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Abstract

School districts have begun using estimates of teachers' effects on stu-
dent test scores (or "valueadded") for diagnostic purposes and allot-
ting monetary rewards. Such estimates must be precise enough to
identify high- and low-performing teachers and predict future per-
formance accurately. We study the inter-temporal variability in value-
added measures for elementary and middle school mathematics
teachers from five large Florida school districts. Consistent with
worker productivity measures in other occupations, teacher estimates
are moderately stable, with year-to-year correlations ranging from 0.2-
0.5 for elementary school and 0.3-0.7 for middle school teachers.
irty to 60 percent of the variation in measured teacher perform-
ance is due to sampling error from "noise" in student test scores. Per-
sistent teacher effects account for about 50 percent (70 percent) of
the variation not due to noise for elementary (middle) school teach-
ers; other time-varying factors account for the remaining variance.
However, observed teacher characteristics (e.g., experience, advanced
degrees and professional development) explain little inter-temporal
variation unrelated to sampling errors. Averaging estimates from two
years greatly enhances the stability of the estimates and improves their
predictive ability. We also explore the sensitivity of stability to the
value-added model specification and the achievement test.
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I. Introduction

There is growing interest in using student outcomes to evaluate teachers when making 

decisions about teacher retention and compensation.  For any performance-based personnel 

system to provide the correct incentives and enhance teacher quality, it is necessary that there be 

a strong link between true performance and reward or retention.  Thus, at any point in time it is 

necessary that measures of teacher performance provide an accurate (unbiased) measure of 

teacher productivity.  Avoiding systematic errors in evaluating teacher performance is not 

sufficient, however.  If outcome-based measures of teacher quality are unbiased, yet highly 

variable, their efficacy in high-stakes personnel decisions will be limited.  For example, there are 

proposals to use estimates of teachers’ effects on student test scores or “value-added” to 

determine which teachers are granted tenure and which are dismissed after an initial probationary 

period.1  If value-added measures vary over time, a tenure policy based on a short time frame 

could lead to the dismissal of many truly effective teachers and the retention of others who prove 

to be relatively ineffective in boosting achievement.  Similarly, if variability in outcome-based 

measures over time leads to wide swings in who is rewarded, teachers will view merit-based pay 

plans as largely random, greatly reducing any incentive effects of pay-for-performance systems. 

While the issues of bias and variability in estimates of teacher effectiveness are both 

important, and to some degree intertwined, in this paper we focus primarily on the within-teacher 

variability in estimated effectiveness over time and the associated implications for a viable 

outcome-based system of teacher personnel decisions.2  First, we establish that estimates for 

1 See, for example, Gordon, Kane and Staiger (2006). 
2 For discussions of the ongoing controversy over the ability of statistical models to generate unbiased estimates of a 
teacher’s effect on student achievement with non-experimental data see Andrabi, et al. (2008), Kane and Staiger 
(2008) and Rothstein (2008). 
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teachers with few students are very imprecise and we therefore restrict our subsequent analysis to 

teachers with at least 15 students in any given year.  Using this subsample, we examine year-to-

year correlations in estimated effects and relate these values to inter-temporal variation in the 

measured performance of workers in other occupations.  We then decompose the variance in 

estimated teacher effects into three sources: persistent effects, non-persistent changes, and 

sampling error, and show that little of the non-persistent changes within teacher can be explained 

by observable time-varying teacher characteristics, such as experience, formal educational 

attainment and in-service training.  We examine how the variance decomposition of the estimates 

depends on factors including the value-added model specification, the grade level (elementary 

versus middle), district, and the achievement test.  Finally, using our decomposition we explore 

the effect of averaging teacher effect estimates over multiple years and consider the implications 

of this averaging for practical systems of teacher evaluation. 

II. Prior Studies 

Only a few previous studies have measured the variability of teacher effects and none 

have analyzed the sources of inter-temporal variation in depth.  Ballou (2005) compares the 

rankings of elementary and middle school teachers in a “moderately large” Tennessee school 

district across two years.  He finds that 40 percent of mathematics teachers who are ranked in the 

bottom quartile of teacher quality rankings in the first year remain in that quartile the following 

year and 30 percent move into the top two quartiles.  At the other end of the quality distribution, 

nearly 50 percent of mathematics teachers in the top quartile in one year are also in the highest 

quartile the next year while roughly 30 percent fall into the bottom two quartiles.  Ballou also 

shows that the precision of teacher effect estimates increases with the number of annual 
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observations per teacher.  Estimating teacher effects over a three-year span, 58 percent of middle 

school math teachers have estimates significantly different from the average teacher effect 

whereas with single-year estimates only 30 percent of the estimated teacher effects for middle 

school math teachers are significantly different from the average.

Similarly, Aaronson et al. (2007) compare the rankings of estimated teacher effects for 

Chicago public school teachers across two years.  They find that 36 percent of teachers ranked in 

the lowest quartile in the first year also rank in that quartile in second year, 29 percent move up 

to the second quartile and the remaining 35 move into the top half of the distribution.  At the 

other end of the scale, 57 percent of the teachers in the top quartile in the first year remain there 

in year two.  Another 23 percent move down to the third quartile and only 20 percent fall down 

into the lower half of the quality distribution. 

Koedel and Betts (2007) conduct a similar analysis, comparing the ranking of San Diego 

teachers in two years based on their fixed-effect estimates.  While a large fraction of teachers 

stays in the same quintile from one year to the next, the degree of persistence is less than that 

found by Aaronson, et al. (2007) in Chicago.  Among teachers who are ranked in the lowest 

quintile in the first year, 30 percent stay in that quintile, but a nearly equal proportion (31 

percent) move into the top two quintiles in the second year.  Similarly, 35 percent of teachers 

initially ranked in the top quintile remain there in the second year while 30 percent fall into the 

first or second quintiles of the quality distribution in year two.  These comparisons are based on 

estimates of within-school teacher effects (i.e., achievement models that include student, teacher 

and school fixed effects).  Omitting student and school fixed effects, they find the teacher effects 

to be more stable; 43 percent of teachers in the bottom quintile stay there in the next year and 50 

percent of teachers in the top quintile in the first year remain there in the second year.
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Our study builds on existing work on the variability of teacher value-added measures by 

decomposing the variance in teacher effect estimates into persistent components, non-persistent 

changes and sampling errors, analogous to the decomposition used by Kane and Staiger (2002) 

for school-level performance measures. This decomposition permits examination of how much 

averaging measures over time would reduce inter-temporal variability, and also provides a 

framework for characterizing how different value-added model specifications may contain 

different amounts of systematic and non-systematic errors.  Also, we conduct our investigations 

using five large county-level districts in Florida, allowing us to examine the sources of variance 

in teacher performance measures across districts, grade levels (elementary and middle school), 

different achievement tests, and different value-added models.3

III. Methods 

A. Estimation of Teacher Effects 

In order to construct an empirical model of teacher effects, we begin with the cumulative 

model of student achievement developed by Boardman and Murnane (1979) and Todd and 

Wolpin (2003).  Following these authors, we assume: (i) a cumulative achievement function that 

is invariant to a student’s age, linear and additively separable and (ii) children are endowed at 

3 Subsequent to the initial version of this paper, Goldhaber and Hansen (2008) produced a complementary analysis 
of the stability of measured teacher effects in North Carolina.  While their study differs from ours in a number of 
ways, including their focus on elementary school teachers and the way in which they decompose the variance in 
teacher effects, their findings tend to reinforce the conclusions we draw from our analysis of estimated teacher 
effects in Florida.  In particular, they find year-to-year correlations in teacher value-added are moderate (0.3 in 
reading, 0.5 in math), with a large proportion of the year-to-year variation due to sampling error.  The sampling error 
diminishes with increases in the number of students per teacher, yet even for teachers who have many students there 
is significant within-teacher variation over time that is not explained by observable teacher characteristics. 
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birth with a fixed level of ability and parental inputs that do not change over time.  Given these 

assumptions we can denote a student’s achievement level at age t as:

t

h
itihmhhkhhijmhhihhhitA

1
0543210 STPX (1)

The current achievement level is a function of all current and prior school-based inputs, X, P, T, 

S, the initial ability/parental-input endowment, 0i, and measurement error in the test of 

achievement, it.  The vector Xih represents student-specific school-based inputs, such as 

participation in a specific program.  Classroom peer characteristics are represented by the vector 

P-ijmh where the subscript –i denotes students other than individual i in classroom j in school m.

Teacher inputs are represented by a vector of characteristics for the teacher (where k indexes 

teachers) who teaches the child at each age, Tkh.  The school-level input vector is denoted Smh.

If the marginal impacts of all school-based inputs (X, P, T, S) decline geometrically over 

time, current achievement can be represented by:4

10155432101 )( ititittmttkttijmttitttitit AA STPX (2)

Current achievement depends only on contemporaneous school-based inputs, the initial 

endowment, and an error term.  The lagged test score, Ait-1, serves as a sufficient statistic for all 

prior school-based inputs.5

                                                

4 See Boardman and Murnane (1979), Todd and Wolpin (2003) or Harris and Sass (2006) for a detailed derivation.   
5 If the impact of student/family inputs diminishes at the same rate as prior schooling inputs then the lagged test 
score can serve as a sufficient statistic for both lagged schooling and student/family inputs.  In this case, the initial 
endowment term, 0i, drops out of the equation. 
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Assuming the marginal effect of the initial endowment declines at a constant rate then 

( 5t- 5t-1) is a constant and can be denoted by .  We can also let it= it- it-1 and 3tTkt= kt.

This yields a general “value-added” model: 

itktimttijmttitttitit AA 042101 SPX (3)

Commonly estimated forms of equation (3) vary in their assumptions regarding the persistence 

of prior school-based inputs, , and modeling of the fixed student/family endowment effect on 

current achievement, 0i.  The persistence of prior-year inputs can either be estimated from the 

model or one can assume complete persistence of prior inputs (i.e., =1).6  In the latter case the 

lagged test score can be subtracted from both sides, yielding the change in student achievement, 

Ait=Ait-Ait-1, as the dependent variable.  The effect of student endowments is either captured by 

observable time-invariant student characteristics, Zi, (so that 0i is assumed to be fully 

described by 5Zi, for an unknown vector of coefficients 5) or by a student fixed effect, i = 0i

(which accounts for both observed and unobserved student characteristics).  Following Rothstein 

(2008), we consider three variants of equation (3), based on differing assumptions about 

persistence and alternative treatments of student heterogeneity: 

itktimttijmttitttitA ZSPX 4210 (4A)

itktimttijmttitttitit AA ZSPX 542101 (4B)

                                                

6 Including the lagged test score as an explanatory variable is potentially problematic.  Since it is a function of the  
lagged error, t-1, the lagged achievement term, Ait-1, will be correlated with the error term in equation (3), and OLS 
estimates of equation (3) will in general be biased except in the unlikely case that the error terms are also 
autocorrelated with correlation .  This potential bias does not exist if persistence is complete because the lagged 
test score is on the left hand side of the equation and is no longer an explanatory variable. 
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itktimttijmttitttitA SPX 4210 (4C)

In each value-added specification the teacher-by-year effect, kt, represents the average 

achievement of a teacher’s students in a given year, conditional on prior school inputs, 

student/family endowments and contemporaneous non-teacher schooling inputs (e.g., classroom 

peers and school-level factors such as school leadership).  Note that since the models do not 

include school fixed effects, the teacher effect is measured relative to the average of all teachers 

in the relevant subject, grade range and jurisdiction, not the average teacher at a given school.7

B.  Sources of Inter-temporal Variability in Estimated Teacher Effects 

Following the analysis of school-level average achievement by Kane and Staiger (2002), 

we can identify two sources of variation over time in the annual teacher effect estimates:  

sampling error and non-persistent changes in performance.  Sampling error refers to errors in the 

estimated teacher effects due to idiosyncrasies in individual student scores, after controlling for 

other factors in the model.  The idiosyncratic outcomes for individual students tend to average 

out across a teacher’s students and thus the sampling error will tend to fall within the number of 

students per teacher per year.  The standard errors on the estimated teacher effects measure the 

contribution of sampling error to inter-temporal instability in estimated effects. 

                                                

7 The default solution for estimating teacher fixed effects in most statistical software packages is to contrast all 
teachers to an arbitrary holdout teacher, such as the teacher with the highest or lowest identification number in the 
data set.  As described in Mihaly, et al. (2009), the selection of the holdout teacher does not affect the relative 
rankings of teachers within a grade level and year, but it does alter the absolute teacher effect estimates.  Contrasting 
teachers to different arbitrary holdout teachers each year could lead to considerable inter-temporal variability in any 
given teacher’s estimated effects.  Post-hoc centering of effects could remove this source of inter-temporal variation 
but then the estimated standard error of the teacher fixed effect estimates would be wrong and computationally 
challenging to correct with large samples of teachers.  As an alternative, we contrast all teachers to the average 
teacher effect within a given year and grade level.  To accomplish this we employ the Stata program felsdm.  See 
Mihaly, et al. (2009) for details on the development and use of felsdm.  



10

Non-persistent changes in performance refer to all sources of year-to-year changes in the 

estimated impact of a teacher on student achievement, other than sampling errors. These might 

include variation in the teacher’s true performance, “chemistry” between students within a class, 

the impact of a disruptive student, test day conditions, matches between the specific test items 

and the concepts emphasized by the teacher or any other classroom-level factors that vary across 

years.  As noted in Kane and Staiger (2002), unlike sampling error, we cannot directly estimate 

the variability of non-persistent changes in performance.  Rather, we do so indirectly by 

comparing the average variability among estimated effects within-teacher with the variability 

due to sampling error.  If the variability in estimated effects exceeds the variability due to 

sampling error then the remaining variance is attributed to non-persistent changes.   

The persistent teacher effect is simply the portion of the estimated effect that is common 

across years. It is not necessarily equal to the teacher’s true performance; estimated effects from 

value-added models might not equal true causal effects of teachers due to violations of the model 

assumptions (c.f., Rothstein (2008)) and even persistent components of the estimated effects 

might include confounding factors that are persistent across years rather than causal effects.  For 

example, if the achievement model fails to properly capture all unobservables that are correlated 

with classroom assignments and the classroom average of the unobservables is stable across 

years, then these omitted variables will be part of the persistent teacher effect. In an extreme case 

of confounding, suppose annual teacher effects were measured by classroom average test scores 

without any adjustment. These effects would likely demonstrate strong persistence within-

teacher over time due to the stability in the types of students assigned to teachers across years. 

As discussed by Kane and Staiger (2002) in the context of school-level effects, the 

usefulness of teacher effect estimates depends on the variance in sampling errors and the 
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variance in non-persistent changes relative to the variability across teachers in the persistent 

effects.  Large variance in non-persistent change and sampling error, relative to persistent teacher 

effects, leads to low correlation of estimated effects between adjacent years.  The year-to-year 

correlation in teacher effects is roughly equal to the ratio of the variance in persistent effects to 

total variance (i.e., the sum of variances in sampling error, non-persistent effects and persistent 

effects).  Teacher effect estimates that exhibit low year-to-year correlations have limited utility 

because they fail to yield information that is stable enough to support decisions about teachers.   

By separating the sampling errors from the non-persistent change we determine if the 

only source of inter-temporal instability is sampling error or if other sources also contribute, 

possibly including true variation in teacher performance.  Large variation in true performance 

across years would suggest that pooling data across years to smooth out could result in bias and 

obscure important changes in performance.  Also, decomposing the variance of teacher effects 

provides insights into the relative utility of alternative achievement model specifications.  Two 

different value-added models might yield teacher effect estimates with similar year-to-year 

correlations, but may have very different variance components, which in turn can provide 

indirect evidence on the extent of bias in the alternative models. 

C.  Variance Decomposition and Stability Metrics 

In this section we formalize the three components of the variance in the estimated teacher 

effect with a simple statistical model and describe how we use the model to estimate the variance 

components.  We then use the estimated variance components to define a measure of inter-

temporal variation in estimated teacher effects, which we call the “stability coefficient.” 

We consider the following model for the estimated effects kt for teacher k in year t:
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kt = k + kt + kt. (5) 

We assume the teacher-by-year effect, kt, can be represented by the sum of three independent 

random variables:  k, the teacher’s persistent effect (that has mean zero and unknown variance 

2); kt, the non-persistent changes in the teacher’s performance (that has mean zero and 

unknown variance 2); and kt, the sampling errors (with mean zero and variance sekt
2, equal to 

the square of the standard errors in the estimated teacher effects). To estimate the unknown 

variance components we make the additional assumption that the random variables are normally 

distributed and maximize the resulting likelihood for the observed estimates pooling the data 

within and among teachers.8

 The estimated variance components allow us to develop several metrics to help 

characterize the various estimators of teacher effects as measures of teacher performance. As 

discussed above, for some purposes it is useful to distinguish sampling error from the other 

sources of variance in the estimated effects (persistent effects and non-persistent changes), which 

combined we refer to as the “annual signal.”  The ability to differentiate teacher performance in a 

given year depends on the ratio of variability in the annual signal to total variability in the 

estimates and is called the reliability coefficient,  

 Reliability = 222

22

ktse
.

The stability of estimates across years depends on the proportion of variability in the estimates 

that is due to the persistent effects, so we define the stability coefficient as 

                                                

8 To improve estimation we estimate the natural log of 2 and the natural log v2and transform the resulting estimates 
to the original scale. 
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Stability = 222

2

ktse
.

The ratio of the stability coefficient of the measure over time to its reliability as a measure of 

annual performance is 2/( 2 + 2), the proportion of annual signal variance that is between 

teachers, or equivalently, the proportion of annual signal variance that is due to the persistent 

effects.  Analogously 2/( 2 + 2) is the proportion of the annual signal variance that is due to 

non-persistent changes. Both Reliability and Stability depend on the standard errors of individual 

teacher estimates and we summarize these with averages across teachers.  We can estimate both 

Stability and Reliability using the estimates of 2 and 2. Alternatively, as shown in the Technical 

Appendix, under our model for the estimated effects, the cross-year correlation for estimated 

effects from adjacent years is also equal to Stability.  Because the standard errors differ across 

estimates, the two methods of estimating Stability will differ somewhat, but both can be 

interpreted as measures of stability.   

As discussed in Lockwood, Louis, and McCaffrey (2002), Reliability is the primary 

determinant of the ability to distinguish among, and accurately rank, teachers in a single year.  

Stability plays a similar role for distinguishing among teachers’ future performance and for 

creating rankings that are stable across time. If the data are normally distributed and our model 

holds, then the stability coefficient determines the proportion of teachers who will switch quintile 

ranks across years and how much error will be in predictions of future teacher effects.  For 

example, if the estimated effects have a stability of 0.3 then we can expect that about 24, 19, 15, 

and 10 percent of teachers ranked in the first quintile in one year will be ranked in the second, 

third, fourth and fifth quintiles in the next year.  For an estimated effect with a stability of 0.7 the 
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percentages are 26, 12, 5, and 1. The Technical Appendix provides details on the relationship 

between Stability and quintile rankings. 

The stability coefficient also equals the relative reduction in prediction error variance due 

to using an estimated teacher effect (or average of multiple years of effects) to predict a teacher’s 

future performance (i.e., the persistent effect).  To see this, note that without any additional 

information, the uncertainty in predicting a teacher’s persistent effect is the total variance in the 

persistent effect ( 2).  However, if we use the current single-year estimate to predict the 

persistent effect, then the variance of the prediction error is given by the variance in the 

persistent effect conditional on knowing the current value:

Var(prediction error) = Var(persistent effect | current single-year estimate) = 2(1 - 2/ v2).

The reduction in prediction error is thus equal to 2 –  2(1 -  2/ v2) =  4/ v2 and relative to the 

total error, the relative reduction in prediction error is  2/ v2 = Stability. The relative reduction in 

prediction error is analogous to the R2 from linear regression, which provides another useful tool 

for calibrating the stability of the value-added measures. 

Our measure of stability is also directly related to the efficiency of policies that use 

estimated teacher effects.  As discussed in the Technical Appendix, a policy of tenuring only 

teachers whose estimated effect is above the 100pth percentile of the distribution of estimated 

effects would improve the average teacher’s persistent effect by 22 v × (p), where (p) is a 

factor that depends only on the normal distribution and p.  Moreover, as shown in the Appendix, 

the maximum gain we could obtain from observing the actual persistent teacher effect, rather 

than a noisy estimate, would equal (p), so the square root of the stability directly measures the 

inefficiency due to employing noisy measures of teacher effectiveness.
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An advantage of our stability metric is its natural generalization to the average of two 

years in a way that is directly comparable to the measure of stability of a single-year estimate.  

Given our decomposition, the variances of sampling errors and non-persistent change in a two-

year average of estimates equal sekt
2/2 and 2/2, respectively (assuming the standard error is 

constant across years).  Hence the stability of a two-year average equals 

Stability2 = 
2222

2

ktse

Again, we can use our estimates of the various variances to calculate this quantity.  More 

generally we can extend this formula to averaging any number of years of estimates.  

Although the decomposition of the variability in estimated teacher effects is intuitive, our 

model relies on some important assumptions.  In particular, we assume that non-persistent 

change is uncorrelated over time within a teacher.  This precludes drifts in teacher performance 

over years in which a teacher might have a general level of performance but in which 

performance over a few years might systematically vary from the general level.  For instance, a 

teacher’s performance might deviate from his or her general level of performance as he or she 

adjusted to a new curriculum or a new principal.  We explored these models with our data and for 

some estimators and some counties there was evidence of drift, but generally models without 

drift fit the data as well or better than models with drift and thus we focus on models without 

drift for this paper.  A study of drift in effects would be useful and models that allow for drift 

may be important in other contexts. 
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IV. Data and Sample Selection 

To estimate the achievement models and associated teacher effects we utilize data from 

the Florida Education Data Warehouse (FL-EDW), an integrated longitudinal database that 

covers all public school students and teachers in the state of Florida.9  From this statewide 

database we select data from five large school districts in the state, Dade, Duval, Hillsborough, 

Orange and Palm Beach.  Each of the five districts enrolled 100,000 or more students in the 

2004/05 school year and was among the 20 largest school districts in the United States.  In 

addition to lowering computational costs compared to working with data from the entire state, 

selection of these five large districts allows us to determine how the stability of teacher effects 

varies across school districts and facilitates comparisons with the previous single-district studies 

in California, Illinois and Tennessee mentioned above. 

The Florida data link both students and teachers to specific classrooms at all grade levels.  

However, achievement tests are only administered in grades 3-10 and thus current and lagged 

achievement are only observed in grades 4-10.  The linkage between course content and what is 

tested on statewide exams may not be as strong for all high school students as it is in elementary 

and middle school.  We therefore focus our analysis on students in grades 3-8 and estimate 

teacher effects for elementary and middle school math teachers.10  We select math teachers for 

our analysis because most studies of student achievement find a stronger correlation between 

school inputs and student achievement in math than in reading. 

                                                

9 Detailed descriptions of the Florida data are provided in Sass (2006) and Harris and Sass (2008). 
10 Middle school math courses are defined as math courses in which 90 percent or more of the enrolled students take 
either the 6th, 7th or 8th grade math achievement exam.  
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The State of Florida administers two achievement tests.  The “Sunshine State Standards” 

Florida Comprehensive Achievement Test (FCAT-SSS) is a criterion-based exam designed to 

test for the skills that students are expected to master at each grade level.  It is a “high-stakes” 

test that is used to assign grades to schools for state accountability purposes and to measure 

individual student performance for retention decisions and high school graduation.  In our 

application the scores are normed to have mean zero and standard deviation one for each grade 

and year. 11  The FCAT-SSS has been used in selected grades since the 1998/99 school year, but 

was not implemented in all grades 3-10 until the 2000/01 school year.  The second test is the 

FCAT Norm-Referenced Test (FCAT-NRT), a version of the Stanford Achievement Test used 

throughout the country.  Version 9 of the Stanford test (the Stanford-9) was used in Florida 

through the 2003/2004 school year.  Version 10 of the Stanford test (the Stanford-10) has been 

used since the 2004/05 school year.  To equate the two versions of the exams we convert 

Stanford-10 scores into Stanford-9 equivalent scores based on the conversion tables in Harcourt 

(2002).  Although scores on the Stanford-9 are scaled to a single developmental scale, we norm 

them by grade and year in order to make them comparable to the normed FCAT-SSS scores and 

so teacher effects and estimated variance components can be interpreted relative to variability in 

student achievement.  We rely primarily on the FCAT-NRT exam since it provides an additional 

year of data.  However, we also make comparisons across the two exams to determine how test 

differences may affect measured teacher performance. 

                                                

11 The FCAT-SSS was not designed to be a single developmental scale across grades.  While a developmental scale 
conversion for the FCAT-SSS has been developed based on one year in which overlapping questions were 
administered on different grade-level exams, we choose to standardize the FCAT-SSS scores to have a mean of zero 
and standard deviation one for each grade and year so that differences in scores from adjacent years measure 
changes in relative position in the distribution rather than raw changes in scale scores. 
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The available data cover school years 1995/1996 through 2004/2005.  However, given 

that testing of math achievement in consecutive grades did not begin until the 1999/2000 school 

year (for the FCAT-NRT) and the need to account for both current and lagged test scores, our 

analysis is limited to the five-year period, 2000/01 through 2004/05. 

To avoid problems of attribution when students receive math instruction from multiple 

teachers, we restrict our analysis of student achievement to elementary students in “self-

contained” classrooms and middle school students taking only one math course.  We also 

exclude students repeating a grade.  However, all students enrolled in a course are included in the 

measurement of peer-group characteristics.  To avoid atypical classroom settings and jointly 

taught classes we consider only courses in which 50 or fewer students are enrolled and there is 

only one “primary instructor” of record for the class.  Finally, we eliminate charter schools from 

the analysis since they may have differing curricular emphases and student-peer and student-

teacher interactions may differ in fundamental ways from traditional public schools. 

Our data contain a relatively rich set of student, peer, teacher and school characteristics.  

Time-varying student variables include student mobility, measured by the number of schools a 

student attends within a year, whether a student engages in a “structural move” between years 

(one in which at least 30 percent of his fellow students in the same grade at the initial school 

move to the same school) and whether a student undergoes a “non-structural” move (where 

fewer than 30 percent of students in the same initial school and grade made the same move).  

When student covariates are used instead of student fixed effects to measure student 

heterogeneity we employ the following time-invariant (or nearly time-invariant) student 

variables: gender, race/ethnicity, free/reduced-price lunch status, gifted program participation, 

limited English proficiency program participation and indicators for students with 
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speech/language, learning, cognitive, physical, emotional and “other” disabilities.  Five variables 

capture important elements of classroom composition:  the proportion of classmates who are 

female, the proportion who are black, the proportion who changed schools from the previous 

year, the average age of classroom peers and the total number of students in the class.  For 

teachers we observe their experience (captured by a set of six indicators representing 1-2, 3-4, 5-

9, 10-14 15-24 and 25+ years of experience), their recent in-service professional development 

(non-content and content oriented training hours in each of the previous three years), educational 

attainment (captured by an indicator for possession of an advanced degree), and an indicator of 

whether or not they are fully certified or hold a temporary license. We do not include teacher 

variables in our models for estimating teacher effects since they might be a component of the 

teacher effect of interest.  However, we use them in post hoc analyses to determine how much 

year-to-year fluctuations in these variables contribute to the non-persistent change in estimated 

effects. At the school level we have time-varying data on the experience of the principal in 

administrative positions, the principal’s experience squared and whether the principal is in her 

first year as a principal at the school. 

 To ensure consistency in the samples used to estimate the three achievement model 

specifications, we restrict the sample to only those students with non-missing data on all of the 

student, peer, teacher and school variables and who possess at least two achievement gain scores 

(required for the model with student fixed effects).  For analyses comparing the FCAT-SSS and 

FCAT-NRT exams we exclude any observations that lack valid data on both exam scores, 

ensuring comparability in the estimation samples. 
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V. Results

A. Sampling Error and the Variance of Estimated Teacher Effects 

As noted above, sampling errors for individual students tend to average out across a 

teacher’s students and thus to the extent that sampling error contributes to variability in teacher 

effect estimates, variance should fall within the number of students per teacher per year.  The 

effect of the number of tested students per teacher on the precision of the teacher effect estimates 

is illustrated in Figure 1 and Table 1.  Table 1 gives the average standard error by numbers of 

students used in estimating the teacher effects by county, grade level (elementary or middle) and 

model.  For each county and grade level there are three rows, corresponding to teacher effect 

estimates derived by estimating equations 4A-4C.  Figure 1 summarizes Table 1 by pooling data 

across counties. 

The mean standard errors of the teacher effects for teachers with fewer than five students 

are very high, ranging from .46 to .92 depending on models and grade levels.  Since the test 

scores are normed to have mean zero and standard deviation of one, a standard error of the 

teacher estimate of .5 indicates that even if teachers had no true effects and all the variability 

among teachers were sampling error, the variability among teachers would equal about 25 

percent of the variance among students. Hence estimates for teachers based on very few students 

will tend to be extremely unstable across time.  However, the standard errors of the teacher 

effects uniformly decrease with the number of students per teacher.  Given that the sample sizes 

diminish considerably above 15 students per teacher in elementary school, we utilize a 15-

student-per-teacher threshold in the remainder of the analysis.  While middle school teachers 

with 20 or more students exhibit much lower mean standard errors in their estimated teacher 
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effects, the chosen 15-student minimum makes little difference; since they teach multiple classes 

in a school day, most middle school teachers teach more than 20 students in a school year. 

Generally, the mean standard errors are similar between middle and elementary school 

teachers, except for the teachers with 20 or more students because middle school teachers in this 

group tend to have more students than elementary school teachers.  Among models that use 

student covariates to control for student ability and family inputs, the standard errors of 

estimated teacher effects are insensitive to whether or not we assume complete or partial 

persistence of prior inputs. This suggests that either subtracting the prior score from the current 

score or controlling for it via regression accounts for about equal amounts of the variability in 

student scores.

The estimated teacher effects from the model with student fixed effects and complete 

persistence of past schooling inputs exhibit much higher average standard errors than the 

estimated effects from the other models.  This is not surprising, given that there tends to be 

considerable variation among gain scores within students which suggest that neither student 

fixed effects nor time-invariant student covariates will explain a sizeable portion of the total 

variance in gain scores.  Fixed effects, however, use many more degrees of freedom for 

explaining this variation in gain scores and these appear to be collinear with the teacher effects.  

This reduces the independent information we have for estimating teacher effects and 

consequently yields larger standard errors than do the models that employ student covariates to 

capture student heterogeneity. As described above, sampling errors are only one of two sources 

of inter-temporal variability among estimated effects – non-persistent change is the other – and 

how these two sources will play out among our different models and counties is explored 

through our study of the variability of estimated teacher effects. 
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We describe the variation over time in estimated teacher effects in two ways.  First, in 

Table 2 we present correlations between estimated effects from adjacent years, broken down by 

grade level, for each of the five county-level school districts.  In Table 3, we decompose the 

variance in estimated teacher effects from each model into the variance due to sampling error, 

non-persistent change, and persistent effects, again by model, county and grade-level.  In Table 

4, we demonstrate the implications of the inter-temporal variability of effects by exploring 

changes in quintile rankings of teachers based on estimated effects.  

As shown in Table 2, estimates of cross-year correlations cover a wide range, but 

generally fall between 0.2 to 0.5 for elementary school teachers and 0.3 to 0.6 for middle school 

teachers.  These values are consistent with those from prior studies of the inter-temporal 

variability of teacher effects in other jurisdictions.  The difference between elementary school 

and middle school teachers is due in part to larger average number of students per teacher in 

middle schools and the resulting smaller standard errors in the estimated teacher effects. There 

are some differences across counties, but generally the estimates are similar and differences that 

do exist are not systematic. 

There are, however, notable differences across models that are consistent across counties 

and grade-levels.  In particular, the model with student covariates and partial persistence in past 

schooling inputs (Model 4B) yields estimates with the highest correlations in all cases.  The 

cross-year correlations for estimates from this model tend to be about .10 to .14 higher than the 

correlations for other models in elementary school and about .23 higher than the correlations for 

other models in middle school.  The difference in correlations of estimates between Model 4B 

and Model 4C (the model with student fixed effects and complete persistence in past schooling 

inputs) might be explained by the larger sampling errors in the estimates from Model 4C; as 
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shown in Table 1, the standard errors are on average about 75 to 80 percent larger for the 

estimates from Model 4C than for Model 4B.  However, differences in the magnitude of 

sampling errors cannot be the source of the differences in the year-to-year correlation of 

estimates from Models 4A and 4B (the models with student covariates effects and differing 

persistence in past schooling inputs) because their average sampling errors are nearly identical. 

For each model and county, Table 3 provides the average reliability (ratio of annual 

signal variance to total variance) across teachers and the proportion of the annual signal variance 

that is due to non-persistent change.  Estimates from Model 4B have the largest reliability (i.e., 

sampling error accounts for the smallest share of the total variance) and Model 4C has the lowest 

reliability, which might be expected given the large sampling errors in the estimates from Model 

4C (shown in Table 1).  Also, relative to the estimates from Model 4A, non-persistent change 

accounts for a smaller proportion of the signal variance in estimates from Model 4B.  The large 

reliability and relatively large proportion of signal variance due to persistent effects for estimates 

from Model 4B relative to Model 4A result because the variance of persistent effects is larger for 

the estimates from Model 4B and this leads to larger year-to-year correlations for Model 4B, 

even though the standard errors are roughly equal for the two models.   

 Another interesting feature of the decomposition presented in Table 3 is the relatively 

large size of the variance due to non-persistent change, especially for elementary school teachers.

On average across counties, non-persistent change accounts for 30 to 40 percent of the signal 

variance of estimates for middle school teachers, depending on the model, whereas it accounts 

for between 46 and 54 percent of the signal variance of estimates for elementary teachers.  These 

proportions are large and suggest that there is considerable year-to-year variability in teacher 

performance measures even after accounting for sampling error.  However, this variance is not 
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explained by our observed time-varying teacher characteristics.  County-level estimates of the 

percent of variance explained by these time-varying teacher characteristics were unstable, but 

analyses of pooled data from all five counties found that the percent of the variance in non-

persistent effects explained by time-varying variables was less than one percent for elementary 

school teachers and two to seven percent, depending on the model, for middle school teachers. 

The relatively weak stability of estimated effects across years would clearly have 

implications for using these effects for high-stakes personnel decisions. For example, rankings of 

teachers will tend to be unstable and rewards or sanctions based on ranks may be ineffective at 

achieving their goals.  This is demonstrated in Table 4, which provides a tabulation of 

consecutive-year teacher rankings by quintile for each of the five school districts in the sample 

pooled across all years.  Because of the instability of the estimated effects, only about one-third 

of teachers ranked in the top 20 percent one year are also ranked in the top quintile the following 

year and just half of the top-quintile teachers in a given year stay within the top two quintiles the 

next year.  About 10 percent of these teachers are actually ranked in the bottom quintile the 

following year. Similarly, about one-third of the teachers in the lowest quintile in one year 

remain in the lowest quintile the next year, over half stay in the bottom two quintiles, and 

roughly 10 percent ranked in the top quintile the next year.

B. Stability of Performance in Other Professions

It is common to think of teacher performance as being relatively stable, i.e., a “good 

teacher” is always a “good teacher.”  Thus at first blush the inter-temporal correlations and 

associated consistency in teacher rankings may seem “too low,” suggesting that the indirect 

method of evaluating teacher productivity through student test scores is leading to excessive 

variability in measured teacher performance.  However, the inter-temporal correlations we obtain 
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are not out of line with those from other occupations where productivity can be measured more 

directly.  Table 5 provides a summary of analyses of worker performance in other occupations 

including manufacturing employees, sales persons, university faculty, and professional athletes.  

As shown in the table, the correlation of most performance measures is modest at best, even for 

professions where first impression might suggest performance is very stable (major league 

hitters) and where very high-stakes decisions are based on the performance measures. 

Performance measures can be very highly correlated for individualized, repetitive tasks over 

short periods of time.  For instance, the weekly output of piece-rate textile workers in contiguous 

weeks exhibits a correlation of about 0.9.  However, even in these circumstances, when 

performance is compared over longer time spans, correlation in performance drops to about 0.55.  

For salespersons, university faculty, and baseball players, correlations in within-worker 

performance across months or years generally falls in the same range as we estimate for 

elementary and middle school teachers, about 0.2 to 0.7.   

C. Differences in Stability Across Test Instruments 

The analysis thus far has focused on estimated teacher effects based on student test scores 

from the Normed-Referenced Florida Comprehensive Assessment Test or FCAT-NRT.  This is a 

“low-stakes” test in Florida, since it is not used in promotion decisions, teacher merit pay 

allocations or school grade assignments.  One might expect that a different exam, such as 

Florida’s high-stakes criterion reference exam, the FCAT-SSS, would yield different results for 

three reasons.  First, if different tests emphasize different kinds of material and the skills tested 

change more often for one test than another, then inter-temporal stability in estimated teacher 

effects can vary across tests.  Second, different tests may have different effective maximums or 

“test ceilings.”  A test with a low ceiling would tend to truncate scores for high-achieving 
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students and this might influence fluctuations in measured teacher performance over time.  

Third, there may be greater variation in teacher behavior over time with respect to a high-stakes 

test due to differential accountability pressure.  If incentives to “teach to the test” vary over time 

with the degree of accountability pressure, this could increase the degree of measured variability 

in teacher performance over time.  

As indicated in Table 6, using gains in the normed FCAT-SSS, rather than gains in the 

normed FCAT-NRT, does lead to differences in year-to-year correlations of teacher 

effectiveness, but there are no clear patterns that emerge.  In some counties, the correlations are 

higher on FCAT-SSS than on the FCAT-NRT, whereas the opposite holds in other counties, and 

the estimates are nearly equal in others.  Although these results demonstrate that using different 

tests can affect the stability of estimated teacher effects, the cause of those differences is not 

clear and additional data on how students are prepared for the exams in each district and year and 

how well the FCAT-NRT aligns with the curriculum might provide insights into the differences.   

A decomposition of the variance finds that the sampling error accounts for a smaller 

portion of the variance in teacher effects estimated with the FCAT-SSS (about 30 percent) than 

with the FCAT-NRT (about 43 percent) even when using the same students and models.  The 

decompositions also reveal that as with the FCAT-NRT, on average a greater share of the signal 

variance is within-teacher for elementary school teachers than middle school teachers, although 

the difference is less pronounced with the FCAT-SSS.  Comparisons across models are also 

similar for the two tests.  Estimates for models with partial persistence and student covariate 

controls have greater reliability than either of the other models. Similarly, the reliability of 

estimates from models with complete persistence and student fixed effects are again lower than 
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for other models because of the increase in sampling error, but the differences among models are 

less pronounced for the FCAT-SSS. 

D. Single-Year vs. Multi-year Estimates of Teacher Effects 

Even though the year-to-year correlations of estimates of teacher effectiveness derived 

from models of student achievement fall within the range of those found in other occupations, 

there may still be concern that value-added estimates of teacher performance may be too variable 

to be acceptable to stakeholders in a high-stakes accountability system.  Given that a large 

proportion of variance in teacher estimates is due to sampling error, averaging teacher estimates 

across years is one potential means of significantly reducing inter-temporal variation in measured 

teacher performance.  However, averaging estimates across years can introduce bias if true 

teacher performance varies across years. This makes averaging across years particularly 

appealing when employing models with student fixed effects, which may reduce bias from 

unobserved student heterogeneity but also tend to have larger sampling errors.  It also means that 

averaging estimated effects across years is somewhat less appealing for elementary school 

teachers, since they appear to exhibit greater within-teacher variation in performance after 

accounting for sampling errors.  Averaging will improve the precision of the estimates but the 

relatively larger inter-year variability among estimated effects for the same teacher means that 

the bias due to combining truly different levels of performance may be significant.  The mean 

squared error (MSE), the expected value of the square of the difference between estimated and 

true performance, is still likely to improve by averaging estimates across years, but bias will 

offset some of the gains from improved precision and the consequences of biasing the estimates 

must be considered. 
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Table 7 presents estimates of the stability coefficient for a single-year and two-year 

average teacher effect estimates.  Consistent with our estimated correlations coefficients, the 

Stability of single-year estimates ranges from about 0.2 to 0.6. In other words, knowing a single 

year estimate of a teacher’s performance reduces our uncertainty in their persistent effect by 

from 20 to 60 percent depending on the county, model, or grade level. Averaging two years of 

estimates reduces uncertainty by another 40 to 60 percent, i.e., increases the stability coefficient 

by 40 to 60 percent.  Because persistent effects account for a smaller portion of the variance in 

single-year estimates for elementary school teachers than middle school teachers, averaging two 

years is slightly more beneficial for elementary school teachers (on average about a 54 percent 

additional reduction in prediction error or increase in the stability coefficient for elementary 

schools compared with a 42 percent reduction for middle schools).  However, because of the 

greater share of variance due to non-persistent change and sampling error in elementary school, 

the Stability of two-year averages is still smaller for elementary school teachers than middle 

school teachers (on average .45 compared to .56), but the difference between the two groups is 

smaller than for single year estimates.   

One advantage of the stability coefficient is that we can extend it to calculate the stability 

of teacher effects for three or more years, and easily compare these averages to averages over 

shorter time spans.  For elementary school teachers, averaging three years of estimates would 

increase the stability coefficient by about 23 percent to roughly .55 on average.  For middle 

school teachers, averaging three years of data only improves that stability by about 18 percent to 

about .66 on average across models and counties. 
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V. Summary and Conclusions

While there is keen interest in making personnel decisions based on objective measures 

of teacher productivity, there is little existing evidence on the inter-temporal variability of 

teacher effects derived from student test scores.  In this paper we construct yearly estimates of 

teacher productivity from models of student achievement and decompose the variability in those 

estimates into persistent components, non-persistent changes and sampling errors.  We consider 

the effects of the number of students per teacher, specification of the underlying achievement 

model, the school district sampled, the test used to measure student achievement, and averaging 

teacher effect estimates over multiple years. 

Consistent with previous research, we find that random variation or sampling error from 

“noise” in student test scores plays an important role in determining the stability of teacher effect 

estimates over time.  The estimated effects for teachers with only a handful of students in a given 

year are very imprecise, though the precision increases substantially with the number of students 

per teacher.

Limiting the samples to teachers with at least 15 students per year and employing 

achievement models without student fixed effects we obtain year-to-year correlations in 

estimated teacher effectiveness of 0.22 to 0.67.  These correlations imply teacher rankings with 

only moderate stability; roughly one-third of top-quintile teachers remain in the top quintile the 

next year while approximately one in ten fall to the bottom quintile of the teacher effectiveness 

distribution.  The results are comparable to those reported by Aaronson, et al. (2007) for Chicago 

and Koedel and Betts (2007) for San Diego.  Though modest, the correlations are also in line 

with previous research on other occupations, such as insurance salesmen and baseball players, 

where output is measured directly.  Given that bonuses based on productivity are relatively 



30

common for salesmen and professional athletes, it may be that the comparably stable estimates 

of teacher productivity derived from value-added models could support a performance-based 

system of compensation for teachers. 

 Decomposition of the variance in estimated teacher effects underscores the role of 

sampling error and highlights the inability of currently available measures to explain inter-

temporal variation in teacher productivity.  We find that approximately one-third to one-half of 

the variation in teacher effects is simply due to sampling error or “noise” in student achievement.  

Of the remaining variance, between one-third and two-thirds is attributable to within-teacher 

variation is effectiveness over time.  Consistent with recent literature on teacher training and 

credentials, very little of the variation in a teacher’s performance over time can be explained by 

observable teacher characteristics such as experience, attainment of advanced degrees or in-

service training.  A unique finding of our study is that elementary school teachers appear to have 

a higher degree of non-persistent change in effectiveness than middle school teachers.  This 

finding warrants future research and may have implications for how pay-for-performance or 

other systems using value-added measures would function differently in these contexts.

Our decomposition also provides new insights into the specification of achievement 

models used to generate estimates of teachers’ “value-added.”  Using student fixed effects in 

models of achievement gains, rather than time-invariant student covariates like race and gender, 

increases sampling error in estimated teacher effects.   Student fixed effects control for between-

student heterogeneity, but relatively little of the variance in achievement gains is between 

students; rather much of it is within students.  Consequently, fixed effects do little to reduce the 

residual variance in the model.  At the same time, the large degrees-of-freedom given to student 

fixed effects allow them to be collinear with teacher fixed effects, reducing the information 
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available for estimating teacher effects.  The loss of information due to collinearity is greater 

than the reduction in residual error, resulting in large sampling errors.   

The decomposition also reveals that models employing student covariates and assuming 

partial persistence of prior schooling inputs yield estimates with larger between-teacher 

variability in the persistent component of teacher effects than other models.  By definition, the 

variability in true teacher effects must be the same for all models.  Consequently, larger variance 

of persistent effects must be due to persistent confounding of the estimated teacher effect by 

unobserved student attributes due to non-random classroom assignment policies that persist over 

time (i.e., some teachers always get the “better” students).  Using a single prior achievement test 

score as a proxy for all prior schooling inputs appears to fail to capture some differences among 

students that gain scores remove.  This leads to confounding in estimates that rely on partial 

persistence that did not result with the other models.  The confounding appears to be somewhat 

greater in middle school, possibly because of tracking of students and teachers consistently 

teaching the advanced or standard mathematics track across years.  This suggests that using 

lagged achievement as a predictor of current achievement levels might lead to biased estimates 

of teacher effects. Other authors have come to similar conclusions about this approach 

(McCaffrey, Han, and Lockwood, forthcoming; Sanders, 2006).  Given the limitations of student 

fixed effects models and the apparent inability of a single lagged test score to account for all 

prior school-based educational inputs, it may be that we need to relax the assumptions about 

equal rates of geometric decay across all prior inputs and consider models that include more 

historical information on students and their teachers, including multiple prior test scores and/or 

fixed effects for prior teachers. 
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 We also find that the test instrument used to measure student achievement can affect the 

inter-temporal variability of estimated teacher effects.  Using a high-stakes criterion-reference 

test (the FCAT-SSS) yields different inter-temporal correlations than a low-stakes normed 

referenced test (the FCAT-NRT) in many cases, though there is no consistent pattern to the 

differences.  However, the decomposition of the variance is generally similar for the two tests 

when we average across districts, although sampling error generally accounts for a smaller 

portion of the variance in the estimates from FCAT-SSS which results in greater stability for 

these estimates compared with estimates based on the FCAT-NRT.   

Our decomposition of the variance also allows us to determine the efficacy of employing 

two-year averages of teacher effects, rather than single-year estimates to determine the relative 

effectiveness of teachers.  Using two-year averages reduces sampling error and increases the 

ability to predict future teacher performance by roughly 50 percent.   

Our findings have important implications for the use of teacher effect estimates in high-

stakes teacher retention or compensation decisions. First, one should be very cautious in 

applying these measures to teachers with few tested students, such as those teaching small 

classes or large numbers of disabled students who are exempted from standardized tests. 

Estimates of these teachers’ value-added will tend to be over-represented in the extremes of the 

distribution, so rewarding or penalizing the top or bottom performers would emphasize these 

teachers and will limit the efficacy of polices designed to identify teachers whose performance is 

truly exceptional. Second, while averaging teacher performance over multiple years could 

obscure true changes in teacher performance, there are significant gains in the stability obtained 

by using two-year average performance measures rather than single-year estimates.  Finally, one 

must recognize that even when multi-year estimates of teacher effectiveness are derived from 
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samples of teachers with large numbers of students per year, there will still be considerable 

variability over time.  Based on our decomposition analysis and comparisons to other 

occupations this appears to reflect true changes in teacher performance over time.  Nonetheless, 

adoption of an accountability system based solely on value-added estimates of teacher 

performance will result in considerable variation in who is rewarded across time. 

Although the stability of estimated teacher effects is moderate, they appear to be as stable 

as estimates of individual worker productivity in other occupations where compensation is a 

function of performance.  However, a policy maker may want to know if the value-added 

measures are “stable enough” to support policy interventions in the educational context.  Of 

course, this requires knowing the anticipated uses of the measures because different uses will 

require different levels of stability.    One proposed application of estimated teacher effects is in 

making tenure decisions.  The goal of such a program is to improve the average effectiveness of 

tenured teachers by removing the least effective teachers from the population.  The results in the 

Technical Appendix and our variance decomposition suggest that if a district were to institute a 

policy where only teachers in the top three quintiles of the distribution of true effectiveness were 

retained (rather than retaining all teachers), then the average effectiveness of teachers would 

improve by about 0.04 of a standard deviation unit of student test scores.  Applying such a policy 

with estimated effects rather than true performance would proportionately reduce the gains in the 

average teacher performance by one minus the square root of the stability coefficient for the 

estimated effects.  With a single year estimate this would imply a reduction of about 47 percent 

for elementary school teachers and about 38 percent for middle school teachers in the gains to 

the average performance of tenured teachers afforded by the tenure policy.  If the policy were 

based on a two-year average the gains using the estimated effects would be about one third 



34

smaller for elementary school teachers and about 25 percent smaller for middle school  teachers 

than the gains the policy would have if true effects were observed.  Thus, the level of stability in 

our estimated effects would not lead to excessive losses in the potential for policies to improve 

the performance of teachers, provided multiple year average effects were used in the policy.  

However, the very small gains in achievement in average teacher performance that are possible 

even if the estimates were error free call into question whether such a policy would be likely to 

lead to substantial gains in student learning. 

Given the small variability in persistent effects, even small biases in terms of student 

variance could have significant effects on the estimates of teacher effects.  Also given that errors 

in the estimates’ performance measures depreciate the effects of policies proportional to the 

square root of the stability which is moderately large for two-year average estimates, bias from 

omitted variables confounding the teacher effects is likely to remain of greater concern than the 

inter-temporal instability of the estimates. 

Our findings also provide at least some suggestive evidence on how value-added 

measures might be used in conjunction with other measures of teacher performance in a system 

of teacher accountability.  Given there appears to be substantial variation in teacher performance 

over time that is not captured by standard measures such as experience and professional 

development, other, more qualitative measures may serve as a complement in evaluating 

teachers.  For example, Jacob and Lefgren (2008) and Harris and Sass (2007) find that principal 

ratings of teachers are positively correlated with teachers’ ability to boost student test scores.  

Further, there is currently active research on the development of new classroom observation 

protocols to measure teacher performance (Blunk, 2007; Danielson and McGreal, 2000; Hill et 

al., 2007; Pianta and Hamre, forthcoming; Pianta, LaParo, and Hamre, 2006) that may prove 
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useful and combining these measures with value-added estimates may provide measures of 

teacher performance with smaller inter-temporal variability. 
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Figure 1.  Mean Standard Error of Estimated Teacher-by-Year Effects by Number of 

Students per Teacher, Grade Level and Model Type, Pooled Across Five Counties, 2000/01-

2004/05

Student controls in the model are denoted by plotting symbols: circles for covariate controls, triangles for fixed 

effects.  Persistence of prior schooling inputs is denoted by line types:  solid lines for complete persistence, dashed 

lines for partial persistence.  Elementary grades are denoted by empty plotting symbols and middle grades are 

denoted by solid plotting symbols. 
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Table 1.  Mean Standard Error of Estimated Teacher-by-Year Effects by Number of 

Students per Teacher, County, Grade Level and Model Type, 2000/01-2004/05 

 Students per Teacher

 Model Type 1-4 5-9 10-14 15-19 20 or more

County Student

Controls

Persistence Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

 Elementary 

Covariates Complete .48  .22  .17  .14  .12  

Covariates Partial .44 396 .20 240 .15 473 .13 1143 .11 4051Dade

Fixed Effects Complete .79  .43  .32  .25  .20  

Covariates Complete .51  .22  .17  .15  .13  

Covariates Partial .46 150 .20 210 .16 645 .14 1242 .12 1265Duval

Fixed Effects Complete .83  .40  .31  .25  .21  

Covariates Complete .55  .22  .17  .15  .13  

Covariates Partial .50 234 .20 157 .16 609 .13 1482 .12 1939Hillsborough

Fixed Effects Complete .88  .36  .29  .26  .21  

Covariates Complete .47  .23  .18  .16  .14  

Covariates Partial .43 188 .21 419 .17 1186 .15 1617 .13 615 Orange

Fixed Effects Complete .79  .43  .33  .27  .23  

Covariates Complete .55  .23  .18  .15  .13  Palm Beach 

Covariates Partial .50 130 .21 140 .16 438 .14 1074 .12 2029
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 Students per Teacher

 Model Type 1-4 5-9 10-14 15-19 20 or more

County Student

Controls

Persistence Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Mean 

Std. 

Error

No. of 

Obs.

Fixed Effects Complete .92  .51  .36  .29  .25  

 Middle 

Covariates Complete .49  .33  .17  .14  .07  

Covariates Partial .44 907 .20 265 .15 137 .13 114 .06 2149Dade

Fixed Effects Complete .76  .39  .27  .23  .12  

Covariates Complete .51  .23  .19  .15  .08  

Covariates Partial .46 348 .21 85 .17 66 .13 63 .08 981 Duval

Fixed Effects Complete .78  .36  .29  .24  .14  

Covariates Complete .52  .23  .17  .16  .09  

Covariates Partial .47 628 .21 241 .16 151 .14 123 .08 1757Hillsborough

Fixed Effects Complete .81  .40  .29  .24  .15  

Covariates Complete .51  .23  .17  .15  .08  

Covariates Partial .47 517 .21 171 .16 124 .13 75 .08 1173Orange

Fixed Effects Complete .81  .38  .29  .25  .15  

Covariates Complete .52  .23  .18  .16  .08  

Covariates Partial .48 550 .21 159 .16 111 .15 107 .07 1243Palm Beach 

Fixed Effects Complete .83  .40  .30  .26  .14  
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Table 2. Pooled Year-to-Year Pairwise Correlations of Estimated Teacher-by-Year Effects 

by County, Grade Level and Model Type, 2000/01-2004/05 (Teachers with  Students in 

a Year) 

 Model Type 

County Student

Controls

Persistence 

Pooled Year-to-

Year Pairwise 

Correlations 

 Elementary 

Covariates Complete .32 

Covariates Partial .46 Dade

Fixed Effects Complete .23 

Covariates Complete .22 

Covariates Partial .30 Duval

Fixed Effects Complete .26 

Covariates Complete .27 

Covariates Partial .35 Hillsborough

Fixed Effects Complete .24 

Covariates Complete .34 

Covariates Partial .43 Orange

Fixed Effects Complete .39 

Covariates Complete .31 

Covariates Partial .44 Palm Beach 

Fixed Effects Complete .16 

 Middle 
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 Model Type 

County Student

Controls

Persistence 

Pooled Year-to-

Year Pairwise 

Correlations 

Covariates Complete .37 

Covariates Partial .67 Dade

Fixed Effects Complete .38 

Covariates Complete .38 

Covariates Partial .53 Duval

Fixed Effects Complete .32 

Covariates Complete .32 

Covariates Partial .47 Hillsborough

Fixed Effects Complete .30 

Covariates Complete .32 

Covariates Partial .61 Orange

Fixed Effects Complete .33 

Covariates Complete .29 

Covariates Partial .51 Palm Beach 

Fixed Effects Complete .28 
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Table 3.  Variance Decomposition of Estimated Teacher-by-Year Effects by Grade Level 

and Model Type, 2000/01-2004/05 (Teachers with  Students in a Year) 

 Model Type 

County Student 

Controls 

Persistence

Reliability  

(Average of the Ratio 

of Signal Variance to 

Total Variance)a

Proportion of Signal 

Variance Due to 

Variance of Non-

persistent Change 

 Elementary 

Covariates Complete .708 .581 

Covariates Partial .764 .422 Dade

Fixed Effects Complete .570 .529 

Covariates Complete .638 .735 

Covariates Partial .700 .603 Duval

Fixed Effects Complete .556 .684 

Covariates Complete .554 .561 

Covariates Partial .654 .490 Hillsborough

Fixed Effects Complete .436 .530 

Covariates Complete .569 .456 

Covariates Partial .673 .354 Orange

Fixed Effects Complete .394 .229 

Covariates Complete .587 .541 

Covariates Partial .736 .409 Palm Beach 

Fixed Effects Complete .445 .647 
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 Model Type 

County Student 

Controls 

Persistence

Reliability  

(Average of the Ratio 

of Signal Variance to 

Total Variance)a

Proportion of Signal 

Variance Due to 

Variance of Non-

persistent Change 

 Middle 

Covariates Complete .655 .348 

Covariates Partial .820 .256 Dade

Fixed Effects Complete .445 .200 

Covariates Complete .647 .384 

Covariates Partial .774 .293 Duval

Fixed Effects Complete .432 .283 

Covariates Complete .564 .439 

Covariates Partial .713 .396 Hillsborough

Fixed Effects Complete .394 .318 

Covariates Complete .564 .432 

Covariates Partial .799 .270 Orange

Fixed Effects Complete .326 .192 

Covariates Complete .557 .458 

Covariates Partial .799 .348 Palm Beach 

Fixed Effects Complete .339 .333 

aSignal variance equals the sum of the persistent effect variance and the non-persistent change variance 
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Table 4. Pooled Quintile Rankings of Estimated Math Teacher Fixed Effects in Year t and 

Year t+1, 2000/01 - 2004/05: Percent of Teachers by Row (Teachers with  Students in a 

Year) [Model with Complete Persistence and Student Fixed Effects] 

Elementary 

Quintile Ranking in Year t+1 

Quintile
Ranking in 

Year t 
County

Bottom 

20%

Second

20%

Third 

20%

Fourth

20%

Top

20%

Dade 30 26 20 14 11 

Duval 33 19 22 14 11 

Hillsborough 33 20 18 14 15 

Orange 41 25 16 9 10 

Bottom 
20% 

Palm Beach 31 18 18 18 16 

Dade 11 16 16 23 33 

Duval 11 15 14 20 39 

Hillsborough 11 14 16 26 33 

Orange 10 14 18 23 35 

Top
20% 

Palm Beach 15 14 20 19 32 

Middle

Quintile Ranking in Year t+1 

Ranking in 
Year t County Bottom Second Third Fourth Top 
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20% 20% 20% 20% 20%

Dade 37 21 21 11 10 

Duval 42 22 19 12 5 

Hillsborough 24 28 23 17 8 

Orange 38 27 16 10 9 

Bottom 
20% 

Palm Beach 33 21 17 19 10 

Dade 7 15 15 28 35 

Duval 8 16 26 18 33 

Hillsborough 8 10 19 26 38 

Orange 13 15 18 26 28 

Top
20% 

Palm Beach 9 16 21 23 30 
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Table 5.  Analyses of Individual Performance Over Time in Occupations Other Than K-12 

Teaching

Study Occupation Output Measure 
Frequency of 

Observations

Period-to-

Period

Correlation in 

Output

Rothe (1978) 
Four Groups of 

Foundry Workers

Average quantity of 

output produced 
weekly

.67-.82

(medians) 

Rambo, Chomiak and 

Price (1983) 

Two Groups of 

Textile Workers

Average hourly 

piece-rate earnings
weekly

.94-.98

(medians) 

Deadrick and Madigan 

(1990)

Sewing Machine 

Operators

Average hourly 

piece-rate earnings
weekly

.92 (median, 1-

week interval)

.55 (23-week 

interval) 

Hoffman, Jacobs and 

Baratta (1993) 

Insurance 

Salespersons 

Value of insurance 

policies sold 
monthly .22-.63 

Ployhart and Hakel 

(1998)

Securities

Analysts

Gross sales 

commissions 
quarterly .59-.71 

Hanges, Schneider and 

Niles (1990) 

University

Faculty
Student ratings semester .38-.72 

Henry and Hulin (1987) Baseball Hitters Runs produced yearly .47-.59 
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Study Occupation Output Measure 
Frequency of 

Observations

Period-to-

Period

Correlation in 

Output

Henry and Hulin (1987) Baseball Pitchers

Composite of earned 

run average, walks 

and strike outs 

yearly .51-.76 

Hoffman, Jacobs and 

Gerras (1992) 
Baseball Hitters Batting average yearly .32-.48 

Hoffman, Jacobs and 

Gerras (1992) 
Baseball Pitchers Earned run average yearly .12-.45 

Bradbury (2007) Baseball Pitchers

Strikeouts

Walks 

Hit batters 

Home runs allowed

Earned run avg. 

Batting avg. for 

balls in play 

yearly

.78

.64

.51

.47

.35

.25

(pooled)
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Table 6.  Pooled Year-to-Year Pairwise Correlations of Estimated Teacher-by-Year Effects 

by County and Exam Type, 2001/02-2004/05 (Teachers with 15 Students in a Year) 

[Model with Student Fixed Effects and Complete Persistence] 

County Exam 
Pooled Year-to-Year 

Pairwise Correlations 

 Elementary 

FCAT-NRT .17 
Dade

FCAT-SSS .28 

FCAT-NRT .30 
Duval

FCAT-SSS .16 

FCAT-NRT .24 
Hillsborough

FCAT-SSS .31 

FCAT-NRT .41 
Orange

FCAT-SSS .30 

FCAT-NRT .30 
Palm Beach 

FCAT-SSS .48 

 Middle 

FCAT-NRT .40 
Dade

FCAT-SSS .33 

FCAT-NRT .39 
Duval

FCAT-SSS .39 

Hillsborough
FCAT-NRT .26 
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County Exam 
Pooled Year-to-Year 

Pairwise Correlations 

FCAT-SSS .22 

FCAT-NRT .41 
Orange

FCAT-SSS .27 

FCAT-NRT .28 
Palm Beach 

FCAT-SSS .38 

Note: the sample used in estimating effects includes only observations with both non-missing FCAT-SSS and  
FCAT-NRT scores.
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Table 7.  Comparison of Predictive Power of Single-Year and Two-Year-Average 

Estimated Teacher Effects by County, Grade Level and Model Type (Teachers with 

Students in a Year) 

Model Type

Stability

(Relative Reduction in  

Prediction Error Variance) 

County Student 

Controls 
Persistence

Single-Year  

Estimate 
Two-Year Average 

 Elementary 

Covariates Complete .297 .457 

Covariates Partial .442 .612 Dade

Fixed Effects Complete .268 .419 

Covariates Complete .169 .289 

Covariates Partial .278 .435 Duval

Fixed Effects Complete .176 .297 

Covariates Complete .243 .391 

Covariates Partial .333 .499 Hillsborough

Fixed Effects Complete .205 .336 

Covariates Complete .310 .472 

Covariates Partial .435 .606 Orange

Fixed Effects Complete .304 .460 

Palm Beach 
Covariates Complete .269 .424 
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Model Type

Stability

(Relative Reduction in  

Prediction Error Variance) 

County Student 

Controls 
Persistence

Single-Year  

Estimate 
Two-Year Average 

Covariates Partial .435 .606 

Fixed Effects Complete .157 .268 

 Middle 

Covariates Complete .427 .594 

Covariates Partial .610 .755 Dade

Fixed Effects Complete .356 .514 

Covariates Complete .399 .567 

Covariates Partial .547 .705 Duval

Fixed Effects Complete .310 .464 

Covariates Complete .316 .476 

Covariates Partial .430 .599 Hillsborough

Fixed Effects Complete .269 .417 

Covariates Complete .320 .481 

Covariates Partial .583 .735 Orange

Fixed Effects Complete .263 .409 

Covariates Complete .302 .458 Palm Beach 

Covariates Partial .520 .681 
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Model Type

Stability

(Relative Reduction in  

Prediction Error Variance) 

County Student 

Controls 
Persistence

Single-Year  

Estimate 
Two-Year Average 

Fixed Effects Complete .226 .361 



56

Technical Appendix 

This technical appendix provides additional details on the relationship between Stability and the 

adjacent year correlation in estimated effects, as well as the relationship between Stability and 

the expected effects of using value-added estimates as the basis for awarding tenure.  It also 

examines the relationship between Stability and the properties of quintile rankings. 

A. Adjacent Year Correlation

 The correlation between estimated effects from two adjacent years is defined as the 

ratio of the covariance of the estimates to the square root of the product of their variances: 

Corr( kt, kt+1) = 
1

1,

ktkt

ktkt

VarVar
Cov

.

The Cov( kt, kt+1) = E(( k + kt + kt) × ( k + kt+1 + kt+1)) = E( k × k) = Var( k), because by 

definition the sampling errors and non-persistent changes are independent across years and 

independent of the persistent effects.  Assuming the variance of the sampling error and non-

persistent change is constant across years then Var( kt) = Var( kt+1) = 2  2  + se2 and  

Corr( kt, kt+1) = 222

2

se
 = Stability.

B. Tenure Awards 

 We consider an extreme case of the proposal to use value-added estimates in the 

determination of teacher tenure (Gordon et al., 2006).  In this extreme case tenure decisions will 

be based only on value-added measures and tenure will be awarded to all teachers above the 

100pth percentile of the distribution of estimated effects.  If the persistent effects are truly 

normally distributed and we could observe persistent effects, then the mean of the distribution of 



57

effects for a tenured teacher is given by the mean of a normal distribution with mean zero and 

variance 2 truncated below at the 100pth percentile: 

Mean of Persistent Effect of Tenured Teacher Given Perfect Information = (p)

where (p) = ( p)/(1-p) and  is the standard normal density function and p is the pth quantile 

of the standard normal distribution, i.e., the probability that a standard normal random variable 

less than or equal to p is p (Greene, 2000, p. 900); (.25) = .42 and (.5) = .80.  If we tenured 

all teachers the mean persistent effect would be zero.  Using a cutoff of the 25th percentile would 

improve the mean persistent effect among tenured teachers by .42 and using the median as the 

cutoff would improve the mean by .80 .

 If instead the decision was based on estimated effects with total variance v2 = 2  2

+ se2, then the mean persistent effect for tenured teachers would be the expected value of a 

truncated normal distribution but the truncation is based on a noisy variable.  Let  denote the 

persistent effect and  denote the estimated effect. Tenured teachers are then all teachers above 

the 100pth percentile on the noisy measure; i.e. teachers with  > v p, and the expected persistent 

effect for these teachers is: 

        E( v p  E{E( v p

v2 × v p

v2 ×v (p)

    22 v × (p).
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Thus, the gains in average teacher performance from using estimated teacher effects for tenure 

would be 22 v , the square root of Stability, times as large as the gains from a tenure decision 

based on the true persistent effects. For stability of roughly .30 we would recover about 55 

percent of the maximum gains.  If we used a two-year average where we might have stability of 

about .45 then we would recover about two thirds of the maximum gains from this hypothetical 

tenure policy.  Thus even with the modest reliability of a two-year average of estimated effects, 

we could recover a substantial portion of the maximum gains. 

C. Stability of Quintile Rankings 

Assuming a large sample of teachers, normally distributed estimated teacher effects and 

constant standard errors across teachers and years, then the probability that the estimated effect 

for a teacher in is in the a quintile in year t and the b quintile in year t + 1 is given by the 

probability of observing values from a bivariate normal distribution in the quintile of the 

distribution.  The probability is given by: 

P( it is in quintile a and it+1 is in quintile b) = 1
12.

)12(.

2.

)12(.

|, tt

v

v

v

v

tt ddS
vv

a

a

b

b

, (A1) 

assuming that Var( it) = Var( it+1) = v2, 2a) = .2a for a=0, 1, …, 5, where (u) denotes the 

cumulative density function of the standard normal distribution evaluated at u and (ut,ut+1| )

denotes a bivariate normal density with zero means, variances one and correlation .  As shown 

above, the correlation of the two estimated effects is the Stability, S.  Equation A1 yields, 

P( it+1 is in quintile b it is in quintile a) = 
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It is clear from Equation A2 that the conditional probabilities are a function of Stability.  We 

evaluated the equation via Monte Carlo simulation and plot values as a function of Stability for a

= 1 and b=1, 2, 3, 4, and 5 in Figure A1. 
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Figure A1.  Probability of a Teacher’s Estimated Effect Being in Quintile q in Year t+1 

Given the Estimated Effect Was in Quintile 1 in Year t as a Function of Stability
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