Equivalence relation of group actions and Kesten's criteria for topological groups

Kate Juschenko

University of Texas in Austin

Borel equivalence relations

Definition

Let (X, μ) be a standard probability space. We say that an equivalence relation R on X is a countable Borel equivalence relation on X if R is a Borel subset of $X \times X$ and equivalence classes of R are countable.

Definition

Let *R* be a countable Borel equivalence relation on a standard probability space (X, μ) . The full group [*R*] is defined as the group of all Borel automorphisms $\phi \in Aut(X, \mu)$ such that $graph(\phi) \subseteq R$ on a subset of full measure.

 μ is **invariant (respectively, quasi-invariant)** if μ (respectively, equivalence class of μ) is preserved under the action of [*R*] on (X, μ) . A quasi-invariant probability measure μ is called *R*-ergodic if every *R*-invariant Borel set is either null or co-null.

Liouville measures

Let a countable discrete group *G* act on a set *X*. A probability measure on *G* is called *non-degenerate* if its support generates *G* as a semigroup. Let μ be a symmetric non-degenerate probability measure on *G*. A function $f : X \to R$ is called

 μ -harmonic, if the equality

$$f(x) = \sum_{g \in G} f(gx)\mu(g)$$

holds for every $x \in X$. An action is called μ -**Liouville** if every bounded μ -harmonic function is constant. We will say the action $G \curvearrowright X$ is **Liouville**, if it is μ -Liouville for some symmetric non-degenerate probability measure μ on G.

Theorem (Kaimanovich-Vershik)

A discrete group G is amenable if and only if the left multiplication action of G on itself is Liouville.

Generalization to locally compact second countable groups was obtained by Rosenblatt, and second-countable topological groups by Schneider and Thom.

If the left multiplication action of *G* on itself is μ -Liouville, then any transitive action of *G* is also μ -Liouville.

Theorem (Chaudkhari, J, Schneider, '22)

Assume that R is a countable Borel equivalence relation on (X, μ) such that μ is R-quasi-invariant and non-atomic. If G is a countable dense subgroup of [R], then the following statements are equivalent:

- 1. R is μ -amenable.
- 2. There exists a symmetric non-degenerate measure ν on *G*, such that the action of *G* on almost every orbit in *X* is ν -Liouville.

Theorem (Kesten, '59)

Let Γ be a finitely generated discrete group and let μ be a finitely supported symmetric generating measure on Γ . Let ρ be the spectral radius of the μ -random walk on Γ . Then Γ is amenable if and only if $\rho = 1$.

Schneider and Thom: Følner criterion and Kaimanovich-Vershik theorem for topological groups.

What assumptions on topological group would guarantee that $\limsup_{n\to\infty} \mathbb{P}(X_n \in U)^{1/n} = 1$?

Theorem

For a topological group G the following properties are equivalent.

- 1. G is amenable.
- 2. Every continuous affine action of G on a non-empty compact subset of a locally convex topological vector space has a fixed point.
- 3. For every non-empty compact space X and any action of G on X there exists a G-invariant Borel probability measure on X.

A topological group *G* has **small invariant neighborhoods** (or *G* is a SIN group) if for every neighborhood $U \in U(G)$ we have

$$\cap_{g\in G} gUg^{-1} \in \mathcal{U}(G)$$

Theorem (Chaudkhari, J, Schneider, '22)

Assume that G is a Hausdorff, amenable and SIN group, and ν is a symmetric probability measure with at most countable support on G. Then, for any neighborhood U of the identity, a lazy ν -random walk X_n started at the identity satisfies

$$\lim_{n\to\infty}\mathbb{P}(X_n\in U^n)^{1/n}=1$$

G is SIN implies U is invariant under conjugation and $U = U^{-1}$.

Schenider, Thom '17: there exists $\alpha : G \rightarrow Sym(G)$ such that the action of the group generated by $\alpha(G)$ is amenable, and for any $g, h \in G$ there exists $u(g, h) \in U$ such that $\alpha(g)(h) = u(g, h)gh$.

Notice that invariance of U under taking inverses and conjugation implies that in this case for any $g, h \in G$, there exists $u'(g, h) \in U$ such that $\alpha(g)^{-1}(h) = u'(g, h)g^{-1}h$.

Let $S = supp(\nu)$. Let Γ be the subgroup of Sym(G) generated by $\alpha(S)$. Consider a symmetric random walk on G induced by the random walk on Γ defined by the probability measure supported on $\alpha(S)$ (treated as a multiset) which assigns to the elements of this multiset the weights equal to the ν -weights of corresponding elements of S. Denote the resulting probability measure on the multiset $\alpha(S)$ by ν' , and for $s \in S \cup S^{-1}$ we denote by α_s the element $\alpha(s)$ if $s \in S$ or the element $\alpha(s^{-1})^{-1}$ if $s \in S^{-1}$. If for some tuple $(s_n, \ldots, s_1) \in (S \cup S^{-1})^n$ and some $x \in G$ one has

$$\alpha_{s_n} \circ \alpha_{s_{n-1}} \circ \ldots \circ \alpha_{s_1}(x) = x,$$

we can conclude that there are $u_1, ..., u_n \in U$ such that

$$u_n s_n u_{n-1} s_{n-1} \ldots u_1 s_1 = i d_G,$$

which implies that

$$X_n = s_n s_{n-1} \dots s_1 = \prod_{i=1}^n (u_i^{-1})^{s_{i+1} \dots s_n} \in U^n.$$

Thus, the invariance of U under taking inverses and conjugation implies that

$$\sup_{x\in G}\mathbb{P}_{(\nu')^n}(x,x)\leq \mathbb{P}_{\nu^n}(X_n\in U^n).$$

Since the action of Γ on *G* admits an invariant mean, for any $\epsilon > 0$ and any finite subset *E* of Γ , *G* admits an (E, ϵ) -Følner set. Such a set can always be selected from the same orbit of the action of Γ on *G*. Therefore, the infimum of isoperimetric constants of ν' -random walks on Γ -orbits on *G* is equal to 0.

Mohar's isoperimetric inequality implies that the supremum of the spectral radii of ν' - random walks on Γ -orbits on *G* is equal to 1, hence $\sup_{x \in G} \mathbb{P}_{(\nu')^n}(x, x)$ decays subexponentially, and

$$\lim_{n\to\infty}\mathbb{P}(X_n\in U^n)^{1/n}=1.$$

Bad news: the reverse does not hold.

A topological group *G* is called **bounded** if, for every neighborhood *U* of $e \in G$, there exist a finite subset $F \subseteq G$ and a natural number *n* such that $G = FU^n$.

It is well known, that G is bounded if and only if every right-uniformly continuous real-valued function on G is bounded.

We will say that *G* is **power-bounded** if, for every neighborhood *U* of $e \in G$, there exists a natural number *n* such that $G = U^n$.

Let *X* be a compact Hausdorff space with a regular Borel probability measure μ . A map $f: X \to Y$ into a topological space *Y* is called μ -almost continuous if, for every $\epsilon > 0$, there exists a closed subset $A \subseteq X$ with $\mu(X \setminus A) \le \epsilon$ such that $f|_A: A \to Y$ is continuous. If the target space is metrizable, then μ -almost continuity is equivalent to μ -measurability.

Consider the Lebesgue probability measure λ on the closed real interval [0, 1]. Given a topological group *G*, we define $L^0(G)$ to be the set of all (λ -equivalence classes of) λ -almost continuous maps from [0, 1] to *G*. Equipped with the group structure inherited from *G* and the topology of convergence in measure, $L^0(G)$ is a topological group. The sets of the form

$$N(U,\epsilon) := \{ f \in L^0(G) \mid \lambda(\{x \in [0,1] \mid f(x) \notin U\}) < \epsilon \}$$

(\epsilon > 0, U \subset G open with \epsilon \epsilon U)

constitute a neighborhood basis at the neutral element of $L^0(G)$.

Let *G* be a topological group.

(1) The topological group $L^0(G)$ is power-bounded. Let U be any identity neighborhood in $L^0(G)$. Then we find some $n \in \mathbb{N} \setminus \{0\}$ as well as an open identity neighborhood V in G such that $N(V, \frac{1}{n}) \subseteq U$. We claim that $L^0(G) = U^n$. To see this, let $f \in L^0(G)$. For each $i \in \{0, ..., n-1\}$, consider the element $f_i \in L^0(G)$ defined by

$$f_i|_{[i/n,(i+1)/n)} = f|_{[i/n,(i+1)/n)}, \qquad f_i|_{[0,1]\setminus[i/n,(i+1)/n)} \equiv e,$$

and note that $f_i \in N(V, \frac{1}{n})$. Hence, as desired,

$$f = f_1 \cdot \ldots \cdot f_n \in \left(N\left(V, \frac{1}{n}\right)\right)^n \subseteq U^n.$$

- (2) The topological group $L^0(G)$ is (extremely) amenable if and only if *G* is amenable (Pestov, Schneider, 2017).
- (3) If G is Polish, then so is L⁰(G) due to (Moore, '76). Since G is topologically isomorphic to a closed subgroup of L⁰(G), the converse holds as well.
- (4) It is straightforward to verify that $L^0(G)$ is SIN if and only if *G* is SIN.

Conclusion: $L^0(F_2)$ is a power-bounded, non-amenable, SIN, Polish group. Hence, the condition

$$\lim_{n\to\infty}\mathbb{P}(X_n\in U^n)^{1/n}=1$$

does not imply amenability of a topological group.

Good news: characterizes amenability for locally compact groups

If *G* is an amenable locally compact group and λ is its left Haar measure, and ν is a symmetric measure with countable support with $\nu(id) \ge 1/2$, then the norm of the Markov operator M_{ν} on $L^2(G, \lambda)$ is equal to 1, and it is equal to the

 $\limsup_{n\to\infty}(\nu^n(V))^{1/n}$

for any compact neighborhood V of the identity. On the other hand, since non-amenability of a locally compact group is witnessed by its compactly generated subgroups, we have that a non-amenable locally compact group fails the condition (Quint's Lecture notes).

Lamplighter action in the measurable settings. Define measure M_l on the subsets of R as follows. For any Borel $A \subset R$

$$M_l(A) = \int_X |A_x| d\mu(x)$$
, where $A_x = \{y \in X : (x, y) \in A\}$.

The sets *A* with $M_l(A) < \infty$ form a group *C* with respect to the symmetric difference operation. *C* is equipped with a distance derived from the distance between indicator functions in $L^1(R, M_l)$. Now take [*R*] (or any *G* which is dense in [*R*]) and consider its action on $X \times X$ defined by

$$g(x,y)=(x,gy).$$

This construction induces an action of [R] on *C* by isometries. This action defines $C \times [R]$ as a topological group.

Proposition

Assume that R is an ergodic amenable countable Borel equivalence relation on a non-atomic standard probability space (X, μ) . Let [R] be endowed with the uniform topology, and C with the topology induced by the distance in L¹(R, M_l). Then the following statements are true.

- 1. $C \rtimes [R]$ with the product topology is a topological group.
- 2. $C \rtimes [R]$ with the product topology is amenable.
- 3. $C \rtimes [R]$ does not have SIN property

Applications to inverted orbits.

Definition

Let *G* be a discrete group acting on a set *X*. For a sequence $h = \{h_1, h_2, ..., h_n\}$ of elements of *G* (one may think of its elements as of the increments defining the trajectory of a random walk) and a point $x \in X$ an inverted orbit of *x* under *h* is the set $\{x, h_n x, h_n h_{n-1} x, ..., h_n h_{n-1} ... h_1 x\}$. We will sometimes use the notation $O_h(x)$ for the inverted orbit of a point *x* under the action of *h*.

Theorem If R is amenable, then an affirmative answer to Topological Kesten for $C(G) \rtimes G$ or $C \rtimes [R]$ implies that

$$\int_X \mathbb{P}(|O_n(x)| \le \epsilon n) d\mu(x)$$

decays subexponentially for each $\epsilon > 0$.

Thank you!