Oligomorphic Groups, Measures, and the Delannoy Category

Noah Snyder
Indiana University
Work of Harman-Snowden partially joint with me.

Slides at nsnyder1.pages.iu.edu

Outline

- Rep (G)-like \otimes-categories
- The Delannoy Category HSS
- \otimes-categories from measures on Oligomorphic groups HS
- Examples HS + HES

Tensor Categories
Ex $\operatorname{Rep}(G) \quad$ obis; reps
compact group Morphs: G-covariant maps

Ex Finite index $R-\bmod -R^{\text {hyourainiry }}$ II,

Planar Algebra Example
\qquad
Mors $\{\cap+i \hat{\infty} \bmod O=d$.
Compose \square Tensor \square
Temperley-Lieb-Jones

Commutativity
Ordinary algebra

Includes R-mod-R
Tensor Categories \quad 2-dim linguas non-comm.
Includes TLJ $\longrightarrow 3-$ din diagrams brailed
Includes $\operatorname{Rep}(G) \longrightarrow 4$-dim diagrams symmetric

Pre - Tannakian Categories
"Looks like" $\operatorname{Rep}(G)$
Algebraic Group

- Symmetric monoidal (including rigid) duals
- Finite dimensional $k^{\text {en usually }}$ linear in this talk
- Abelian. Objects have finite length.
- $\mathbb{1}$ is absolutely simple End $(\mathbb{1})=K$

Problem 1
Classify pre-Tannakian Categories.

Additional Source: "essentially Tanmakian"
Ex Representations of Supergroups
Ex Algebraic groups in Verp Ostrik et al.

Tho (Deligne) If \mathcal{C} is pre-Tannakian over \mathbb{C} and has moderate growth then $C \cong \operatorname{Rep}(G)$

$$
\text { length }\left(x^{0}\right) \leq C^{n}
$$

See Coulembier-Etingof-Ostrik for a related then in characteristic p and Benson -E-O. and C. for additional examples

Deligne Interpolation Categories $k=\mathbb{C}$
GL+: Universal sym. ©-cat with an object of dimension +
$\underline{O}_{+}:$ \qquad symmetrically self -dual ob; of dimension t.
S_{+} \qquad Frobenius algebra obj of dimension t .

Diagram description
$G L_{t}$ $\bmod Q=+$
$O_{+} \lambda \bmod \quad 0=+$

Warning
These are not abelían!

- If $+\mathbb{Z}$ or \mathbb{N} then take Cauchy completion
- If $t \in \mathbb{Z}$ or \mathbb{N} work harder.

Even more interesting in characteristic p!

Outline

- Rep (G)-like \otimes-categories
- The Delannoy Category HSS
- \otimes-categories from measures on Oligomorphic groups HS
- Examples HS + HES

New Example (HSS)
Cauchy completion of:
objects $\int\left(\mathbb{R}^{(n)}\right)$ for each $n \in \mathbb{Z}_{\geqslant 0}$
Morphisms $\operatorname{Hom}\left(\tau\left(\mathbb{R}^{(a)}\right), C\left(\mathbb{R}^{(\omega)}\right)\right)$ spanned by n-by-m Delannoy paths $(0,0),(0,1)$ or $(1,1)$ So we call it the Delannoy Category

Composition: $p \circ q=\sum_{\gamma}(-1)^{m} r$
Where γ is a 3 -dim Delannoy path which projects down to r, q, and r

Tensor product is more complicated. Can describe $\operatorname{Hom}\left(C\left(\mathbb{R}^{(a)}\right) \otimes \circlearrowright\left(\mathbb{R}^{(b)}\right), \zeta\left(\mathbb{R}^{(c)}\right)\right)$ via (a, b, c)-Delannoy paths. But then composing these uses 4-dim Delannoy paths,

Aside: Could give a Planar Algebraic description using $\int_{a_{5}}^{a_{1} a_{4} a_{2} a_{3}}$ is the span of $\left(a_{1}, \ldots, a_{5}\right)$-paths

Structure lots more in parer!

- "New stuff" in $\varphi\left(\mathbb{R}^{(n)}\right)$ is malt, free with simple summand $L_{\ldots} \ldots$
engin n word.
- Tensor product is a modified shuffle product

$$
\begin{aligned}
L_{0 .} & \otimes L_{0} \cong L_{0 .} \oplus L_{0.0} \oplus L_{0.1} E^{\text {shanflic }} \\
& \oplus L_{0 \cdot} \oplus \frac{L_{0,} \oplus L_{0,} \oplus L_{0}}{0 k \cdot \text { collide }}
\end{aligned}
$$

Novel Properties (HS)

- Doesn't come from (Super)yroups or from Deligne interpolation.
- In characteristic p it's the first example of a semisimple pre-tannakian cat that does not have finite grow th.

But where does it come from?

Outline

- Rep(G)-like \otimes-categories
- The Delannoy Category HSS
- ©-categories from measures on Oligomorphic groups HS
- Examples HS + HES

Concreteness
Concrete: $\operatorname{Rep}(G), R-\bmod -R_{\mathrm{J}} \operatorname{etc}$. Objects have internal mathematical structure

Abstract $T L J_{d} e+c$, Objects are formal.

From abstract to Concrete
Tho (Jones) For $d=\zeta+\zeta^{-1}$ there's, a subcategory of $R-\bmod -R$ equivalent to $T L J_{d}$.
Ocneanu + Papa generalize this to unitary fusion categories and amenable tensor categories.

Problem 2
Can Deligne Categories be made concrete?
Warring: Cant use operator algebras because negative dins!

1) Harman-Snowden answer this question for S_{+}in characteristic zero.
2) Their answer leads to several new examples, and the Delannoy Category is the nicest.

Idea:

1) Start with a group Exs S_{∞} or $A_{n t}\left(R_{3}\right)$
2) Define a category Perm (σ, μ) of permutation representations. Uses a measure on G.
3) Take an abelian envelope I Sometimes this envelope is Rep (G, μ) - Concrete! Notion Mast general version still open.
$\substack{\text { to cit } \\ \text { int wis }}$
Under strong conditions can just take cauchy compton Truk!

Oligomorphic Permutation Groups
Group G acting on a set Ω.
Gacts on $\underset{n-\text { tuples }}{\Omega^{n}}$ with finitely many orbits
G has a topology where the basic open Subgroups are stabilizers of pts. in Ω^{n}

Closely connected to Model Theory
Oligomorphic groups are the automorphism groups of $\frac{w \text {-categorical }}{3!\text { countable model }}$ theories

These can be understood via Fraisso's The. Ex Put $\left(\Gamma^{i}\right)^{\text {Rado graph }}$

Key idea: Want to also understand restrictions to open subgroups.

Def $A \hat{G}$-set is a set with an action of some open subgroup. Shrinking subgroup doesn't change the \hat{G} set.
$\operatorname{Perm}(G, \mu)$
Objects are $\operatorname{Vec}_{x}^{L^{\text {formal }} \text { where l }} X$ is a $\underset{\text { fininitely mary ma by orbits }}{\text { find }}$ and $\frac{\text { smooth }}{\text { Starilizaris are open subgroups }}$ G-set
Ex $\Omega^{n}, \Omega^{(n)} k_{n \text { element subsets }}$

Morphisms $\operatorname{Hom}(X, Y)$ are G-covariant "X×Y matrices"

- Schwartz functions on $X \times Y$ smooth and finitary support

How to compose?

Outline

- Rep (G)-like \otimes-categories
- The Delannoy Category HSS
- \otimes-categories from measures on Oligomorphic groups HS
- Examples HS + HES

Thm $(H S) \exists$! μ_{t} with $\mu_{t}(\Omega)=t$ given by $M_{t}(x)=P_{x}(t)$ where

$$
P_{x}(n)=\# \frac{X^{s(n)}}{\text { fixelpts }} \text { for } n \gg 0
$$

Tho (HS) The abelian envelope of Perm $\left(S_{\infty},{ }^{M}\right)$ is Deligne's S_{+}and can be realized a Category of modules for a completed group algebra. $\operatorname{Vec}_{x} \rightarrow C(x)$ schwartz functions on X

Ex $\operatorname{Ant}\left(\mathbb{R}_{0}>\right)$
Open subsets are $G(A)$ fixing a finite $A \subseteq \mathbb{R}$
There's a measure give by Euler char.

Has nice properties so again get a pre-Tamak Concrete category Rep (G).

Ex $\operatorname{Hom}\left(V_{e c_{\mathbb{R}}}, V_{e c_{\mathbb{R}}}\right)=\mathbb{C}^{3}$
Spanned by ${\underset{\sim}{x} \underset{x<y}{:=A}, X_{x=y}^{:=I}, X_{x>y}^{:=B}}_{y}^{y}$
Characteristic function
These correspond combinatorially to $1,1, \Gamma$

$$
\begin{aligned}
& \text { Check } A \circ B(x, z)=\int_{y} A(x, y) \cdot B(y, z) d y \\
& =M(\{y: y>x, z\})=\mu(a-)=0-1+0=-1 \\
& =-A-B-I,
\end{aligned}
$$

