Local Topological Order and Boundary Algebras

Daniel Wallick

The Ohio State University
May 9, 2023
Joint with Corey Jones, Peter Nayikens, and David Penney

Spin Systems!

$(2+1)$ D spin systems: consider infinite planar lattice, associate \mathbb{C}^{d} to each vertex or edge For each finite region Λ, have tensor product Hilbert space $\otimes_{\Lambda} \mathbb{C}^{d}$
Get UHF quasilocal algebra by taking inductive limit: $\mathfrak{A}:=\bigotimes M_{d}(\mathbb{C})$
Simple example: toric code—associate \mathbb{C}^{2} to each edge

Toric code

Local Hamiltonians: For finite regions Λ

$$
H_{\Lambda}:=-\sum_{s \subseteq \Lambda} A_{s}-\sum_{p \subseteq \Lambda} B_{p}
$$

Topological order À la BHM '10

For Λ rectangle in the lattice, let

$$
p_{\Lambda}=\prod_{s \subseteq \Lambda} \frac{I+A_{s}}{2} \prod_{p \subseteq \Lambda} \frac{l+B_{p}}{2}
$$

(projection onto ground state space)
Get net of projections: $p_{\Delta} \leq p_{\Lambda}$ if $\Lambda \subseteq \Delta$
Net of projections for toric code satisfies TQO of Bravyi-Hastings-Michalakis '10:

For x supported on Λ and Λ completely surrounded by $\Delta, p_{\Delta} x p_{\Delta} \in \mathbb{C} p_{\Delta}$

The canonical state

If x is supported on Λ which is completely surrounded by Δ, then

$$
p_{\Delta} x p_{\Delta}=\psi(x) p_{\Delta}
$$

where $\psi(x)$ is independent of Δ !
Get a canonical state $\psi: \mathfrak{A} \rightarrow \mathbb{C}$, which is the unique translation-invariant ground state for toric code (Alicki-Fannes-Horodecki '07)

Boundary algebras: The why

Boundary algebras are net of algebras corresponding to line of sites in the lattice (a boundary!)
Using machinery by Jones '23, we get category of DHR bimodules for the boundary algebras
This gives us information about excitations for the bulk-a bulk-boundary correspondence!

The setup

Have \mathbb{Z}^{k} lattice
A net of algebras is an assignment of an algebra $\mathfrak{A}(\Lambda)$ to each rectangle Λ of the lattice satisfying

$$
\begin{aligned}
& \mathfrak{A}(\emptyset)=\mathbb{C} \\
& \Lambda \subseteq \Delta \text { implies } \mathfrak{A}(\Lambda) \subseteq \mathfrak{A}(\Delta) \\
& \text { If } \Lambda_{1} \cap \Lambda_{2}=\emptyset \text {, then }\left[\mathfrak{A}\left(\Lambda_{1}\right), \mathfrak{A}\left(\Lambda_{2}\right)\right]=0
\end{aligned}
$$

(Think $\mathfrak{A}(\Lambda)$ operators supported on Λ for a spin system!)

The setup: Part 2

A net of projections is an assignment of a projection $p_{\Lambda} \in \mathfrak{A}(\Lambda)$ for each rectangle Λ satisfying $p_{\Delta} \leq p_{\Lambda}$ for $\Lambda \subseteq \Delta$
Given two rectangles Λ, Δ, say $\Lambda \Subset \Delta$ if $\Lambda \subseteq \Delta$ and $\partial \Lambda \cap \partial \Delta$ is either empty or a ($k-1$)-dimensional rectangle.

The local topological order axioms

If $\Lambda_{1} \subseteq \Lambda_{2} \Subset \Delta$ with $\partial \Lambda_{1} \cap \partial \Delta=\partial \Lambda_{2} \cap \partial \Delta$, then

$$
p_{\Delta} \mathfrak{A}\left(\Lambda_{1}\right) p_{\Delta}=p_{\Delta} \mathfrak{A}\left(\Lambda_{2}\right) p_{\Delta}
$$

Λ If $\Lambda \in \Delta_{1} \subseteq \Delta_{2}$ with $\partial \Lambda \cap \partial \Delta_{1}=\partial \Lambda \cap \partial \Delta_{2}$, then for $x \in \mathfrak{A}(\Lambda)$,
$p_{\Delta_{1} \times p_{\Delta_{1}}}$ commutes with $p_{\Delta_{2}}$
$\Delta_{2} \quad x p_{\Delta_{2}}=0$ implies $x p_{\Delta_{1}}=0$

THE BOUNDARY ALGEBRAS

Fix \mathbb{Z}^{k-1} hyperplane \mathcal{K} inside \mathbb{Z}^{k} and a positive side of \mathcal{K}
Pick subrectangle $I \subseteq \mathcal{K}$

- Choose Λ a rectangle on the positive side of \mathcal{K} with $\partial \Lambda \cap \mathcal{K}=I$, and let Λ° be the largest rectangle such that $\Lambda^{\circ} \Subset \Lambda$ and $\emptyset \neq \partial \Lambda^{\circ} \cap \partial \Lambda \subseteq I$
- Get net of boundary algebras

$$
I \mapsto \mathfrak{B}(I):=\underset{\Omega}{\lim } p_{\wedge} \mathfrak{A}\left(\Lambda^{\circ}\right) p_{\Lambda}
$$

Get a canonical state ψ_{∂} on $\mathfrak{B}=\underset{\longrightarrow}{\lim } \mathfrak{B}(I)$ by using TQO of BHM '10 to get state on $\mathfrak{A}=\underset{\longrightarrow}{\lim } \mathfrak{A}(\Lambda)$ and extending to \mathfrak{B}

Example: Toric code!

$\mathfrak{B}(I)$ generated as an algebra by operators

$$
\begin{array}{ll}
\sigma^{X} \otimes \sigma^{X} \otimes I \otimes I \otimes I & I \otimes \sigma^{Z} \otimes \sigma^{Z} \otimes I \otimes I \\
I \otimes I \otimes \sigma^{X} \otimes \sigma^{X} \otimes I & I \otimes I \otimes I \otimes \sigma^{Z} \otimes \sigma^{Z}
\end{array}
$$

Get two families of self-adjoint commuting unitaries X_{i}, Z_{j} satisfying that

$$
Z_{j} X_{i}= \begin{cases}-X_{i} Z_{j} & \text { if } j=i \pm 1 \\ X_{i} Z_{j} & \text { otherwise }\end{cases}
$$

What do we get for toric code?

Canonical state on \mathfrak{B} is the normalized trace!
The DHR bimodule theory gives $\mathcal{D}(\mathbb{Z} / 2 \mathbb{Z})$, exactly the category of excitations for toric code!

But what about other models?

Can also do Levin-Wen model corresponding to a unitary fusion category \mathcal{C} !
Net of boundary algebras is $\mathfrak{B}(I)=\operatorname{End}_{\mathcal{C}}\left(X^{\otimes n}\right)$, where $X=\bigoplus_{c \in \operatorname{lrr}(\mathcal{C})} c$ and $n=|I|-2$
DHR bimodules gives $\mathcal{Z}(\mathcal{C})$, the category of excitations for Levin-Wen
The canonical state on \mathfrak{B} is

$$
\psi_{\partial}(f)=\frac{1}{D_{\mathcal{C}}^{n}} \sum_{c_{1}, \ldots, c_{n} \in \operatorname{lrr}(\mathcal{C})} d_{c_{1}} \cdots d_{c_{n}} \operatorname{tr}_{\mathcal{C}}\left(f p_{c_{1} \cdots c_{n}}\right)
$$

ψ_{∂} is a trace iff \mathcal{C} is pointed!

