

Def: $A \imath B=(\oplus, A) \rtimes B$ generalized wreath product of A and $B \curvearrowright I$. When $I=B$ we get the wreath product A z B.
$\leadsto($ Popa '03) $\forall B, D$ icc prop (T) st $\mathrm{L}(\mathbb{Z} \imath B) \cong \mathrm{L}(\mathbb{Z} \imath D)$ then $B \cong D$.
$\leadsto\left(\right.$ Popa '01; Popa-Vaes '06) Examples of $G=\mathbb{Z}_{2} \imath$, B with $\mathcal{F}(\mathrm{L}(G))=1$ and $\operatorname{Out}(\mathrm{L}(\mathrm{G}))=\operatorname{Char}(\mathrm{G}) \rtimes \operatorname{Out}(\mathrm{G}) ; \quad \forall C$ fin. pres. $\operatorname{Out}(\mathrm{L}(G)) \cong C$.
\leadsto (loana-Popa-Vaes '10) Certain $G=\mathbb{Z}_{2} \geqslant 1 B$ are W^{*}-superrigid.
None of these results apply to property (T) groups !!!
$\leadsto(\mathrm{C}$-Das-Houdayer-Khan '19-'20) $\mathcal{F}(\mathrm{L}(G))=1$, where G is prop (T) fibered version of the Rips construction (Belegradek-Osin '06).

Wreath-like product groups

Def: Let A, B be groups and let $B \curvearrowright I$ be an action. Then G is a generalized wreath-like product of A and $B \curvearrowright I(G \in \mathscr{W} \mathscr{R}(A, B \curvearrowright I))$ if there is a s.e.s.

$$
1 \rightarrow \oplus_{i \epsilon I} A \hookrightarrow G \stackrel{\varepsilon}{\rightarrow} B \rightarrow 1
$$

such that $g A_{i} g^{-1}=A_{\varepsilon(g) \cdot i}$, where A_{i} is the i-labeled copy of A in $\oplus_{i \in I} A$. When $I=B$, we denote by $G \in \mathscr{W} \mathscr{R}(A, B)$ - regular wreath-like products.

Obs: Let $G=A * B$. Then normal closure $\left\langle\langle A\rangle=*_{b \in B} A^{b}\right.$ and $G=\langle\langle A\rangle B$. If $S=\left\langle\left[A^{b}, A^{c}\right]: b \neq c \in B\right\rangle$ then $S \triangleleft G$ and $G / S \cong A$ 2 B. $\leadsto A<G$ is $C L$ subgroup iff $\left\langle\langle A\rangle=_{t \in T} A^{t}\right.$ for T a transversal of $\langle\langle H\rangle \triangleleft G$. $\leadsto\left(\right.$ Cohen-Lyndon '63) $\forall C<\mathbb{F}_{k}$ maximal cyclic is a CL subgroup.

Prop: Let $A<G$ be a $C L$ subgroup. Then $S=\left\langle\left[A^{b}, A^{c}\right]: b \neq c\right\rangle<G$ is a normal subgroup of G and $G / S \in \mathscr{W} \mathscr{R}(A, G /\langle\langle A\rangle)$.

Proof: Follows because $\left\langle\langle A\rangle / S \cong \oplus_{t \in T} A^{t} \cong \oplus_{G} /\langle A\rangle\right\rangle N$ and we have the short exact sequence $1 \rightarrow\langle\langle A\rangle / S \rightarrow G / S \rightarrow G /\langle A\rangle\rangle \rightarrow 1$.

Theorem (Osin '06, Dahmani-Guirardel-Osin '11, Sun '19)

If $H<W$ with W hyper. rel. to $H, \forall A \triangleleft H$ "sufficiently deep" we have:

- $\left\langle\langle A\rangle=*_{t \in T} A^{t}\right.$ where T is a left transversal for $H\langle\rangle\rangle<W$; and
- $W /\langle\langle A\rangle$ is hyperbolic relative to H / A.
$\leadsto I n$ this case it follows that $G / S \in \mathscr{W} \mathscr{R}(A, W /\langle\langle A\rangle \curvearrowright W / H\langle A\rangle)$.
$\leadsto \forall W$ icc hyperbolic and $\forall n \in \mathbb{N}$, there is $\mathbb{F}_{n} \cong H<W$ such that W is hyperbolic relative to H. Using this in combination with the prior result we get $\exists \mathbb{F}_{n} \cong H<W C L$-subgroup and the prior quotienting technique yields:

Theorem (C-loana-Osin-Sun '21)

Let W be an icc, hyperbolic group. For every finitely generated A there is G a quotient of W so that $G \in \mathscr{W} \mathscr{R}(A, B)$ where B is icc hyperbolic. In particular, if W has property (T$)$ then so does $G \in \mathscr{W} \mathscr{R}(A, B)$.
\leadsto As a consequence, if $A=\mathbb{Z}$ then $\mathrm{L}(G) \cong \mathrm{L}^{\infty}\left(\mathbb{T}^{B}\right) \rtimes_{\sigma, c} B$ where $B \frown \mathbb{T}^{B}$ is Bernoulli action and $c \in \mathrm{Z}^{2}(\sigma, \mathbb{T})$. Hence $\mathrm{H}^{2}(\sigma, \mathbb{T}) \neq \mathrm{H}^{2}(B, \mathbb{T})$ answering a question of Popa and recovering (Jiang '15).

W*-superrigidity results

Theorem (C-loana-Osin-Sun '21)

Let A be abelian and let B be an icc subgroup of a hyperbolic group. Then any property (T) group $G \in \mathscr{W} \mathscr{R}(A, B)$ is W^{*}-superrigid.

Theorem (C-loana-Osin-Sun '21)

Let G be an icc hyperbolic property (T) group and let $g \in G$ be an element of infinite order. Then there is $d \in \mathbb{N}$ such that for all $k \in \mathbb{N}$ the quotient $G /\left[\left\langle\left\langle g^{d k}\right\rangle,,\left\langle g^{d k}\right\rangle\right\rangle\right]$ is a property $(\mathrm{T}) W^{*}$-superrigid group.
\leadsto First examples of prop (T) groups satisfying Connes Rigidity Conjecture; in fact one can construct $2^{\aleph_{0}}$ many such groups.
\leadsto Our approach combines von Neumann alg. methods with techniques on equivalence relations. Recently, we found another method that yields many W^{*}-superrigid prop (T) groups $G \in \mathscr{W} \mathscr{R}(A, B)$ where A is non-amenable and B is a special type of relative hyperbolic group.

Computations of invariants of prop (T) factors

Theorem (CIOS '21-'22)

Let A, C be abelian or icc. Let B, D be non-parabolic icc subgroups of groups which are hyperbolic relative to a finite family of finitely generated, residually finite groups.
Let $G \in \mathscr{W} \mathscr{R}(A, B \triangleleft I), H \in \mathscr{W} \mathscr{R}(C, D \triangleleft J)$ be any prop (T) groups where $B \curvearrowright I$ and $D \curvearrowright J$ are faithful actions with infinite orbits.
Let $\Theta: \mathrm{L}(G)^{t} \rightarrow \mathrm{~L}(H)$ for $t>0$ be any *-isomorphism. Then $t=1$ and one can find a group isomorphism $\delta: G \rightarrow H$, a character $\rho: G \rightarrow \mathbb{T}$ and a unitary $w \in \mathrm{~L}(H)$ such that for all $g \in G$ we have

$$
\begin{equation*}
\Theta\left(u_{g}\right)=w\left(\rho(g) v_{\delta(g)}\right) w^{*} \tag{P}
\end{equation*}
$$

\leadsto Yields $\mathcal{F}(\mathrm{L}(G))=1$, providing additional examples to the prior work (C-Das-Houdayer-Khan '20) confirming Popa's conjecture.
\leadsto Implies $\operatorname{Out}(\mathrm{L}(G))=\operatorname{Char}(G) \rtimes \operatorname{Out}(G)$, giving the first examples of prop (T) groups satisfying VFR Jones's conjecture.
\leadsto Outer automorphisms of prop (T) groups in general can be very wild (Ollivier-Wise '04, Belegradek-Osin '06). Developing a new approach based on prior work of (Wise '04, Haglund-Wise '08, Agol '13), Rips constructions (Belegradek-Osin '06), and quotienting techniques involving Cohen-Lyndon subgroups we showed the following:

Theorem (CIOS '22)

\forall countable group C, \exists group $G \in \mathscr{W} \mathscr{R}(A, B \curvearrowright I)$ so that:
(a) B is a non-parabolic icc subgroup of a relatively hyperbolic group with finitely generated, ressidually finite peripheral subgroups.
(b) A is abelian and $B \curvearrowright I$ is a faithful action with infinite orbits.
(c) G has $\operatorname{prop}(T),[G, G]=G$, and $\operatorname{Out}(G) \cong C$. (
\leadsto In fact there is a continuum of G 's satisfying the statement.

Corollary - a converse to Connes' result

\forall countable group $C, \exists \operatorname{prop}(\mathrm{~T})$ group G so that $\operatorname{Out}(\mathrm{L}(G)) \cong C$.
\leadsto Similar results hold for reduced group C*-algebras.

Other invariants: $\mathcal{F}_{s}(\mathcal{M})=\left\{t \in \mathbb{R}_{+} \mid \exists \Theta: \mathcal{M} \rightarrow \mathcal{M}^{t}\right.$ *-homomorphism $\}$

$$
\mathcal{I}_{\mathcal{M}}=\{r \in[1, \infty] \mid \exists \mathcal{N} \subseteq \mathcal{M} \text { subfactor so that }[\mathcal{M}: \mathcal{N}]=r\}
$$

Theorem (CIOS 21)

Let G be a prop (T) group, $A \triangleleft G$ abelian, $\left|g^{A}\right|=\infty, \forall g \in G \backslash A$.
Let $H \in \mathscr{W} \mathscr{R}(C, D \frown I), C$-abelian, D-icc subgroup of a hyperbolic group, $C_{D}(g)$ is virtually cyclic $\forall 1 \neq g \in D, D \curvearrowright I$ amenable stabilizers.
Let $t>0$ and let $\Theta: \mathrm{L}(G) \rightarrow \mathrm{L}(H)^{t}$ be any *-homomorphism.
Then $t_{1}+\cdots+t_{q}=t \in \mathbb{N}$ with $t_{i} \in \mathbb{N}$ and \exists finite index subgroup $K \leqslant G$, a monomorphism $\delta_{i}: K \rightarrow H$, a unitary rep $\rho_{i}: K \rightarrow \mathscr{U}_{t_{i}}(\mathbb{C}), 1 \leq i \leq q$ after conjugating by a unitary $w \in \mathrm{~L}(H)^{t}=\mathrm{L}(H) \otimes \mathbb{M}_{t}(\mathbb{C})$ we have that

$$
\Theta\left(u_{g}\right)=\operatorname{diag}\left(v_{\delta_{1}(g)} \otimes \rho_{1}(g), \ldots, v_{\delta_{q}(g)} \otimes \rho_{q}(g)\right), \quad \forall g \in K
$$

If $t=1$ we can take $K=G$ and hence $\exists \delta: G \rightarrow H$ monomorphism, $\rho \in \operatorname{Char}(G), w \in \mathscr{U}(\mathrm{~L}(H))$ so that $\Theta\left(u_{g}\right)=w\left(\rho(g) v_{\delta(g)}\right) w^{*}, \forall g \in G$.
\leadsto we constructed prop (T) wreath-like products G with $\operatorname{End}(G)=\operatorname{Inn}(G)$
Cor: $\left.\operatorname{End}(\mathrm{L}(G))=\operatorname{Inn}(\mathrm{L}(G)) ; \quad \mathcal{F}_{s}(\mathrm{~L}(G))=\mathbb{N} ; \quad \mathcal{I}_{\mathrm{L}(G)} \subset \mathbb{N} \cup\{\infty\}_{1 \mathrm{i} / 16}\right\}$

Embedding universality for prop (T) factors

Theorem (C-Drimbe-loana '22)

Let \mathcal{M} be a separable II_{1} factor. Then the following hold:
(1) For any hyperbolic group H there is a representation $\pi: H \rightarrow \mathscr{U}(\mathcal{Q})$ with $\pi(H)^{\prime \prime}=\mathcal{Q}$ and $\mathcal{M} \subset \mathcal{Q}$.
(2) There is a prop $(\mathrm{T}) \mathrm{I}_{1}$ factor \mathcal{P} with $\operatorname{Out}(\mathcal{P})=\{1\}$ and $\mathscr{F}(\mathcal{P})=\{1\}$ such that $\mathcal{M} \subset \mathcal{P}$. P
$\leadsto \mathrm{II}_{1}$ factor analogue to SQ-universality of hyperbolic groups (Delzant, '96; Ol'shanskii,'95).
\leadsto Cocompact lattices $H<S p(n, 1), n \geq 2$ are prop (T) groups whose representations are embbedding universal.
\leadsto Contrasts (Bekka '06; Peterson '14; Boutonnet-Houdayer '19): If G is an icc lattice in a higher rank simple Lie group (eg $S L_{n}(\mathbb{R}), n \geq 3$), then $\mathrm{L}(G)$ is the only II_{1} factor generated by a rep. of G.
\leadsto Combining this with (Ji-Natarajan-Vidick-Wright-Yuen '20) we obtain prop (T) factors that are not \mathcal{R}^{ω}-embeddable.

Popa's Factorial Relative Commutant Problem:

Let \mathcal{M} be a separable \mathcal{R}^{ω}-embeddable II_{1} factor. Is there an embedding $\pi: \mathcal{M} \rightarrow \mathcal{R}^{\omega}$ such that $\pi(\mathcal{M})^{\prime} \cap \mathcal{R}^{\omega}$ is a factor? eg: $S L_{3}(\mathbb{Z})$ (Popa '13)

Theorem (Farah-Goldbring-Hart-Sherman, '16)

\exists a class \mathcal{G} of separable I_{1} factors (infinitely generic) which is model complete, i.e. maximal class satisfying
a) \mathcal{G} is embedding universal;
b) If $\mathcal{Q}_{1}, \mathcal{Q}_{2} \in \mathcal{G}$, any embedding $\pi: \mathcal{Q}_{1} \hookrightarrow \mathcal{Q}_{2}$ extends to an isomorphism $\mathcal{Q}_{1}^{\omega} \cong \mathcal{Q}_{2}^{\omega}$.
\leadsto (Goldbring '20) showed that any property (T) factor \mathcal{M} admits an embedding into \mathcal{Q}^{ω}, for any infinitely generic factor \mathcal{Q}.

Theorem (C-Drimbe-loana, '22)

Let \mathcal{Q} be any infinitely generic II_{1} factor. Then any full II_{1} factor \mathcal{M} admits an embedding in \mathcal{Q}^{ω} with factorial relative commutant.

Def: A I_{1} factor \mathcal{M} is called super-McDuff iff $\mathcal{M}^{\prime} \cap \mathcal{M}^{\omega}$ is a I_{1} factor. Examples: $\sim \mathcal{R} ; \quad \mathcal{N} \bar{\otimes} \mathcal{R}$, where \mathcal{N} is a full II_{1} factor \leadsto (Popa '17) $\bar{\otimes}_{n \in \mathbb{N}} \mathcal{N}_{n}$, where \mathcal{N}_{n} are full I_{1} factors

Open problems (Atkinson-Goldbring-Kunnawalkam-Elayavalli, '20)
\exists e.c. factors that are super-McDuff? Are all e.c. factors super-McDuff?
\leadsto (C-Drimbe-loana '22) Every infinitely generic factor is super-McDuff. \leadsto (Goldbring-Jekel-Kunnwalkam-Elayavalli-Pi '23) these are uniformly super-McDuff; thus any factor in their e.e. class is super-McDuff

Conjecture: Any e.c. factor \mathcal{M} satisfies $\mathcal{M} \not \approx \mathcal{P} \bar{\otimes} \mathcal{Q}, \forall \mathcal{Q}$ a full factor. \leadsto (C-Drimbe-loana '22) confirmed this for an embedding universal class of e.c. factors, which are inductive limits $\mathcal{Q}={\overline{\bigcup_{n \in \mathbb{N}} \mathcal{N}_{n}}}^{\text {sot }}$ where

- $\left(\mathcal{N}_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of prop (T) s-prime II_{1} factors
- $\left[\mathcal{N}_{m}: \mathcal{N}_{n}\right]=\infty, \quad \forall m>n$.

References

[CIOS21] I. Chifan, A. Ioana, D. Osin, B. Sun: Wreath-like product groups and their von Neumann algebras I: W ${ }^{*}$-superrigidity, arXiv:2111.04708.
[CIOS23a] I. Chifan, A. loana, D. Osin, B. Sun: Wreath-like product groups and their von Neumann algebras II, Outer automorphisms, arXiv:2304.07457.
[CIOS22] I. Chifan, A. Ioana, D. Osin, B. Sun: Uncountable families of W^{*} and C^{*}-superrigid property (\mathbf{T}) groups, Preprint 2022.
[CIOS23b] I. Chifan, A. Ioana, D. Osin, B. Sun: Wreath-like product groups and their von Neumann algebras III, Embeddings, Preprint 2022.
[CDI21] I. Chifan, D. Drimbe, A. loana: Embeddable universality for property (T) factors,
Advances in Mathematics 417 (2023), Paper no. 108934, 24pp.

THANK YOU !!!

$\leadsto M$ is a compact unoriented 3-manifold with toric ∂M. Topologically distinct way to attach a solid torus to ∂M are parametrized by slopes of ∂M. For a slope σ, the Dehn filling $M(\sigma)$ of M is obtained by attaching a solid torus $\mathbb{D}^{2} \times \mathbb{S}^{1}$ so its meridian $\partial \mathbb{D}^{2}$ goes to a curve of slope σ.
\leadsto (Thurston '82) showed that if $M \backslash \partial M$ has complete finite volume then $M(\sigma)$ has a hyperbolic structure for all but finitely many slopes.
\leadsto If $\pi_{1}(\partial M) \leqslant \pi_{1}(M)$ is rel. hyper. then $\exists F \subset \pi_{1}(M)$ finite so that $\pi_{1}(M(\sigma))=\pi_{1}(M) /\langle\langle x\rangle$ is hyperbolic $\forall x \in H \backslash F$.

Osin '06, Dahmani-Guirardel-Osin '11, Sun '19

Let $H<G$ with G hyperbolic relative to $H . \exists F \subset H \backslash\{1\}$ finite such that $\forall N \triangleleft H$ with $N \cap F=\varnothing$ we have:

- $\left\langle\langle N\rangle=*_{t \in T} N^{t}\right.$ where T is a left transversal for $H\langle\| N\rangle<G$; and
- $G /\langle N\rangle\rangle$ is hyperbolic relative to H / N.

Theorem (C-loana-Osin-Sun '21)

Let W - icc, hyperbolic group. For every finitely generated A there is G a quotient of W so that $G \in \mathscr{W} \mathscr{R}(A, B)$ where B is icc hyperbolic. In particular, if W has property (T) then so is G.
\leadsto Using [DGO11] $\exists \mathbb{F}_{7 n}=K<W$ with W hyp. rel. to K. Using Dehn filling $\exists \mathcal{F} \Subset W \backslash\{1\}$ so that $\forall N \triangleleft K$ with $N \cap \mathcal{F}=\varnothing$ then (W, K, N) is CL-triple and $W /\langle\langle N\rangle$ is hyp. rel. to K / N.
\leadsto Using a high-power elements, $\mathbb{F}_{n} * L=K$ with $\left\langle\mathbb{\mathbb { F } _ { n }}\right\rangle^{K} \cap \mathcal{F}=\varnothing$. Hence $\left(W, K,\left\langle\mathbb{\mathbb { F } _ { n }}\right\rangle^{K}\right)$ is CL-triple and $W /\left\langle\left\langle\mathbb{F}_{n}\right\rangle\right\rangle^{W}$ is hyp. rel. to $K /\left\langle\left\langle\mathbb{F}_{n}\right\rangle\right\rangle^{K}=L$.
\leadsto As $\left.\left(W, K,\left\langle\mathbb{F}_{n}\right\rangle\right\rangle^{K}\right),\left(K, \mathbb{F}_{n}, \mathbb{F}_{n}\right)$ are CL-triple then $\left(W, \mathbb{F}_{n}, \mathbb{F}_{n}\right)$ is CL-triple. Since L is free then $W /\left\langle\mathbb{F}_{n}\right\rangle=B$ is hyperbolic. Thus,

$$
G_{0}=W /\langle S\rangle \in \mathscr{W} \mathscr{R}\left(\mathbb{F}_{n}, B\right) .
$$

\leadsto If $G_{0} \in \mathscr{W} \mathscr{R}\left(\mathbb{F}_{n}, B\right)$ then $\forall H \triangleleft \mathbb{F}_{n} \Rightarrow G=G_{0} /\langle H\rangle \in \mathscr{W} \mathscr{R}\left(\mathbb{F}_{n} / H, B\right)$.

If $G \in \mathscr{W} \mathscr{R}(A, B)$ with A abelian then:
a) action $G \curvearrowright \curvearrowright^{\sigma} \mathrm{L}\left(A^{(B)}\right)$ by conjugation $\sigma_{g}=\operatorname{ad}\left(u_{g}\right)$ is a gen. Bernoulli;
b) Eq. rel. $\mathscr{R}\left(\mathrm{L}\left(A^{(B)}\right) \subset \mathcal{M}\right)$ is the OE rel. of Bernoulli action $B \curvearrowright \hat{A}^{B}$.

Fix $G \in \mathscr{W} \mathscr{R}(A, B), H \in \mathscr{W} \mathscr{R}(C, D)$ with $\mathrm{L}(G)=\mathrm{L}(H)=: \mathcal{M}$.
I: If $\mathcal{P}=\mathrm{L}\left(A^{(B)}\right), \mathcal{Q}=\mathrm{L}\left(C^{(D)}\right) \Rightarrow \exists u \in \mathscr{U}(\mathcal{M})$ so that $u \mathcal{P} u^{*}=\mathcal{Q}$.
As $\mathcal{P}, \mathcal{Q} \subset \mathcal{M}$ regular, B, D-rel hyp follows from (Popa-Vaes '12, Ioana '12, C-loana-Kida '13).

II: $\exists \operatorname{maps} \zeta: G \rightarrow \mathscr{U}(\mathcal{P})$ and $\delta: G \rightarrow H$ with $\zeta_{g} u_{g}=v_{\delta(g)}, \forall g \in G$.
Using b) to identify the eq. rel. of $\mathcal{P} \subset \mathcal{M}$ in two ways \Rightarrow an OE between $B \curvearrowright \hat{A}^{B}$ and $D \curvearrowright \hat{C}^{D}$. Using Popa's CSR Thm $\Rightarrow \mathscr{U}(\mathcal{P}) G=\mathscr{U}(\mathcal{P}) H$.

III: Let $\Delta: \mathcal{M} \rightarrow \mathcal{M} \bar{\otimes} \mathcal{M}$ defined $\Delta\left(v_{h}\right)=v_{h} \otimes v_{h}, \forall h \in H$. Then \exists $w \in \mathscr{U}(\mathcal{M} \bar{\otimes} \mathcal{M}), \eta \in \operatorname{Char}(G)$ with $w \Delta\left(u_{g}\right) w^{*}=\eta(g) u_{g} \otimes u_{g}, \forall g \in G$.
$\Delta\left(u_{g}\right)=\Delta\left(\zeta_{g}^{*} v_{\delta(g)}\right)=\Delta\left(\zeta_{g}^{*}\right) v_{\delta(g)} \otimes v_{\delta(g)}=\left(\Delta\left(\zeta_{g}^{*}\right) \zeta_{g} \otimes \zeta_{g}\right)\left(u_{g} \otimes u_{g}\right)$
$\Rightarrow g \rightarrow \omega_{g} \in \mathscr{U}(\mathcal{P} \bar{\otimes} \mathcal{P})$ is a 1-cocycle for $\sigma \otimes \sigma$; Using CSR results \Rightarrow III.
Using a height technique of (loana-Popa-Vaes '10) we get conclusion. back
\leadsto Using the work of ;(Wise '04, Haglund-Wise '08, Agol '13)
\forall countable group $C<S / M$, where S fin. gen., torsion free, res. finite.
\leadsto Rips construction (Belegradek-Osin '06) one can find

$$
\begin{aligned}
S< & G \leftarrow \text { torsion free, hyp rel to } S \\
& \nabla \\
& N \leftarrow \operatorname{prop}(\mathrm{~T}) \text {, trivial abelianization }
\end{aligned}
$$

with $C<S / M \cong G / N$
$\leadsto C L$-subgroup $\rightarrow\langle x\rangle<N \triangleleft C_{0}=\pi^{-1}(C)<G$. If $H=\langle\langle x\rangle\rangle{ }^{G}={ }^{*} b\left\langle\langle x\rangle b^{-1}\right.$

$$
\begin{array}{rlll}
1 \rightarrow \oplus_{G / H} \mathbb{Z} & \rightarrow G /[H, H] & \rightarrow & G / H
\end{array} \rightarrow 1
$$

\leadsto The group yielding the conclusion is the image $N /[H, H]$ in a suitable quotient of $C_{0} /[H, H](\Leftarrow$ a generalized wreath-like product with infinite, untwisted stabilizers).

Theorem (CIOS '21-'22)

Let A-icc, Haagerup group with trivial amenable radical and B-icc subgroup of a hyperbolic group. Let $G \in \mathscr{W} \mathscr{R}(A, B)$ be a torsion free prop (T) group. Then for any H and any *-isomorphism $\Theta: \mathrm{C}_{r}^{*}(G) \rightarrow \mathrm{C}_{r}^{*}(H)$ there is a group isomorphism $\delta: G \rightarrow H$, a character $\rho \in \operatorname{Char}(G)$, and a unitary $w \in \mathrm{~L}(H)$ such that $\Theta\left(u_{g}\right)=w\left(\rho(g) v_{\delta(g)}\right) w^{*}, \forall g \in G$.
\leadsto The proof uses von Neumann algebra techniques and $\mathrm{C}_{r}^{*}(G)$ having unique trace and being projectionless (G satisfies Baum-Connes conjecture (Higson-Kasparov '97, Mineyev-Yu '01, Oyono-Oyono '01))
\leadsto If G is non-inner amenable, with trivial amenable radical then

$$
1 \rightarrow \operatorname{swInn}\left(\mathrm{C}_{r}^{*}(G)\right) \rightarrow \operatorname{Out}\left(\mathrm{C}_{r}^{*}(G)\right) \rightarrow \operatorname{sOut}\left(\mathrm{C}_{r}^{*}(G)\right) \rightarrow 1
$$

Corollary: Let A - icc group with trivial amenable radical, B - icc subgroup of a hyperbolic group. \forall prop (T$)$ group $G \in \mathscr{W} \mathscr{R}(A, B)$ we have

$$
\operatorname{sOut}\left(\mathrm{C}_{r}^{*}(G)\right)=\operatorname{Char}(G) \rtimes \operatorname{Out}(G) .
$$

Thus, \forall finitely presented C there is such G with $\operatorname{sOut}\left(\mathrm{C}_{r}^{*}(G)\right) \cong C$.

Ideas behind the proof of part 2):

- Can assume that \mathcal{M} is generated by 3 unitaries by considering $\mathcal{M} \subset \mathcal{M} \bar{\otimes} \mathcal{R}$, where R is the hyperfinite II_{1} factor (Ge-Popa '98).
- Let $\pi: \mathbb{F}_{3} \rightarrow \mathscr{U}(\mathcal{M})$ be a homomorphism with $\pi\left(\mathbb{F}_{3}\right)^{\prime \prime}=\mathcal{M}$.
- \exists a property (T) group $G \in \mathscr{W} \mathscr{R}\left(\mathbb{F}_{3}, B\right)$ with no non-trivial characters for some icc hyperbolic group B with $\operatorname{Out}(B)=1,\left(\mathrm{ClOS}^{\prime} 21\right)$.
$G \in \mathscr{W} \mathscr{R}(A, B) \Leftrightarrow \exists \rho: B \rightarrow A^{B}$ with $v_{b, c}=\rho_{b} \sigma_{b}\left(\rho_{c}\right) \rho_{b c}^{-1} \in A^{(B)}, \forall b, c \in B$, and letting $\alpha_{b}:=\operatorname{Ad}\left(\rho_{b}\right) \sigma_{b} \in \operatorname{Aut}\left(A^{(B)}\right)$ we have $G \cong A^{(B)} \rtimes_{\alpha, v} B$.
- π extends to a homomorphism $\tilde{\pi}: G \rightarrow \mathscr{U}(\mathcal{P})$ with $\tilde{\pi}(G)^{\prime \prime}=\mathcal{P}$, $\mathcal{P} \supset \mathcal{M}$ (where $G=\mathbb{F}_{3}^{(B)} \rtimes_{\alpha, v} B$ and $\mathcal{P}=\mathcal{M}^{B} \rtimes_{\beta, w} B$).
- \mathcal{P} has prop (T) since G has prop (T).

Definition

A cocycle action B ~ $^{\alpha, v} A$ is a pair $\alpha: B \rightarrow \operatorname{Aut}(A), v: B \times B \rightarrow A$ with
(1) $\alpha_{b} \alpha_{c}=\operatorname{Ad}\left(v_{b, c}\right) \alpha_{b c}$, for every $b, c \in B$,
(2) $v_{b, c} v_{b c, d}=\alpha_{b}\left(v_{c, d}\right) v_{b, c d}$, for every $b, c, d \in B$, and
(3) $v_{b, 1}=v_{1, b}=1$, for every $b \in B$.

The cocycle semidirect product $A \rtimes_{\alpha, v} B$ is the group $A \times B$ endowed with the unit $(1,1)$ and the multiplication $(x, b) \cdot(y, c)=\left(x \alpha_{b}(y) v_{b, c}, b c\right)$.

Definition

A cocycle action $B \sim^{\beta, w}(M, \tau)$ is a pair $\beta: B \rightarrow \operatorname{Aut}(M)$, $w: B \times B \rightarrow \mathscr{U}(M)$ with
(1) $\beta_{b} \beta_{c}=\operatorname{Ad}\left(w_{b, c}\right) \beta_{b c}$, for every $b, c \in B$,
(2) $w_{b, c} w_{b c, d}=\beta_{b}\left(w_{c, d}\right) w_{b, c d}$, for every $b, c, d \in B$, and
(3) $w_{b, 1}=w_{1, b}=1$, for every $b \in B$. back

The cocycle crossed product $M \rtimes_{\beta, w} B$ is a tracial $v N$ algebra generated by a copy of M and unitaries $\left\{u_{b}\right\}_{b \in B}$ such that $u_{b} x u_{b}^{*}=\beta_{b}(x)$, $u_{b} u_{c}=w_{b, c} u_{b c}$ and $\tau\left(x u_{b}\right)=\tau(x) \delta_{b, e}$, for every $b, c \in B$ and $x \in M$.

