Limit Multiplicities and Von Neumann Dimensions

> Jun Yang Harvard University

NCGOA 2023 @ Vanderbilt University, May 8-11, 2023

イロト 不得 とくき とくきとう

1/14

$$\lim_{n \to \infty} \frac{\text{multiplicity}}{\text{von Neumann dimension}} = 1$$

An Example:

 $\mathsf{SL}(2,\mathbb{Z})\subset\mathsf{SL}(2,\mathbb{R})$ and Discrete Series.

Iscrete Series

to Bounded Subsets of the Unitary Dual

- Iimits for Cocompact Lattices
- Limits for $SL(n, \mathbb{R})$ and Its Arithmetic Subgroups

- a lattice $\Gamma = SL(2, \mathbb{Z})$ in $G = SL(2, \mathbb{R})$;
- $L^2(SL(2,\mathbb{Z})\setminus SL(2,\mathbb{R})) \curvearrowleft G$: $(R(g)\phi)(x) = \phi(xg), \phi \in L^2(\Gamma \setminus G), g \in G.$

Question 1: What is the decomposition of R?

- - the discrete series $\{\pi_k^{\pm} | k \ge 2\}$;
 - 2 the principal series $\{\pi_{it}^{\pm} | t \in \mathbb{R}\};$
 - (a) the complementary series $\{\sigma_s | s \in (0, 1)\}$;
 - the limits of discrete series δ_1^+, δ_1^- ;
 - \bigcirc the trivial rep \mathbb{C} .

Theorem (Selberg 1950s)

$$L^{2}(\Gamma \setminus G) = \underbrace{L^{2}_{disc}(\Gamma \setminus G)}_{discrete \ spectrum} \oplus \underbrace{L^{2}_{cont}(\Gamma \setminus G)}_{continuous \ spectrum}$$

•
$$L^2_{\text{cont}}(\Gamma \setminus G) \stackrel{G-\text{mod}}{=} \int_{(0,+\infty)}^{\oplus} \pi^+_{it} dt.$$

Theorem

$$L^2_{disc}(\Gamma \backslash G) = \oplus_{\pi} m_{\Gamma}(\pi) \cdot \pi$$
 with each multiplicity $m_{\Gamma}(\pi) < \infty$.

Question 2: $m_{\Gamma}(\pi) = ?$ Unknown in general.

Theorem (Gelfand et al. 1960s)

For π_k , $m_{\Gamma}(\pi_k) = \dim S_k(\Gamma) = \dim of cusp forms of weight k$.

•
$$\Gamma(n)$$
: = { $g \in \mathsf{SL}(2,\mathbb{Z}) | g \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod n$ }.

Decomposition of L²_{disc}(Γ(n)\G)?

•
$$m_{\Gamma(n)}(\pi_k) = \dim S_k(\Gamma(n)) =$$

 $(k - 1 \pm \frac{6}{n}) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1 - p^{-2}),$

by Riemann-Roch theorem for modular curves.

- a discrete series $(\pi, H) :=$ an irrep $\leq L^2(G)$.
- the matrix coefficient $c^{\pi}_{u,v}(g) = \langle \pi(g)u,v \rangle$

Lemma

There is a constant $d(\pi) \in \mathbb{R}_{\geq 0}$, called formal dimension, s.t.

$$d(\pi) = \frac{\langle u, x \rangle_{H_k} \cdot \langle v, y \rangle_{H_k}}{\langle c_{u,v}^{\pi}, c_{x,y}^{\pi} \rangle_{L^2(G)}}, \text{ for all } u, v, x, y \in H_k \setminus \{0\}$$

- $L\Gamma$: = the group von Neumann algebra of Γ .
- The discrete series (π_k, H_k) of SL $(2, \mathbb{R})$ is a *L* Γ -module.

Theorem (Atiyah & Schmid, 1970s)

 $\dim_{L\Gamma} H_k = \operatorname{vol}(\Gamma \backslash G) \cdot d(\pi_k).$

- vol(Γ\G), d(π_k) depends on the Haar measure, but dim_{LΓ} does NOT.
- dim_{$L\Gamma(n)$}(H_k) = $(k-1) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1-p^{-2})$.

•
$$m_{\Gamma(n)}(\pi_k) = (k - 1 \pm \frac{6}{n}) \cdot \frac{n^3}{24} \cdot \prod_{p|n} (1 - p^{-2}).$$

• dim_{*L*\Gamma(*n*)}(*H_k*) = (*k* - 1)
$$\cdot \frac{n^3}{24} \cdot \prod_{p|n} (1 - p^{-2})$$
.

Theorem (Limit multiplicities of d.s. for arithmetic lattices in $SL(2,\mathbb{R})$)

$$\lim_{n\to\infty}\frac{m_{\Gamma(n)}(\pi_k)}{\dim_{L\Gamma(n)}(H_k)}=\lim_{n\to\infty}\frac{k-1\pm\frac{6}{n}}{k-1}=1$$

Question 3: Other irreps of $SL(2, \mathbb{R})$?

- If (π, H) is NOT a discrete series,
- Almost all $m_{\Gamma}(\pi)$ are unknown.
- *H* is not a *L* Γ -module \Rightarrow No dim_{*L* Γ} *H*.

Question 4: How about other Lie groups?

- $m_{\Gamma}(\pi)$ are more complicated even π is a d.s.
- Most Lie groups have NO discrete series.
- G has a d.s. iff rank $G = \operatorname{rank} K$ ($K = \operatorname{amax} \operatorname{cpt} \operatorname{subgrp}$).
- $SL(n, \mathbb{R})$ has no d.s. if $n \geq 3$.

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

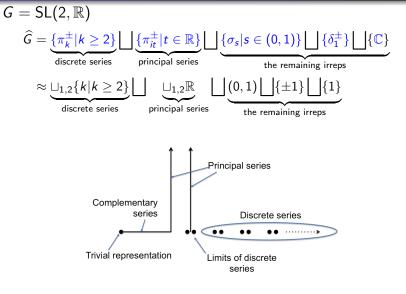


Figure: The unitary dual of $SL(2,\mathbb{R})$ by P. Hochs

• *G* : a semisimple Lie group

Theorem (Harish-Chandra, Knapp, Vogan, .etc...)

$$\widehat{G} \subset \bigsqcup_{\text{finite}} \mathbb{R}^{\operatorname{rank} G}$$
 (as a set).

- $X \subset \widehat{G}$ is bounded if it is bounded in $\bigsqcup_{\text{finite}} \mathbb{R}^{\operatorname{rank} G}$.
- \Leftrightarrow relatively compact in the Fell topology (not Hausdorff).

Definition

For a bounded
$$X \subset \widehat{G}$$
, $m_{\Gamma}(X)$: $= \sum_{\pi \in X} m_{\Gamma}(\pi)$.

Question 4: Is $m_{\Gamma}(X)$ finite?

Theorem (Borel & Garland 1980s)

For a bounded X, only finitely many $\pi \in X$ occur in $L^2_{disc}(\Gamma ackslash G)$

 $\implies m_{\Gamma}(X)$ is finite!!

• A measure on \widehat{G} :

Theorem (Harish-Chandra, for Lie groups)

There is a measure ν_G on \widehat{G} (Plancherel measure) such that

$$L^2(G) \stackrel{G-G-\mathrm{bimod}}{\cong} \int_{\widehat{G}}^{\oplus} H_{\pi} \otimes H_{\overline{\pi}} \ d\nu_G(\pi)$$

•
$$X \subset \widehat{G}$$
 bounded $\Rightarrow \nu(X) < \infty$.

3 π is a d.s. iff it is an atom $\nu({\pi}) > 0$. $\nu({\pi}) = d(\pi)$.

③ supp (ν_G) = tempered irreps := { $\pi | c_{u,v}^{\pi} \in L^{2+\varepsilon}(G), \forall \varepsilon > 0$ }.

$$\ \, \widehat{G} = \widehat{G}_{\text{temp}} \bigsqcup \widehat{G}_{\text{untemp}}.$$

• $SL(2, \mathbb{R})_{temp} = \{ \text{ discrete seires, principal series } \}.$

• X = a bounded subset of \widehat{G} $H_X := \int_X^{\oplus} H_{\pi} d\nu(\pi)$ • $\Rightarrow H_X$ is a module over G, Γ and also $L\Gamma$.

Theorem (Y, 2022)

Given a lattice $\Gamma \subset G$,

 $\dim_{\boldsymbol{L}\Gamma} H_X = \operatorname{vol}(\Gamma \backslash G) \cdot \nu(X).$

- $X = X_{\text{temp}} \bigsqcup X_{\text{untemp}}$, only X_{temp} contributes to $\nu(X)$.
- works for any Lie group;
- reduces to the Atiyah-Schmid Thm if $X = \{\pi\} = a d.s.$
- G may also be a p-adic group, an adelic group, etc. ...

Limits for Cocompact Lattices

Corollary (Y, 23)

For a tower of cocompact lattices,
$$\lim_{n \to \infty} \frac{m_{\Gamma_n}(X)}{\dim_{L\Gamma_n}(H_X)} = 1$$

- G always has such a tower (Borel & Harder 1977).
- G has a cocompact arithmetic lattice Γ iff rank_Q G(Q) = 0.
- does NOT work with most arithmetic subgroups, i.e., $SL(n, \mathbb{Z})$

Limits for $SL(n, \mathbb{R})$ and Its Arithmetic Subgroups

•
$$G = SL(n, \mathbb{R})$$
 and $\Gamma = SL(n, \mathbb{Z})$.

• principal congruence subgroups:

$$\Gamma_n = \ker \{ \mathsf{SL}(n, \mathbb{Z}) \to \mathsf{SL}(n, \mathbb{Z}/n\mathbb{Z}) \}$$

• \Rightarrow only X_{temp} contributes to dim $_{L\Gamma_n}(H_X)$.

Lemma (Finis-Lapid-Müller, 2015)

$$\lim_{n\to\infty}\frac{m_{\Gamma_n}(X_{temp})}{m_{\Gamma_n}(X)}=1.$$

• may NOT hold for a general G.

Frame Title

•
$$\lim_{n\to\infty} \frac{m_{\Gamma_n}(X_{\text{temp}})}{m_{\Gamma_n}(X)} = 1.$$

Question 5 Why $L^2(\Gamma \setminus G)$?

• classical $G(\mathbb{Z}) \setminus G(\mathbb{R}) \sim \text{adelic } G(\mathbb{Q}) \setminus G(\mathbb{A}).$

Conjecture (Ramanujan Conjecture)

If π occurs in $L^2_{disc}(\Gamma \backslash G)$ ($\Leftrightarrow m_{\Gamma}(\pi) \geq 1$), then $\pi \in \widehat{G}_{temp}$.

- if true, $m_{\Gamma}(X_{\text{untemp}}) = 0.$
- a counterexample by Howe & Piatetski-Shapiro.

Conjecture (Langlands Correspondence of GL(n))

There is a one-to-one correspondence between

- {*irreps of* G *in* $L^2_{cusp}(\Gamma \setminus G)$ };
- **2** {*n*-dimensional reps of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ }

Questions?

Thank you!