Oligomorphic Groups, Measures, and the Delannoy Category Noah Snyder Indiana University Work of Harman-Snowben partially joint with me. Slides at Nsnyder 1. pages. iu. edu

Outline	. .
• Rep(G)-like @-a	categories
· The Delannoy Cate	gory HSS
• Q-categories from 1	measures on
Oligomorphic groups	
• Examples HS+HSS	

 	Tensor	(ategories
Ex	Rep(G)	Ob;s: reps Morphs: G-lovariant maps
. 	Compact group	Other structure: 0,1,*
Ex	Finite index	R-mod-R hyperfinite II,
· · · · · · · · · · · · · · · · · · ·		

Planar Algebra Example 06;5 Mors) 1 + i. nod O=d. Tensor Compose Temperley - Lieb - Jones

Commutativity Ordinany algebra non-comm. XYZ X. 17 •Z COmm. Tensor Lategories 2-dim Lingmans non-Lomm. > 3-dim diagrams brailed Includes ThJ -> 4-dim d'agrams symmetric Includes Rep(6)

	- Tanna Kian (ategories Rep(G) ~ klgobraic Group
 Symmetric Finite Lime 	monoidal (including rigid) duals usually C in this talk ensional K-linear Hom Spaces
• Abelian,	Objects have finite length.
	solutely simple End(1)=k

Problem 1
Classify pre-Tannakian Categories
Additional Source: "Essentially Tannakian"
Ex Representations of supergroups
Ex Algebraic groups in Ver, Ostrik et al.

Thm (Deligne)	If C is p	rc ~ Tannakian over (
and has mod	erate growth	then $\mathcal{L} \cong \operatorname{Rep}(G)$
lenyth ($(x^{on}) \leq C^n$	supergroup
See Coulem. related thm	bier-Etingof-l in characte	Ostrik for a ristic p and
		Witional examples
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	. .

Deligne Inte	rpolation Lategories K=f
	&-cat with an object
	symmetrically self-dual ob;
5 _t : of <i>limension</i> t.	- Frobenius algebra obj

Diagram description $\frac{GL_{t}}{Mod} = t$ $\frac{O_{t}}{\lambda}$ mod O = t S_{+} X_{+} X_{-} X_{-

Warning These are not abelian! · If the Zor IN then take Cauchy completion · If tEZ or N work harder. Even more interesting in characteristic p!

Outline · Rep(G)-like @-categories · The Delannoy Category H55 · Q-categories from measures on Oligomorphic groups HS · Examples HS+HSS

New Example (HSS) (auchy completion of: Objects C(IR⁽ⁿ⁾) for each nEZ20 Morphisms Hom (C(R (), C(R ())) Spanned by n-by-m Delannoy paths Sters of (1,0), (0,1) or (1,1) 50 we call it the Delannoy Lategory

Composition: poq = Z(-1) r Where Y is a 3-dim Delannoy path Which projects down to 1,9, and r └___;Y; └ 7,3; / ×,2; /

Tensor product is more complicated. Can describe $Hom(C(\mathbb{R}^{(a)}) \otimes C(\mathbb{R}^{(b)}), C(\mathbb{R}^{(b)}))$ Via (a,b,c) - Delannoy paths. But then Composing these uses 4-dim Delannoy paths Aside: Could give a Planar Algebraic description using is the span of (a_1, \dots, a_5) -paths

	5	truci	ure	Lot	5 more	in paper!
• "New with	stuff" simple	Summo	ands L		· · · · · · · · · ·	free
· · · · · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · ·	length n	word.	• • • • • • • • • • •	· · · · · · · · · · ·
• Tensor	product	is a	modif	ied s	huffle	product
	øL.					
			€.L.			
	· k · c	collile	• & •	Colli	de	

Novel Properties (HS)			
· Doesn't come from (super) yroups from Deligne interpolation.			
• In characteristic p it's the first of a semisimple pre-Tannakian cat bees not have finite growth.			
But where does it come from?			

Outline	
• Rep(G) -like Ø-0	categories
· The Delannoy Cate	
• Q-categories from n	
Oligomorphic groups	
• Examples HS+HSS	. .

Concreteness Concrete: Rep(G), R-mod-R, etc. Objects have internal mathematical Structure TLJ, etc. Abstract Objects are formal.

From abstract to Concrete Thm (Jones) For d=5+5" there's a subcategory of R-mod-R equivalent to TLJ. Ocneanu + Popa generalize this to unitary fusion categories and amenuble tensor categories.

Can Del	Problem 2. igne Categories be made concrete?
	an't use operator algebras because negative dias!
	-Snowden answer this question
	in characteristic Zero.
	answer leads to several new and the Delannoy Category is the nicest.

<u>Idea:</u>
1) Start with a group Exs Soo or Aut (R,>)
2) Define a category Perm(6, M) of permutation
representations. Uses a measure on G.
3) Take an abelian envelope Sometimes this envelope is <u>Rep(G,M)</u> Concrete! No time Most general version still open. to Cit Under strong conditions can just take Cauchy compliant
TRIK!

<u>Olig</u>	nomorphic Permutation Groups
Group G	acting on a set Ω .
Gacts	on Ω^n with finitely many privits n-tuples
G has a Subgroups	topology where the basic open are stabilizers of pts. in Ω^n

Closely C	onnected to	Mode [Theory	· · · · · · · ·
of w-co	roups are - ategorical model			hism
can be ut (17)	understood ado graph	Vra	Fraissois	Thm.

Key idea: Want to also understand
restrictions to open subgroups.
Def A G-set is a set with an action of some open subgroup. Shrinking subgroup doesn't change the G set.

	Perm(1	(, m)		
Objects ar	e Ve	X formal W	symbol here X	
G <u>finitary</u> Finitely many b	and	Smooth	G-5e-	F
				bgroups
$\underline{Ex} \Omega^{n},$	77 *~	n clement	subsets	· · · · · · · · · · · · · · · ·
	· · · · · · · · · · ·	· · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · · · ·

Morphisms	Hom(x,	r) are	6-66	ovariant
X×Y matri	ces ¹	· · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · ·
	ochwartz			X×Y
· · · · · · · · · · · · · · · · · · ·	mooth and	finitary so	(port	· · · · · · · · · · · · · ·
How to	Lompos	e?		neels a
How to BoA(x,z)	$=\int Bc$	(x, y) A(y,	Z) dy	Measure Not requi
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	to be posi

Outline · Rep(G)-like @-categories · The Delannoy Category H55 · Q-categories from measures on Oligomorphic groups HS · Examples HS+HSS

Thm(HS)]! My with My(D)=t given
by $M(x) = P_x(t)$ where
$P_{X}(n) = \# X^{S(n)}$ for $n, 770$.
fixelpt3
Thm (HS) The abelian envelope of $Perm(5, M)$ is Deligne's S _t and can be realized a
Lategory of mobules for a completed group algebra. Vecx ~ C(X) Schwartz functions on X

E_{\times} Aut (R, >)
Open subsets are G(A) fixing a finite ASIR
There's a measure give by Euler char.
$\int \frac{7}{1-2+1} = 0$.
Has nice properties so again get a pre-Tamak
Concrete category <u>Rep(G)</u> .

 $\underline{E_X}$ Hom (Vec_R, Vec_R) = \mathbb{C}^3 Spanned by X:SA XXXY) X = y) X = y) Characteristic function These correspond combinatorially to 1, /, [<u>Check</u> $AoB(x,z) = \int_{Y} A(x,y) \cdot B(y,z) dy$ $= M(\xi_Y; Y > X, z_3) = M(a) = 0 - 1 + 0 = -1$ = -A - B - I,