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Abstract

is study uses administrative data linking students and teachers at
the classroom level to estimate teacher value-added to student test
scores. We find that variation in teacher quality is an important con-
tributor to student achievement - more important than has been
implied by previous work. is result is attributable, at least in part,
to the lack of a ceiling effect in the testing instrument used to measure
teacher quality. We also show that teacher qualifications are almost
entirely unable to predict value-added. Motivated by this result,
we consider whether it is feasible to incorporate value-added into
evaluation or merit pay programs.
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I. Introduction 

It has been well established that education plays an important role in determining both economic 

growth and individual life outcomes (for example, see Katz and Murphy, 1992).  This has led to 

an ongoing interest in the determinants of student achievement, including teacher quality. 

However, researchers have historically struggled to capture the role of teacher quality in the 

educational production function. Given the importance of education and the undeniable role 

played by teachers, how much does variation in teacher quality affect student performance?   

The vast majority of the empirical work on teacher quality has relied on observable teacher 

qualifications to measure teacher quality.  As a whole, this body of research suggests that these 

qualifications are only weakly related to student performance.1 Therefore, we shift our focus 

away from teacher qualifications and instead measure teacher quality by value-added to student 

test scores.2 Although value-added has been criticized by some, it continues to gain traction 

among both researchers and policy makers.  In fact, proposals to base teacher evaluations on 

value-added, sometimes involving pay incentives, are becoming increasingly common.3

We analyze teacher value-added to student performance on math and reading standardized exams 

using micro-level data from San Diego elementary schools linking students and teachers at the 

classroom level.  Our results indicate that variation in teacher quality, measured by value-added, 

is considerably larger than previous research has implied.  Our larger variance estimates are 

1 For reviews of this literature, see Hanushek (1986, 1996).   
2 There is a small literature that has shifted its focus to teacher value-added.  Recent studies include Rivkin, 
Hanushek and Kain (2005), Hanushek et al. (2005), Aaronson, Barrow and Sander (2007), Nye, Konstantopoulos 
and Hedges (2004), McCaffrey et al. (2003), Harris and Sass (2006) and Koedel (2007). 
3 For example, see Gordon, Kane and Staiger (2006).  Other examples include non-profit groups like Battelle for 
Kids in Columbus, OH, which has set up a three-year pilot program that uses value-added as an evaluation tool for 
teachers in Ohio and the state of Florida. 
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attributable, at least in part, to the lack of a ceiling effect in the testing instrument that we use to 

measure teacher quality.  Test- -score 

levels rise.  These ceilings are quite common in practice and have two important implications for 

value-added analysis.  First, in the presence of a test-score ceiling, estimating teacher effects 

from a typical value-added specification can lead to an understatement of the variance of teacher 

quality and, in turn, of the importance of teacher quality as an educational resource.  Second, a 

test- -added estimates.  This latter issue is of 

particular concern if value-added is to be used to evaluate teacher performance.  

We relate our value-added measures of teacher quality to the qualifications that primarily 

determine teacher recruitment, retention and salaries.  Our results support previous research 

indicating that these qualifications are poor predictors of teacher performance.  Even upper-

bound estimates of the ability of observable teacher qualifications to predict variation in 

outcome-

uncorrelated with their value-added to student test scores. 

Motivated by the weak link between teacher performance and teacher qualifications, and the 

growing interest in value-added more generally, we consider the role that value-added estimates 

might play in determining teacher accountability.  When compared to the current standards by 

which most teachers are judged (observable qualifications), a value-added approach offers a 

significant improvement in terms of rating teachers based on their contributions to actual student 

performance.  However, in both math and reading, estimation error constitutes a considerable 
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portion of the individually estimated teacher effects.  Therefore, value-added modeling may be 

better suited as just one component of a more comprehensive system of teacher evaluation. 

II. Empirical Strategy 

We estimate teacher fixed effects from a value-added model of student achievement in the 

reduced form:4

(1)  ( 1)ijkst i ijks t it it it itTestScore TestScore ZipCode X Z C

( ) ( ) ( )J teacher K grade S school
it it it itD D D

Equation (1) describes the test-score performance of student i taught by teacher j in grade k at 

school s in year t.  The model controls for heterogeneity in student ability by including student 

fixed effects (denoted by i ).
5 The vectors Xit, Zit and Cit contain time-varying student-, school- 

and classroom-level characteristics, respectively.  The variables included in these vectors are 

listed in Table 1.  Vectors of indicator variables for teachers, grade levels and schools are also 

included in the student-achievement specification.   

In addition to student fixed effects, our model includes school and zip-code fixed effects.  

Together, these sets of fixed effects ensure that the model evaluates variation in teacher quality 

within schools, ignoring any between-school variance.  Our methodology is supported by 

previous empirical work indicating that most of the variation in teacher quality occurs within 

4 Value-added is often modeled in terms of test-score gains.  The gainscore specification is a specific case of the 
general value-added specification in equation (1).  We do consider gainscore models in our analysis.  As would be 
expected, teacher-effect estimates from a gainscore model that is analogous to equation (1) are highly correlated 
with our estimates. 
5 Students and teachers in San Diego are non-randomly assigned to classrooms within schools, highlighting the 
importance of controlling for student ability in the model of student achievement.  In an omitted exercise that is 
available from the authors upon request, we reject the hypothesis that, within schools and grades, current teachers do 
not predict previous test-score performance.  This result additionally implies that students may be sorted along 
dimensions that are unobserved. 
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schools as opposed to between schools (Hanushek et al., 2005; Nye, Konstantopoulos and 

Hedges, 2004).  This is likely to be the case because the degree of sorting of teacher quality 

across schools, which would drive any between-school variation in teacher quality, is largely 

dependent on the success of schools in identifying and hiring the best teachers.6 The empirical 

evidence suggests that schools may find it very difficult to identify the best teachers and that 

even if they do, they may choose not to hire them.7 In our model-sensitivity analysis in Section 

V, we show that essentially all of the variation in teacher quality in San Diego elementary 

schools exists within schools.   

The potential influence of peer effects is possibly the most worrisome confounding factor in any 

analysis of teacher quality.  To address this issue, our model controls for the year (t-1) 

achievement of classroom-level peers.  We also note that the effect of any systematic ability 

grouping experienced by students will be largely absorbed at the student level because the 

student fixed effect will pick up the average peer effect experienced by a given student over the 

course of the panel.  Similarly, we control for class size to prevent variation in class size from 

being misinterpreted as variation in teacher quality.  

As it is written, the model in (1) will produce biased estimates of the coefficients of interest 

because the demeaned error term will be correlated with the demeaned lagged dependent 

variable.  Therefore, we adopt the method of Anderson and Hsiao (1981) to estimate the 

6 tions imposed by 

7 Section VIII of this paper shows that observable teacher qualifications are virtually uncorrelated with outcome-
based teacher quality.  In addition, numerous studies have documented the weak link between observable teacher 
qualifications and student performance.  See, for example, Aaronson et al. (2007), Angrist and Guryan (2003), Betts 
(1995), Betts, Zau and Rice (2003), Hanushek (1986, 1996), Kane, Rockoff and Staiger (2006).  Also, Ballou (1996) 
argues that schools may choose not to hire the most qualified teachers even when given the opportunity. 
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equation.  The method involves first-differencing to remove the student fixed effects, and then, 

to account for correlation between the first-differenced lagged dependent variable and the first-

differenced error term, estimating this model using 2SLS, instrumenting for 

( )( ) ( )TestScore TestScoreijks t ijks t1 2  with ( )( )TestScoreijks t 2 .  The key assumption required for 

this instrumentation to be valid is that the error terms in equation (1) are serially uncorrelated.  

Although this assumption is not directly verifiable using equation (1), we use the first-

differenced error terms to test for serial correlation between the it s and find that this primary 

assumption is upheld.8  The first-differenced version of equation (1) is detailed below: 

(2)   ( 1) ( 1) ( 2) ( ) ( ) ( )ijkst ijks t i i ijks t ijks tTestScore TestScore TestScore TestScore

( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) ( )it i t it i t it i t it i tZipCode ZipCode X X Z Z C C

( ) ( ) ( ) ( ) ( ) ( )
( 1) ( 1) ( 1) ( 1)( ) ( ) ( ) ( )J teacher J teacher K grade K grade S school S school

it i t it i t it i t it i tD D D D D D

The second term in parentheses on the right-hand side is the fitted value for the test score change 

from the first stage of the 2SLS procedure.9  We evaluate the effects of teacher quality on student 

performance in both math and reading using equation (2). 

III. Data  

This study is based on panel data from the San Diego Unified School District (SDUSD), 

following elementary school students and teachers over time.  We use student test-score data 

8 The white noise assumption for the error term is verified by evaluating the level of serial correlation between the 
first-differenced error terms, within students, in the first-differenced version of equation (1) below.  The individual 

it -differenced error terms are serially correlated with a magnitude of 
approximately -0.5.   For students in which more than one first-differenced equation is estimated, we estimate that 
the serial correlation between the first-differenced error terms to be -0.47. 
9 Robust standard errors for all 2-stage-least-squares coefficients in this model were generated with one important 
adjustment.  The differenced error term in equation (2) is serially correlated among students with more than one 
equation in our model.  We structurally enforced this property of the error term into the variance-covariance matrix 
for relevant students.   
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from the Stanford 9 standardized test for both math and reading from the 1998-99 school year 

through the 2001-02 school year.  Our analysis is based on test-score data from over 16,000 

students and we evaluate the effects of over 1,000 elementary school teachers at SDUSD.  

Students and teachers are linked at the classroom level and an extensive list of school, student 

and teacher characteristics is available.  

The Stanford 9 standardized test is psychometrically scaled such that a one-point gain in student 

performance at any point in the schooling process is meant to correspond to the same amount of 

learning.  A related characteristic of the Stanford 9 test is that, unlike some other standardized 

tests, it does not exhibit a pronounced test-score ceiling in math or reading performance (through 

the 5th grade).10 This feature of the test makes it a particularly useful tool for measuring the 

effects of teacher quality on student outcomes throughout the entire range of student 

achievement as will be discussed in further detail in Section VI. 

SDUSD is the second largest school district in California and is quite diverse.  The student 

population is approximately 27 percent white, 37 percent Hispanic, 18 percent Asian/Pacific 

Islander and 16 percent Black.  28 percent of SDUSD students are English learners, and some 60 

percent are eligible for meal assistance.  Both of these shares are larger than those of the state of 

California as a whole.  As far as standardized testing performance, students in SDUSD trailed 

10 To check for the presence of a test-score ceiling in our data, we group all students into deciles based on their raw 
test score level in year (t-2). We then check whether the average test-score gains of students in year (t) are lower for 
students in higher deciles.  In math, there is no relation.  However, in reading there is a mild but persistent decline in 
test score gains as students make progress in the test-score levels distribution.  See Appendix F for more details. 
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very slightly behind national reading averages in 1999-2000.  On the contrary, SDUSD students 

narrowly exceeded national norms in math.11

This study focuses on elementary school students because they have the same teacher for the 

entire day.  This removes potentially confounding effects such as teacher spillovers that may be 

present at the high school level.  Because students are tested in 2nd through 5th grade (6th grade is 

part of middle school at SDUSD), we have up to four years of test scores for each student in the 

panel.  Table 1 details the controls available for students, teachers, classrooms and schools in this 

study.  Appendix A provides additional details about the data used for this project. 

Table 1. Description of Key Data Elements
Time-Varying Student 
Characteristics

Controls for grade levels, parental education, level of test score in 
year (t-1), EL or non-EL (EL = English Learner), FEP or non-FEP 
(FEP = Fully English Proficient), student was accelerated a grade, 
held back a grade, a school changer, terms attended, school days 
attended, student was re-designated FEP that year, student was new 
to district.

Time-Varying School 
Characteristics

Controls for the racial makeup and heterogeneity of schools, school 
size, whether school is year-round, percent of school on free lunch, 
percent of school EL, percent of school FEP, number of peer 
coaches, number of peer coach apprentices, percent of school that 
changed schools, percent of school new to district

Time-Varying Classroom 
Characteristics

Class size, peer achievement in year (t-1)

Teacher Characteristics Dummy variables to control for subject of undergraduate degree, 
undergraduate minor, whether undergraduate institution is a top 100 
university based on research dollars, highest level of education, 
subject of highest degree, level of credentialing, experience, salary, 
time at SDUSD, controls for any supplementary authorizations, 
emergency authorizations, and CLAD (Cross-cultural Language 
and Academic Development) or Bilingual CLAD certification 

11 District characteristics summarized from Betts et al. (2003). 
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IV. Results  The Variance of Teacher Quality 

In this section we evaluate the importance of variation in teacher quality as a determinant of 

student performance in math and reading.  Table 2 reports Wald statistics generated under the 

null hypothesis that all teacher effects are equal.  Variation in teacher quality is shown, quite 

convincingly, to be a statistically significant determinant of student achievement for both math 

and reading in elementary school. 

Table 2.  Wald Tests for the Statistical Significance of Variation in Teacher Quality

H0: 1 2 ... J

Math Achievement Wald Statistic:  2,636
P-Value:      < 0.01

Reading Achievement Wald Statistic:  2,117
P-Value:      < 0.01

Although the results in Table 2 indicate that variation in teacher quality is a statistically 

significant determinant of student achievement, they do not provide information about economic

significance.  To analyze the economic importance of variation in teacher quality as a 

determinant of student outcomes, we empirically estimate the magnitude of the variance of 

teacher quality.12 This will allow us to evaluate the effects of distributional shifts in teacher 

quality on student performance.  We start by calculating the sample variance of the estimated 

teacher coefficients: 

(3)         Var( )  = 2

1 1

1( ) [ (1/ ) ( )]
1

J J

j j
j j

J
J

    

  

12 We follow the method of Koedel (2007) to estimate the magnitude of the variance of teacher quality. 
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Each fixed-effect coefficient is comprised of two components - the true signal of teacher quality 

and estimation error, j j j .  Equation (3) overstates the variance of teacher quality 

because it includes the variance of the estimation error.  We define the estimation-error variance 

as Var( )  and the variance of the teacher-quality signal, the outcome of interest, as ( )Var .  To 

separate the estimation-error variance from the variance of the teacher-quality signal, we first 

assume that Cov( , ) 0 .13 This allows for the total variance of teacher fixed effects to be 

decomposed as follows: 

(4)   ( ) ( ) + ( )Var Var Var       

Next, we scale the Wald statistic and use it as an estimate of the ratio between the total fixed-

effects variance and the error variance:14

(5)  11 *[( ) '( ) ( )] ( ) / ( )
1

( ) J J JV Var Var
J

In the above formulation,  is the Jx1 vector of estimated teacher fixed effects,  is the sample 

average of the 'j s , JV  is the JxJ portion of the estimated variance matrix corresponding to the 

teacher effects being tested and J  is a Jx1 vector of ones.15 Equation (5) weights the total 

13 This assumption is not directly verifiable because both  and  are unobserved.  If for some reason the signal 
and error components of teacher fixed effects were negatively correlated then the results presented here would 
understate the variance of teacher quality.  If the converse were the case, the estimates would be overstated. 
14 In the variance matrix that we use for our Wald statistics we set all covariance terms to zero.  This covariance 
restriction has a negligible effect on our results and allows for a straightforward calculation of the magnitude of the 
variance of teacher quality.  See Appendix B for details. 
15 The variance matrix used in the Wald tests is the diagonal of the full variance-covariance matrix for the relevant 
set of teacher coefficients.  Substituting the full variance-covariance matrix for the variance matrix has virtually no 
effect on the results. 
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fixed-effects variance by the estimation error variance on a coefficient-by-coefficient basis.  See 

Appendix B for details.  

The magnitude of the variance of the teacher-quality signal can be estimated from equations (4) 

and (5).  For example, if the scaled Wald statistic is estimated to be A then the variance of the 

teacher-quality signal can be estimated by: 

(6)  ( ) ( ) - ( ( ) / )Var Var Var A   

  
To facilitate the interpretation of our results, we convert our estimates of the variance of the 

teacher-quality signal obtained from equation (6) into units of within-grade standard deviations.16

For math, we estimate that the effect of a one-standard deviation change in teacher quality on 

student performance is equivalent to 0.26 average within-grade standard deviations of the test.  

For reading, we estimate an analogous effect of 0.19 average within-grade standard deviations.  

These results are detailed in the first column of Table 3.17

The second column in Table 3 shows the predicted effects of a one-standard-deviation change in 

teacher quality expressed as a proportion of average annual test-score gains.18 In math, the effect 

16 To do this we divide the predicted effect on test scores from having a one-standard-deviation increase in teacher 
quality by the weighted average (across grades) of the standard deviation of end-of-year scores within each grade.  
The weights are our sample size in each grade.  The resulting ratio provides one estimate of the average impact on 
student performance of a one-standard deviation move upwards in the teacher quality distribution.   
17 The estimates in Table 3 are presented in average within-grade standard deviations of the test that are calculated 
using all students at SDUSD who have a test-score record.  An alternative would be to use only students in our final 
sample to calculate the average within-grade standard deviations of the test.  Estimated within-grade standard 
deviations based only on students in our sample will be smaller because students used in our sample are more 
homogeneous than the entire sample at SDUSD (due to the requirements of the fixed effects specification, see 
Appendix A for details).  We ultimately present our estimates using the within-grade standard deviation estimates 
from the all-student sample because these estimates are likely to be more comparable to others in the literature.   
18 We weight the gains across grades by the sample size in each grade to obtain a weighted average. 
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of a one-standard deviation change in teacher quality is equivalent to 0.41 student-years.  In 

reading, we estimate an effect of 0.31 student-years. 

Table 3.  Estimated Effects of Having a One-Standard-Deviation Above-Average Teacher 
on Student Performance

Proportion of Average Within-
Grade Standard Deviations

Proportion of Average Annual 
Test-Score Gains

Math 0.26 0.41

Reading 0.19 0.31

The estimates of the variance of teacher quality presented in Table 3 provide strong evidence of 

the value of teacher quality as a resource in the educational production function and are 

considerably larger than previous empirical estimates.  For example, our estimate of the effect of 

a one-standard deviation improvement in teacher quality on student math performance is 

approximately 67 percent larger than an analogous estimate from Hanushek et al. (2005).19 In 

both math and reading, we find that significant gains in student performance can be obtained 

through improvements in teacher quality. 

V. Specification Checks and Sensitivity Analysis 

The value-added specification of the student-achievement model that we employ, which includes 

student fixed effects to control for differenc -score trajectories, is unique in the 

literature.  In this section, we evaluate the model in more detail and consider the sensitivity of 

our variance estimates to alternative specifications.   

19 The 67 percent figure reported in the text is arrived at by taking the raw-gains-scaled estimates from Hanushek et 
al. (2005) as reported by the authors and comparing them to our estimates.  There is an even greater difference 
between our estimates and those found in Rockoff (2004) and in Rivkin et al. (2005).  At the opposite extreme, when 
compared to estimates from Nye et al. (2004), who use a residual-variance approach that does not correct for 
sampling variation, our estimates are somewhat smaller.   
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Table 4 documents four different value-added specifications for the model of student 

achievement from which teacher fixed effects can be estimated.  The first column shows the full 

model estimated in equation (2).  Columns 2 through 4 show three different restricted models.  

More detail is added to each specification moving from column 2 to column 4.  Wald tests for 

the completeness of the restricted models against the full model indicate that the restricted 

models in columns 2 and 3 are underspecified.20

For each restricted model in Table 4, the bottom two rows of the table compare the vectors of 

teacher fixed effects estimated from our full model to the given restricted model by reporting the 

correlation between the vectors.  This exercise is performed for the math and reading 

specifications.   

20 P-values from Wald tests of the null hypotheses that the coefficients on the omitted variables in the restricted 
models are zero are less than 0.01 for all omitted variable groups except student fixed effects.  We do not run tests 
for the statistical significance of the student fixed effects because of the computational demands of such tests.  
Furthermore, the large-N, small-T structure of the panel dataset implies that the results from these tests would be 
rather uninformative (lacking power).  However, student fixed effects have a strong theoretical justification for 
inclusion in the model.  For further discussion, see Harris and Sass (2006).  Finally, note that all of our major 
findings are generally robust to models of student achievement that are not first-differenced (see Table 5). The 
decision about whether to first-difference the value-added specification seems to be most important in determining 

-added rankings (as indicated by Table 4) and merits additional attention in future research. 
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Table 4.  Estimated Correlation Coefficients Relating Teacher Fixed Effects Estimates 
from Restricted Models to Estimates from the Full Specification   

(1) (2) (3) (4)
Included Explanatory Variables
Lagged Test Score Yes Yes Yes Yes
Grade-Level Fixed Effects Yes Yes Yes Yes
Student-Level Covariates Yes No Yes Yes
School- and Classroom-Level Covariates, 
School and Zip Code Fixed Effects 

Yes No No Yes

Student Fixed Effects (First Differenced) Yes No No No

Correlation Coefficient - Math 1 0.64 0.67 0.74

Correlation Coefficient - Reading 1 0.50 0.53 0.62
Notes:  Correlation coefficients compare teacher effects weighted by their standard errors. Column 1 shows our full 
specification to which the restricted specifications in columns 2 through 5 are compared.  Wald tests reject all of the 
restricted models against the full model we have already reported.  In columns 2 through 4, the model was estimated 
without first-differencing. 

Why do estimates of teacher quality change so much when we fail to control for unobserved 

student heterogeneity?  One explanation is that teachers are assigned to groups of students in 

non-random ways based on unobservable student characteristics.21 Any model that does not 

control for this will mistakenly attribute inter-student variation in achievement gains to 

individual teachers.  The strong explanatory power associated with student-specific factors 

implies that models that do not control for these factors may produce biased estimates. 

Another explanation is that moving from the between-school specification to the within-student 

and within-school specification alters the comparison groups for teachers.  If there are significant 

differences in teacher quality across schools at SDUSD, we may wish to compare teachers 

between as well as within schools.  To evaluate this issue we consider the sensitivity of our 

variance estimates to alternative specifications, including models that exclude both school and 

21 Students do appear to be assigned to classrooms in non-random ways at SDUSD (for example, see Table 5 or 
footnote 5).
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student fixed effects.  Table 5 shows eight different models from which we estimate the variance 

of teacher quality using the variance decomposition in equation (6).22  The table indicates that the 

vast majority of the variation in teacher quality among elementary school teachers at SDUSD 

occurs within schools. 

22 Beyond evaluating the sensitivity of our variance estimates to alternative specifications, we also consider the 
possibility that our variance estimates are inflated because class-size reductions in California have increased the 
number of inexperienced teachers at SDUSD relative to other non-California locales.  To do this, we separately 
estimate the variance of teacher quality among experience groups with more/less than two years, more/less than 
three years, and more/less than 5 years of experience.  In line with our findings in Section VIII of this paper, we find 
that differences in teacher experience explain just a small portion of the variance of teacher quality.  For example, 
the variance of quality among teachers with a sample-average of three years of experience or less is just 5 percent 
larger than the variance of teacher quality across the entire sample.  Ultimately, our interest is in the total variation 
in teacher quality experienced by students and because of this we do not control for teacher experience directly in 
our models. 
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The first vertical panel of Table 5 (columns 1  4) evaluates teacher effects estimated from a test-

score-levels specification.  Changes in the variance estimates moving from left to right in this 

panel show the importance of the various components of the student-achievement model in 

removing sorting bias based on test-score levels.  The second vertical panel evaluates teacher 

effects estimated from our value-added specification.   

We start by estimating the variance of average test-

grade levels, across teachers at SDUSD.  These estimates are presented in column 1 of the table 

and incorporate not only teacher quality, but also any sorting of students and teachers throughout 

SDUSD across schools and classrooms.  In moving from column 1 to column 2, we add our set 

of student-level variables to the test-score-levels specification.  The variance estimates fall by 

approximately 50 percent for both the math and reading models.  This indicates that observable 

student-level variables control for a sizeable portion of the district-wide sorting that is 

contributing to the variance estimates in column 1.  In moving from column 2 to column 3, the 

inclusion of the set of school- and classroom-level covariates and school and zip-code fixed 

effects further reduces the estimated variance of teacher quality.  One possible explanation for 

this effect is that test-score-levels sorting bias is reduced.  That is, student sorting across schools 

that is aligned with test-score performance, in levels, is removed by the inclusion of these 

controls.  Another possibility is that variation in teacher quality due to teacher sorting across 

schools is removed from the total variance estimates.  Finally, we add student fixed effects to the 

levels specification in column 4 to control for any within-school sorting of students and teachers 

that is not captured by observables.  The estimates in column 4 show that there is a significant 

degree of positive student- -score levels.  



17

The inclusion of student fixed effects significantly reduces the estimated variance of the 

conditional teacher means at SDUSD by removing upward bias generated by this matching. 

We also estimate the variance of the estimated teacher effects across models within the value-

added framework.  These results are presented in columns 5  8.  The pattern of adjustments in 

the variance of the conditional teacher means when moving across models in the value-added 

framework is quite similar to the pattern displayed in the levels specifications with two important 

exceptions.  First, in both math and reading, school-level variables do not affect the magnitude of 

the estimated variance of teacher quality in the value-added framework.  This implies that 

although teachers may sort themselves based on observable student characteristics, there is 

virtually no sorting of teacher quality across schools at SDUSD conditional on these observable 

student characteristics. This lends strong support to our empirical approach that estimates teacher 

value-added within schools and students.  Second, in the value-added reading model, the 

inclusion of student fixed effects into the otherwise fully specified model leads to a very mild 

increase in the estimated variance of teacher quality.  Given positive student-teacher matching,

we would expect the opposite effect.  

Estimates from columns 6 and 7 in Table 5 indicate that there is virtually no between-school 

variation in teacher quality, measured by value-added, across San Diego elementary schools.  

The lack of between-school variation in teacher value-added is likely to be largely the result of 

the inability of schools to identify and hire the best teachers.  In Section VIII, we show that the 

observable teacher qualifications most commonly linked to teacher recruitment, retention and 
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salaries are almost entirely unable to predict teacher value-added.23 Furthermore, Ballou (1996) 

shows that even when schools are able to hire seemingly superior teachers, they often choose not 

to.  Finally, schools at SDUSD are further limited in their ability to select the most effective 

that schools with an open position choose from the five teachers with the most district seniority 

who apply fo

potential applicants.24 Overall, the results from Table 5 suggest that the conventional wisdom 

that there is significant variation in teacher value-added between schools at the elementary level 

may be quite inaccurate.25

Column 8 of Table 5 shows that the inclusion of student fixed effects in the value-added model 

of student achievement does not significantly inflate the magnitude of the estimated variance of 

teacher quality in either subject.  In fact, for math, moving to the student-fixed-effects 

specification results in a decrease in the estimated variance of teacher quality.  This is intuitive 

because this specification reduces the bias generated by positive student-teacher matching within 

schools.  Nonetheless, previous researchers who have estimated outcome-based teacher quality 

have tended to exclude student fixed effects from the value-added specification, presumably 

because of a belief that the student-fixed-effects model artificially inflates the estimated variance 

of teacher quality by adding noise to the model of student achievement.  A comparison of our 

math and reading results in Table 5 provides insight into this concern.  We find that the student-

23 For additional evidence, see Aaronson et al. (2007), Angrist and Guryan (2003), Betts (1995), Betts et al. (2003), 
Hanushek (1986, 1996) and Kane et al. (2006). 
24 Empirical evidence suggests that experience beyond the first few years of teaching is, at most, marginally related 
to teacher value-added. 
25 This conventional wisdom is likely borne from differences in observable teacher qualifications across schools that 
are easily documented.  However, the link between these observable teacher qualifications and actual teacher value-
added is so weak that differences across schools along this dimension provide no information about differences 
across schools in terms of actual teacher quality as measured by value-added. 
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fixed-effects specification can lead to inflated variance estimates (for example, mildly in our 

reading specification), but that this apparently counterintuitive effect is easily explainable.  In 

both math and reading, controls for student ability remove omitted variables bias in teacher fixed 

effects generated by positive student-teacher matching.  However, in our reading analysis, 

properties of the testing instrument used to measure teacher quality are such that the bias created 

by this matching is downward.  The next section explores this issue in detail. 

VI. Estimating the Variance of Teacher Quality and the Testing Instrument 

The use of the Stanford 9 standardized exam at SDUSD is a fortuitous circumstance for our 

evaluation of teacher quality.  Unlike other testing instruments that have recently been used to 

estimate outcome-based teacher quality, the Stanford 9 exam is not a minimum competency test.  

Minimum competency tests are likely to exhibit strong ceiling effects characterized by students 

experiencing systematic declines in test-score gains as they advance in the test-score levels 

distribution.26 Importantly, a test-score ceiling may affect more than just the highest achievers.   

Appendix F details the test-score ceiling properties of the Stanford 9 standardized exam at 

SDUSD and shows that the math portion of the Stanford 9 does not exhibit a test-score ceiling at 

all.  For reading, the Stanford 9 exhibits a mild test-score ceiling.  

Test-score ceilings are a major consideration in the estimation of outcome-based teacher quality 

human capital development.  Hanushek et al. (2005) report that in their analysis of one large 

Texas school district, gains in test scores are strongly negatively related to previous performance.  

26 Such a relationship will exist for any testing instrument due to regression to the mean.  However, in addition to 
any effects from regression to the mean, minimum competency tests should exert additional downward pressure on 
test-score gains as students make progress in the test-score levels distribution. 
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They show that approximately two-thirds of the students in their sample (those at the top of the 

test-score levels distribution) are at a level of achievement such that the average annual test-score 

gain of students in their same achievement-level decile is negative.27 Rockoff (2004) does not 

examine test-score ceiling effects in his analysis in great detail, but does indicate that 3 to 6 

percent of students in his study have test scores that are at the maximum attainable score.28

Other studies fail to address this important issue altogether.   

To illustrate how a test-score ceiling can affect estimates of the variance of outcome-based 

teacher quality, consider a simple example.  Teacher effects are estimated using the value-added 

framework, but suppose that the modeling strategy does not control for unobserved student 

ability in gains.  Assume, as is the norm, that students and teachers are positively matched in 

terms of ability within schools and that the most able students tend to have larger test-score gains 

and therefore, higher test-score levels.  First, consider a testing instrument given to students that 

does not exhibit a test-score ceiling.  That is, the average gain for high-achieving students is not 

structurally restricted to be lower than the average gain for low-achieving students by the test.  In 

the absence of controls for student ability, positive student-teacher matching in this scenario will 

result in a bias away from zero for all teacher fixed effect estimates.29 This is because the best 

teachers will be matched with the brightest students (those with the highest gains) and the worst 

teachers with the students for whom gains are most difficult.  This will inflate the estimated 

variance of teacher quality.  

27 The strength of the negative relationship reported by these authors implies that ceiling effects, in addition to any 
regression to the mean, are a relevant concern in their analysis. 
28 For comparison, just 0.09 and 0.077 percent of students in our math and reading samples respectively scored at 
the top score possible for their grade. 
29 Assuming that the distribution of teacher effects is centered around zero.  More generally, the bias will be away 
from the center of the teacher-effect distribution, increasing the variance. 
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Second, consider the same scenario of positive student-teacher matching in terms of ability but 

instead imagine a testing instrument that exhibits a test-score ceiling.  In this case, lower-

performing students will be able to achieve higher test-score gains, on average, simply because 

of the structure of the test (an example of such a test would be a minimum competency test).  

Again, the best teachers will teach the most able students but instead of generating an upward 

bias in teach

gains will be suppressed.  Similarly, the worst teachers will be rewarded by the test because their 

scenario, the variance of teacher 

quality will be understated because both the best and worst teachers will have coefficient 

estimates that will be biased toward zero as a result of positive student-teacher matching. 

Now consider the inclusion of controls for student ability in the model of student achievement in 

both of the above scenarios.  In the first scenario, where there is not a test-score ceiling, the 

inclusion of student fixed effects will remove the upward bias in the teacher fixed effects and 

reduce the estimated variance of teacher quality.  This effect can be seen in moving from column 

7 to column 8 in Table 5 for the math analysis, where we find no evidence of a test-score ceiling 

at SDUSD (see Appendix F).  In the second scenario, where a test-score ceiling is present, the 

inclusion of student fixed effects will again remove bias associated with positive student-teacher 

matching.  However, we will observe the opposite effect on the estimated variance of teacher 

quality because positive student-teacher matching creates bias toward zero in the teacher fixed 

effects.  The inclusion of student fixed effects removes this bias and the estimated variance of 

teacher quality actually increases.  This effect can be seen in moving from column 7 to column 8 
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in Table 5 for the reading analysis, where we find evidence of a test-score ceiling at SDUSD (see 

Appendix F).30 Although the effect of the inclusion of student fixed effects on the estimated 

variance of teacher quality works in opposite directions in these different scenarios, it removes 

bias from the same source in both cases  positive student-teacher matching.  Finally, note that 

the ceiling effects in our reading analysis are quite mild.  In a minimum competency testing 

environment, a test-score ceiling could have an effect that is significantly more pronounced. 

VII. Correlation of Teacher Effectiveness Across Subjects:  Math & Reading 

Using the teacher coefficients estimated from the models of student achievement for math and 

reading, we examine the correlation of teacher quality across subjects.  Because elementary 

school students typically stay with the same teacher for the entire day, this question is of 

particular relevance for this study.   

We estimate the correlation coefficient between m  and r  (the vectors of teacher coefficients 

estimated from the math and reading specifications, respectively) to be 0.35.  However, this 

correlation defines the relationship between ( m + m ) and ( r + r ), not m  and r  (where m

and r  represent estimation error).  Furthermore, the relationship between m  and r  is unclear 

a priori.  Following Rockoff (2004), if we assume that the correlation of true teacher quality 

across subjects for all teachers is the same, we can get an idea of the direction of the bias 

introduced by the measurement error in the estimated teacher fixed effects.  Measurement error 

will be smaller for teachers with a greater number of student-year observations.  Therefore, we 

30 Relative to other studies, the test-score ceiling present in the reading analysis here is very weak, which in turn 
explains why its effect on our variance estimates is small. However, the very fact that the estimated variance of 
teacher quality, measured in terms of reading performance, does not decline when student fixed effects are added to 
the value-added model is an indication of the ceiling effect. 
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compare the correlation coefficient between m  and r  for a subset of teachers who have a 

relatively high number of students to that of the entire teacher sample to get an idea of the 

direction of the effect of the correlation between m  and r  on our initial correlation estimate.  

The estimated correlation coefficient from our selected subset of teachers is higher than its 

counterpart from the full teacher set.  Thus, measurement error is biasing our estimate of the 

correlation of teacher quality across subjects toward zero.31 We present our estimate of the 

correlation between m  and r , 0.35, as a lower-bound estimate of the correlation of teacher 

quality across subjects.   

To estimate an upper bound on the correlation of teacher quality across subjects, we estimate the 

correlation between m and r  under the assumption that the correlation between m and r  is 

zero (See Appendix C for details).  Our upper-bound estimate of the correlation coefficient 

relating teacher quality across subjects is 0.64.  Overall, our bounded estimate (0.35 to 0.64) 

indicates that the ability to be an effective teacher, at least at the elementary level, does not 

appear to be strongly subject-specific.   

VIII. Teacher Fixed Effects and Observable Teacher Qualifications 

Because variation in outcome-based teacher quality has been shown to be such an important 

contributor to student achievement, it is of interest to identify observable teacher qualifications 

that are strong predictors of teacher performance.  We use a second-stage regression to evaluate 

the ability of a rich set of observable teacher qualifications to predict teacher value-added as 

31 Our finding in this regard is in accordance with Rockoff (2004). 
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estimated by our empirical model.  Many of the observable qualifications used in this analysis 

are important determinants of teacher recruitment, retention and salaries.     

The SDUSD dataset includes over 50 unique observable teacher qualifications that may predict 

teacher value-

to collinearity among these qualifications.  Therefore, we initially include only key observable 

qualifications that are unlikely to be highly collinear in our model.  We report results using both 

the smaller model and the model containing all of the observable teacher qualifications available 

in the dataset (for a listing of the controls used in the richer model, see Table 1).   

Consider the following second-stage regression that we would like to estimate:  

(7)  j j jX e    

Here, j  is the true measure of teacher quality for teacher j in either subject, X j  is a vector of 

observ e j  is the unobserved error term.  

However, in the second stage, our dependent variable is a statistical estimate and thus is 

measured with error.   

(8)  j j j    

The estimation error, j , will appear in the second-stage error term.  We would like to estimate 

 and  from equation (7) above.  However, because of the estimation error in the dependent 

variable, we must estimate the following equation: 

(9)  j j j j=  + X  +  + e
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Here, j  and e j  are assumed to be uncorrelated and j  may be non-symmetric.  The appropriate 

estimation strategy for efficient estimates of  and  under these circumstances is WLS.  The 

appropriate variance-covariance matrix to use for weighting, following Borjas and Sueyoshi 

(1994), is: 

= e
2 IJ + V

where J is the number of teacher coefficients and V  is a diagonal matrix whose elements are 

from the diagonal of the estimated variance-covariance matrix corresponding to the teacher 

coefficients from equation (2).  V  estimates the variance matrix of j .  e
2 can be estimated 

following Borjas (1987). Table 6 reports our FGLS coefficient estimates from the weighted 

regression.32,33

32 Regressors for our second-stage analysis are averaged within teachers where relevant. 
33 Despite empirical evidence indicating that teacher experience is non-linearly related to effectiveness, we model it 
linearly here.  This is because the linear experience term maximizes the R2 from the OLS analog to the GLS model 
presented in the text.  (It maximizes the GLS R2 as well, although the GLS R2 is difficult to interpret).  In an 
auxiliary analysis available from the authors upon request, we also estimate our second-stage model using 
experience indicator variables rather than the linear term.  Our results from that analysis are virtually identical to 
those presented in the text. 
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Table 6.  Dependent Variables: Estimated Teacher Coefficients from Equation (2) in 
Section II for Math and Reading

Variable Math Analysis Reading Analysis

Teacher Experience 0.29*
(0.13)

0.21
(0.12)

School Top 100 -0.98
(1.19)

0.04
(1.04)

Full Credential 4.80
(2.94)

-1.98
(2.55)

0.18
(0.97)

0.60
(0.84)

BA Education 1.78
(0.99)

0.40
(0.86)

BA Social Science 3.27*
(1.11)

0.46
(0.96)

BA English -1.67
(1.83)

0.16
(1.59)

BA Math -3.90
(7.39)

-3.00
(6.41)

Math Supplemental Authorization 7.35*
(3.69)

4.21
(3.14)

Art Supplemental Authorization 2.18
(3.21)

4.12
(2.78)

Language Supplemental 
Authorization

-0.01
(2.81)

3.63
(2.43)

R2 0.0341 0.0138
Adj. R2 0.0198 -0.0007
* Significant at 5% level of confidence. 
Standard errors in parentheses. 
Observable teacher qualifications are averaged over time within teachers where relevant.
Teacher experience has been capped at 10 years.  That is, teachers with over 10 years of experience are input as having 10 years 
of experience.  It is a well-established fact that the returns to teaching experience decline significantly as experience increases.  
Indeed, if teaching experience were not capped at 10 years, then experience would cease to significantly predict effective 
teachers.  

universities in terms of research dollars. 
Supplementary authorizations are obtained by completing a required set of college courses in the field of the authorization.  
These authorizations are not required for any elementary school teachers.

Rather than focusing on causality, we instead consider the overall power of observable teacher 

qualifications to predict variation in outcome-based teacher quality.  Although the FGLS 

estimates presented in Table 6 are efficient given the estimation error in the teacher fixed effects, 

R2 statistics generated from GLS models have an unclear interpretation (for example, these 

statistics are not bounded on the interval [0,1]).  Therefore, to provide an in-depth answer to the 
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question of how much variation in teacher quality can be explained by observable teacher 

qualifications, we use the R2 formula from the OLS analogs to the above GLS models. 

Following the methodology outlined in Appendix D, we generate upper bounds on the R2

statistics for our math and reading second-stage models by manually removing the variation in 

the dependent variable due to estimation error from the explanatory-power calculation.  These 

upper bounds estimate the absolute maximum amount of information about variation in actual 

teacher quality contained by easily observable teacher qualifications.  For math, we estimate an 

upper bound on the true R2 from our second-stage analysis of approximately 0.057.  For reading, 

the estimated upper bound is just 0.029.  Even these upper bounds clearly show that observable 

teacher qualifications are weak predictors of variation in outcome-based teacher quality.   

We also consider an expanded version of our second-stage model that includes all of the 

observable teacher qualifications available in the data (see Table 1).34 In this case, we estimate 

upper bounds of 0.070 and 0.068 for the math and reading analyses respectively.  However, we 

note that our upper bound results are more likely to be overstated with this larger model.  See 

Appendix D for details. 

Finally, we consider the unlikely scenario that schools are already identifying effective teachers 

in ways that evade our methodology and that this identification is reflected in teacher salaries.  

We run another second-stage regression to see how well teacher salaries alone predict teacher 

34 This expanded model includes indicator variables for undergraduate minors, credential levels, CLAD and BCLAD 
( (Bilingual) Cross-Cultural Language and Development) certifications, additional supplementary authorizations, 
additional undergraduate majors and additional advanced degrees.  We also include a separate variable that controls 
for experience at SDUSD specifically. 
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quality to test for this possibility.  We generate upper bounds on the percentage of variation in 

teacher quality explained by teacher salaries to be just 1.4 percent in math and 0.9 percent in 

reading.  This result suggests that teacher compensation, which in SDUSD as in most public 

school districts depends heavily on teacher tenure, highest degree and teaching credentials, bears 

almost no relation whatsoever to teaching effectiveness.   

IX. Teacher Fixed Effects and Teacher Evaluations 

The weak link between outcome-based teacher quality and the qualifications by which most 

teachers are evaluated should perhaps encourage the use of alternative measures of quality.  

Among educational-accountability advocates, one proposal is to incorporate output from models 

similar to our own into teacher evaluations directly (for example, see Gordon, Kane and Staiger, 

2004).35

To assess the feasibility of using statistically estimated teacher coefficients for teacher 

evaluations, we first examine whether they contain a sufficiently large signal of actual teacher 

quality.  For math, our variance decomposition in Section IV indicates that the variance of the 

teacher-quality signal is roughly 60 percent of the total fixed-effects variance.  For reading, 50 

percent of total fixed-effects variance represents the true signal of quality.  Because the relative 

magnitudes of the signal and noise components of the individual teacher coefficients will be 

reflective of the entire sample, on average, we use these distribution-wide estimates as estimates 

35 An initial concern is whether teachers should be evaluated within or between schools.  Because Table 5 shows 
that virtually all of the variation in teacher value-added at SDUSD occurs within schools and that there is a 
considerable degree of within-school student sorting, we use the full within-school and within-student specification 
documented in equation (2) in our teacher-evaluation analysis.  We consider the costs associated with this strategy in 
Tables 8 and 9 below. 
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of the average signal-to-noise ratios that characterize the individually estimated teacher fixed 

effects in math and reading. 

On the one hand, these estimates indicate that the teacher-quality signal contained by the value-

added coefficients represents a significant improvement over current methods, as discussed in 

the previous section.  However, the high levels of estimation error inherent in the individual 

fixed effects make their application to teacher evaluation or merit pay programs worthy of a 

cautious approach.   

To illustrate the potential consequences associated with the noise found in our estimates we 

examine the persistence of estimated teacher fixed effects across years.  For this analysis, we 

focus on student math performance.36 We break our student sample into two separate subsets 

based on the year of the differenced dependent variable from equation (2) in Section II.  For the 

first group, the dependent variable in equation (2) is the difference between spring 2002 and 

spring 2001 test scores.  For the second, the dependent variable is the difference between spring 

2001 and spring 2000 test sco

-

two separate vectors of teacher coefficients, one from each subset of student data.  The teacher 

coefficients estimated from these data subsets are based on different but partially overlapping 

groups of students.  We evaluate the effects of the 941 teachers (out of our initial sample of 

1,064) who taught students in both subsets. 

36 Dividing our student sample into two distinct student subsets and performing our analysis separately for each of 
these subsets introduces substantial noise into our teacher coefficient estimates.  In our math analysis, teacher 
coefficient estimates retained enough signal to make the split-sample analysis possible.  However, in reading the 
estimation error introduced by splitting our sample increased the estimation error variance so much that informative 
analysis was not possible because the signal-to-noise ratio was close to zero. 
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Following a methodology similar to that of Aaronson, Barrow and Sander (2007), we examine 

the rank-persistence of teacher fixed effects across the student subsets.  Within each vector of 

teacher fixed effects we divide teachers into quintiles based on their value-added rankings where 

quintile-5 teachers are those with the highest value-added.  Table 7 demonstrates the persistence 

of these quintile rankings across the data subsets.   

Table 7.  Persistence of Teacher Fixed Effects Estimates across Data Subsets (Percentages)
Teacher Coefficient Quintile Ranking From Year t

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1

1 2 3 4 5 (best)
1 30 20 19 18 13
2 23 25 13 21 18
3 18 20 25 24 13
4 15 16 26 20 23

5 (best) 13 17 16 19 35
Note: (N = 941).  Teachers are placed into quintiles using coefficient estimates from each data subset separately, 
quintile 5 being the best.  Rows sum to 100 percent.   

If teacher quality were perfectly observable through statistical estimation and constant over time, 

entries along the diagonal of Table 7 would all equal 100 percent and all off-diagonal entries 

would all equal 0.  Clearly, this is not the case.  In fact, significant fractions of teachers move up 

or down by two quintiles or more when we shift our student sample.37 However, the southeast 

and northwest corners of Table 7 suggest that the best and worst teachers (who are ranked in the 

top and bottom quintiles) are significantly more likely to retain their distinctions across years 

relative to other teachers in the sample. Although this result is largely by design (these quintiles 

are open-ended), it is nonetheless an important feature of this analysis because it is precisely 

37 Importantly, the coefficients evaluated in Table 7 contain much higher levels of estimation error than their 
counterparts from our full model.  This is the result of splitting our student sample because, in doing so, we reduce 
the number of observations available to estimate each teacher coefficient.  The increased estimation error will lead 
to an understatement of the persistence of teacher effects.  An additional concern is that the length of our panel 
forces us to overlap two of the four years of student data to perform the split-sample analysis.  Through this overlap, 
the correlation between the two sets of teacher fixed effects may be artificially increased because the errors in the 
two sets of estimates may be positively correlated.
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these teachers who would be targeted by a teacher-accountability system.  Therefore, the bleak 

outlook portrayed in Table 7 may be somewhat mitigated when considered in the context of an 

evaluation system focusing on the identification the best and worst teachers. 

One concern in our split-sample analysis is that it will understate the persistence of teacher 

effects as a result of our within-school-and-student specification.  This is because the stability 

groups as teachers move in and out of schools over time.  Although teacher movement over time 

would affect even a between-school analysis, its effects are amplified by our within-school-and-

responsive to teacher turnover.38

We present two additional transition matrices analogous to the one in Table 7 to evaluate this 

concern.  The first matrix is generated from a between-school-and-student specification (this 

specification omits school-level covariates and school- and student-level fixed effects, see 

column 6 in Table 5) and is detailed in Table 8.  The second is still based on the within-school-

and-student specification but only uses data from a given school if the average teacher taught at 

that school in at least three out of the four years of the data panel (84 out of the 108 elementary 

-

detailed in Table 9. 

38 Another concern here could be t ay be changing over time with experience.  Although 
the results from Section XIII indicate that experience is only weakly related to value-added, we nonetheless look to 
see if more experienced teachers have more stable value-added estimates.  If experience plays a non-negligible role, 
we should expect relatively inexperienced teachers to have less stable value-added coefficients because performance 
has been shown to change most rapidly in the early years of at
more experienced teachers have more stable value-added estimates. 
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Table 8.  Persistence of Teacher Fixed Effects Estimates across Data Subsets (Percentages) 
 Between-Schools-and-Students Specification

Teacher Coefficient Quintile Ranking From Year t

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1

1 2 3 4 5 (best)
1 43 29 14 10 4
2 26 21 25 18 9
3 12 21 28 25 15
4 10 19 19 28 23

5 (best) 8 11 11 19 50
Note: (N = 941).  Teachers are placed into quintiles using coefficient estimates from each data subset separately, 
quintile 5 being the best.  Rows sum to 100 percent.   

Table 9.  Persistence of Teacher Fixed Effects Estimates across Data Subsets (Percentages) 
 Within-Schools-and-Students Specification, Low-Turnover Schools Only

Teacher Coefficient Quintile Ranking From Year t

Teacher 
Coefficient 

Quintile 
Ranking From 

Year t-1

1 2 3 4 5 (best)
1 35 25 16 14 11
2 19 27 23 15 15
3 18 20 20 25 17
4 14 21 18 23 25

5 (best) 12 9 25 24 29
Note: (N = 824).  Teachers are placed into quintiles using coefficient estimates from each data subset separately, 
quintile 5 being the best.  Rows sum to 100 percent.   

The tight comparisons among teachers created by our within-school-and-student specification do 

appear to affect the persistence of teacher effects across the student subsets.  In Table 8 the 

contrast is most stark; looking between schools results in a large increase in the persistence of 

teacher effects and significantly reduces the percentage of teachers who move more than one 

quintile in either direction in the transition matrix.  Of course, this increased persistence reflects 

not only the more stable comparison group for each teacher (all teachers in the district rather than 

just the teachers at a given school) but also the persistence of school-level effects that are 

correlated with teacher effects. 
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The differences between Table 7 and Table 9, where we look at low-turnover schools, are more 

subtle.  Although the sums of the diagonal elements of each matrix are very similar, there are 

significant reductions in the number of teachers who move more than one and more than two 

quintiles across the transition matrix when we focus our analysis on schools with lower teacher 

turnover.   

Together, the transition matrices in Tables 8 and 9 show that teacher turnover can play an 

important role in determining year-by-year teacher fixed effects estimated using the within-

school-and-student specification.  This implies that year-by-year value-added estimates may 

represent an infeasible standard for evaluating teacher quality. 

X. Conclusion 

We show that teachers vary in quality considerably more than previous research has implied.  In 

math, we find that the average effect on student performance of a one-standard deviation 

improvement in teacher quality in a given year corresponds to 0.26 average within-grade 

standard deviations in test scores.  In reading, the same improvement in teacher quality 

corresponds to 0.19 average within-grade standard deviations.  These are very large effects.   

Our analysis highlights the importance of the testing instrument used to evaluate teacher quality.  

We show that when a test-score ceiling res -score gains, teacher effects can be 

significantly understated.  However, including controls for heterogeneity in student test-score 

growth (i.e., student fixed effects) in the value-added specification may at least partially mitigate 

this problem. 
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Given the importance of variation in outcome-based teacher quality as a determinant of student 

achievement, we test to see if the qualifications by which most teachers are evaluated are related 

to actual performance measured by student outcomes.  Our empirical results strongly support 

earlier findings that observable teacher qualifications are only weakly related to outcome-based 

measures of teacher quality.  To emphasize this, we estimate upper bounds on the explanatory 

power of observable teacher qualifications and show that even at these bounds, the information 

about teacher quality contained by these observable measures is minimal.  The persistence of this 

result throughout the modern empirical literature should perhaps lead to long-term changes in 

teacher recruitment, as well as teacher credentialing and professional development.  Perhaps 

most of all, the system for setting teacher pay largely as a function of teacher experience, 

education and credentials may require radical reform.  We sh

explain, at most, 0.9 to 1.4 percent of actual variation in performance-based teacher quality.  

Finally, the future role of value-added as a determinant of teacher accountability is still unclear.  

On the one hand, the signal contained by value-added estimates is sizeable, especially when 

compared to the current standards by which most teachers are evaluated.  However, on the other, 

there is also a considerable degree of estimation error in the teacher coefficients which suggests a 

cautious approach to their implementation for accountability purposes.  One solution would be to 

incorporate value-added into a larger system of teacher accountability.  Employing value-added 

estimates in conjunction with other measures of teacher quality that are unlikely to have 

correlated measurement errors should diminish the impact of these errors and increase the 

visibility of actual teacher quality.   
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Appendix A 
Data Appendix 

Section II illustrates the statistical model that seems most appropriate for accurately describing 

student test-score performance.  Specifically, the model accounts for numerous sources of 

variation in student achievement including variation due to student fixed effects, all within the 

value-added framework.  The structure of the model excludes the use of some of the SDUSD 

data in that it requires at least three contiguous test scores per student for full identification.  

However, we require this data restriction in order to specify the most accurate statistical model of 

student performance possible.  Because our entire analysis hinges on the soundness of our 

teacher fixed effects estimates, the importance of a properly specified model of student 

performance from which teacher fixed effects are estimated cannot be overstated.  Table A1 

details the differences between the final sample of students used in our analysis and the general 

elementary student population at SDUSD. 
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Table A1.  Key Differences Between the Entire SDUSD Elementary Student Sample and 
the Final Sample Used for Estimation

All Students Students with 3 + Years of Data

Race
% White
% Black
% Asian
% Hispanic

% English Learners

SAT 9 Math Score*
SAT 9 Reading Score*

Avg. Percentage of School
on Free Lunch

26%
16%
17%
40%

21%

0
0

63%

28%
14%
20%
38%

14%

0.18
0.20

59%

Our final sample includes 16,303 unique students with at least 3 student-years of data out of a possible 29,973 students who would have been 
eligible to be included in our model based on the year that they started the 3rd grade.  

As would be predicted, our analysis is based on students who appear to be slightly advantaged 

relative to the SDUSD population as a whole.  However, our final student sample is still 

reasonably diverse and generally representative of the student population at SDUSD.  The 

biggest difference between the two student populations is in terms of testing performance.  Note 

have three contiguous test scores.  Thus, Table A.1 is consistent with the well-documented 

negative relationship between student mobility and performance (see, for example, Rumberger 

and Larson, 1998; or Ingersoll, Scamman and Eckerling, 1989). 

With respect to teachers, we must also be careful about inclusion in our model.  Kane and Staiger 

(2002) find strong evidence of the significant impact of sampling variation on the outcomes of 

incentive systems based on school-level mean performance measures in North Carolina.  

Particularly, they find that schools with the smallest populations are considerably more likely to 
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receive rewards or sanctions based on student performance because the variance of the average 

problem arises in our teacher analysis.   

By virtue of the general structure of elementary education, elementary school teachers teach just 

a small number of students each year.  Even in studies such as this where numerous years of data 

are available for each teacher, there are still relatively few data points with which to estimate 

teacher fixed effects.  Particularly in cases where class sizes fluctuate significantly across 

teachers, or drop to extremely low levels more generally, the impact of sampling variation can 

dwarf any true signal.  Therefore, in an effort to reduce this inherent noise, we restrict our 

teacher sample to teachers with at least 20 student-years of data.  This threshold was chosen as it 

corresponds to approximately one year of teaching a full elementary classroom.  The mean 

elementary class size in our full dataset is 22.5 students with a standard deviation of 

approximately 5.5.  Thus, a teacher with the mean number of students in her classroom can 

afford to have up to two students dropped for one reason or another and still be used in our study.  

Furthermore, this standard removes many teachers who have taught particularly few students.  

The mean number of student-years per teacher among the dropped teachers was approximately 

eight.  The selection of different student-year cutoff points from as low as 17 student-years to as 

high as 30 student-years of data reveal no significant changes in our general results beyond the 

expected mild changes in the precision of teacher coefficient estimates.  
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Again, restricting our sample of teachers restricts the population for which our results are 

relevant.  Table A2 details key differences between the entire SDUSD elementary teacher 

population and the sample used in this study.   

Table A2.  Key Differences Between the Entire SDUSD Elementary Teacher Sample and 
the Final Sample Used for Estimation

All Elementary Teachers Teachers in Our Final Sample

Years Experience

% Fully Credentialed
% With Masters Degree

BA Major:
Education
English
Social Science
Math/Science

11.08

94%
47%

44%
5%

21%
2%

12.60

98%
54%

39%
6%

26%
2%

Our final sample includes 1,064 teachers from a total of 1,560 potentially eligible teachers available for this study.  We define a potentially 
eligible teacher as a teacher who teaches at least 15 students with at least a current and a lagged test score over the course of the panel.  This 
eligibility requirement would seem to be an absolute minimum for any value-added study.  Recall that for our study we require teachers to teach 
at least 20 students with at least 3 test scores over the course of our panel. 
It is often presumed that majors in education are somewhat easier to obtain than majors in other fields (For example, see Ballou, 1996). 

With respect to teachers, there is a surprisingly small difference between teachers used in our 

sample and the entire SDUSD elementary teacher population.  Our sample still includes 

significant variability among teachers in key observable qualifications.  After removing teachers 

with fewer than 20 student-years of data, the average number of student-years of data per teacher 

in our sample is 37.5.
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Appendix B 
Variance Decomposition 

Because the weighting matrix that we use for the Wald statistic is diagonal: 

22 2
1 1 2

2 2 2
1 2

( )( ) ( )( ) '( ) ( ) ... J
J J J

J

V

Thus, scaling this summation by the number of teachers returns an estimate of the average ratio 

of the total fixed-effects variance to the total error variance weighted on a coefficient-by-

coefficient basis.   
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Appendix C 
Estimating an Upper Bound on the Correlation of 

Teacher Value-Added Across Subjects 

We generate an upper bound on the correlation of teacher quality across subjects, corr m r( , ) ,

under the assumption that the correlation coefficient reported in Section VII is understated 

because corr m r( , ) 0 and this is suppressing our estimate of corr m r( , ) .  Consider the 

following: 

corr m r m m r r m m r r( , ) {cov( , ) / { var( ) * var( )}   (C.1) 

The correlation coefficient of interest in this analysis is corr m r( , ) .  To obtain an upper-bound 

estimate, we will assume that cov( , )m r 0, cov( , )r m 0, and cov( , )m r 0 (these 

conditions also imply that cov( , )m m 0 and cov( , )r r 0  because we know that 

cov( , )m r 0 ) and expect that none of these covariance terms would be negative.39 Given 

these conditions we can rewrite equation (C.1) as: 

corr m r m r m m r r( , ) {cov( , ) / { var( ) * var( )}    (C.2) 

By definition, our correlation coefficient of interest is defined as: 

corr m r m r m r( , ) cov( , ) / { var( ) * var( )}      (C.3) 

Combining C.2 and C.3, we can write: 

corr corrm r m r m m m r r r( , ) ( , ) *( var( ) / var( )) *( var( ) / var( ))   (C.4) 

This can once again be re-written as: 

39It is the non-negativity assumption that insures that we are generating an upper bound by setting the covariance of 
the estimation errors to zero. We justify this assumption by noting that although it is conceivable that there would be 
a positive correlation between estimation errors for the same classrooms but different subjects, it would be hard to 
imagine a scenario in which these estimation errors would be negatively correlated.     
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corr corrm r m r m fe m true r fe r true( , ) ( , ) *( / ) *( / ), , , ,
2 2 2 2     (C.5) 

Here, , fe
2  represents the total variance of teacher fixed effects and ,true

2  represents the 

variance of teacher quality by subject as indicated.  We can plug in values for the above variance 

components using estimates from Section IV.  This generates an upper bound estimate of the 

correlation of teacher effectiveness across subjects of approximately 0.64. 
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Appendix D 
Upper Bound Estimates of the Percentage of Teacher Value-

Added Predicted by Observable Teacher Qualifications 

The R2 statistics reported in Table 6 in Section VIII are meant to represent the amount of 

variation in the teacher coefficients explained by observable teacher qualifications.  However, 

these R2 values are potentially inaccurate due to measurement error in our second-stage 

dependent variable and because they are generated from a GLS regression.  Our analysis in the 

text proceeds under the assumption that the measurement error found in our teacher fixed effects 

coefficients is uncorrelated with observable teacher qualifications.40   If this is the case, basic R2

estimates from our second stage analysis will understate the ability of our models to explain true 

teacher quality because the R2 statistics are implicitly allowing for the models to predict the 

measurement error in the dependent variable (which they do not do by assumption).  In this 

appendix, we establish upper bound estimates of the R2 statistics from our second-stage 

regressions under the assumption that observable teacher qualifications do not predict the 

measurement error in our teacher coefficients.  If this assumption is incorrect, results from this 

appendix will over-state the predictive power of observable teacher qualifications. 

The GLS estimation performed in Section VIII of the text is used to generate efficient estimates 

of our coefficients of interest.  However, because R2 statistics from GLS models are difficult to 

interpret, we proceed here with R2 statistics from the OLS analogs to the models described in the 

paper.  In order to generate an upper bound on the percentage of variation in true teacher quality 

40 Beyond being very plausible, this assumption is also useful for generating upper bound estimates of the R2

statistics from our second-stage models.  If observable teacher qualifications were somehow predicting the 
measurement error in the teacher fixed effects even slightly, estimates presented in this appendix will be overstated. 
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explained by observable characteristics, first consider the general R2 formula that is estimated by 

standard software packages for our second-stage analysis: 

  R2  = 1  (SSE/SST)      (D.1) 

    = 1 2

1

2

1
[ ( ) ] / [ ( ) ]y y y yj j

j

J

j
j

J

    (D.2) 

The R2 formula in equation (D.2) is a consistent estimate of: 

1 2 2[ ( ) ] / [ ( ) ]E y y E y yj j j     (D.3)

In this equation, the y j r fixed effects coefficients from the 

first stage, the 'y sj  are the fitted values of the estimated teacher coefficients from our OLS 

second-stage regression, and y  is the mean of the first-stage estimated teacher coefficients.  The 

y j

y yj jtrue j       (D.4) 

Here, y jtrue  represents true teacher quality and j  represents the contribution of estimation error.  

Substituting equation (D.4) into equation (D.3) yields: 

1 2 2[ ( ) ] / [ ( ) ]E y y E y yjtrue j j jtrue j   (D.5) 

Because y jtrue  and j  are uncorrelated by assumption, the denominator of the second term in 

equation (D.5) simplifies to [ ( ) ( )]Var y Varjtrue j .  With regard to the numerator, we will 

continue under the prior that the predictive power of observable teacher qualifications is being 

understated because observable teacher qualifications do not predict the estimation error in our 

dependent variable.  Therefore, in the spirit of estimating an upper bound we can assume that y j

and j  are also uncorrelated.  Equation (D.5) can be written as: 
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1 2[ ( ) ( )] / [ ( ) ( )]E y y Var Var y Varjtrue j j jtrue j   (D.6) 

If observable teacher qualifications do not predict the estimation error, the above formula adds a 

positive number representing the variance of the estimation error into both the numerator and 

denominator of the second term as shown in equation (D.6).  Because this term is subtracted 

from one, this results in an unequivocal understatement of the R2 reported from our second-stage 

model.

We can remove the variance of the estimation error from both the numerator and denominator of 

the second term to estimate an upper bound on the true level of explanatory power exhibited by 

observable teacher qualifications: 

     1 2 2[ ( ) ] / [ ( ) ]E y y E y yjtrue j jtrue true    (D.7) 

Using our empirical results from Section IV and the 'y sj  from our second stage regression, we 

estimate equation (D.7) with: 

R2  =1 2

1

2

1
[ ( ) ] / [ ( ) ]y y y yjtrue j

n

N

jtrue true
n

N

   (D.8) 

It is clear to see how any incidental correlation between the 'y sj  and the j

overstatement of this statistic, and thus it is presented as an upper bound.  As reported in the text, 

our upper bound estimates on the explanatory power of observable teacher qualifications are 

0.057 and 0.029 for math and reading respectively. 
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Appendix E 
Teacher Quality and Different Student Types 

To provide a test of whether teacher effectiveness varies by initial student achievement, we split 

our student records into two groups based on initial student achievement.  Specifically, for each 

-2) test score to the grade-level median test score 

for their grade.41 The first group consists of students who performed at or above the median 

level of achievement in year (t-2), the second of students who performed below the median.  We 

assign an indicator variable equal to 1 if a student record belongs to the first group and 0 

otherwise. 

Next, we interact this achievement indicator variable with each of our teacher indicator 

variables.42 We then add this new set of interaction terms to the full specification outlined in 

Section II.  The interaction terms will pick up any differences in teacher quality experienced by 

high-achieving students relative to low-achieving students.  That is, if teachers affect different 

student types differently on a per-teacher basis, then we should find that the set of interaction 

terms are jointly significant in explaining variation in student performance.  However, we find no 

evidence that the impact of teacher quality varies by student type.  For both math and reading, 

Wald tests fail to reject the null hypothesis that the coefficients on all of the interaction terms are 

zero.  For both math and reading, the p-values from these Wald tests are greater than 0.9. 

41 For example, if a student was in third grade in year (t-2), we look to see if his or her test score in third grade was 
above or below the third-grade median test score in our sample.   
42 A small percentage (less than 2% for each subject) of the teachers in our sample had all of their students in one 
achievement group or the other.  For these teachers, their interaction terms were dropped from the model.   
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Appendix F 
Test-Score Ceiling Properties at SDUSD 

The Stanford 9 standardized test used at SDUSD does not exhibit a test-score ceiling in math and 

exhibits only a mild-test score ceiling in reading through the 5th grade.  As discussed in Section 

VI of the text, this feature of the Stanford 9 makes it a better instrument with which to measure 

the variance of teacher quality than some tests used in previous studies.  In this appendix, we 

detail the test-score ceiling properties of the Stanford 9 for both math and reading. 

Earlier work with the dataset revealed evidence of some regression to the mean in test scores.  

This makes it difficult to test for pure ceiling effects by plotting test-score gains in period (t) vs. 

test score levels in period (t-1) because in part there should be a negative relationship between 

the two because of regression to the mean.  Therefore, to test for the presence of a test-score 

ceiling in our data, we group all students into achievement deciles based on their raw test score 

level in period (t-2).  We then look to see if the average test-score gains of students in period (t) 

are lower for students in higher deciles.  Figures F.1 and F.2 describe our findings.  For math, the 

Stanford 9 standardized test does not appear to exhibit a test score ceiling.   For reading, there is 

a mild but persistent decline in student test-score gains as students move up in the period (t-2) 

test-score levels distribution.43

43 Hanushek et al. (2005) present a figure similar to figure F.1 in their analysis.  However, in their study, students are 
grouped into achievement deciles based on period (t-1) test scores, thus combining any test-score ceiling effects with 
regression to the mean.  If we replicate our figures in this appendix following their methodology, we observe a 
negative relationship for both math and reading as would be expected due to regression to the mean.  However, the 
magnitude of the decline in average test score gains is significantly less in our data when we replicate their analysis 
and average test-score gains are positive for all student-achievement deciles. 
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Figure F.1
Achievement Gains by Decile:  Math

0
5
10
15
20
25
30

1 2 3 4 5 6 7 8 9 10
Initial Test-Score-Levels Decile

Period t-2

A
ve

ra
ge

 T
es

t-S
co

re
 G

ai
ns

 
Pe

rio
d 

t

Figure F.2
Achievement Gains by Decile: Reading
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