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Name _____________________ Date __________ Partners ________________ 

TA      ________________ Section _______   ________________ 

 
Measurement, Uncertainty, and Uncertainty Propagation 

Objective: To understand the importance of reporting both a measurement and its 
uncertainty and to address how to properly treat uncertainties in the lab. 

Equipment: meter stick, 2-meter stick 

 

DISCUSSION 

Understanding nature requires measuring things, be it distance, time, acidity, or social 
status. However, measurements cannot be “exact”. Rather, all measurements have 
some uncertainty associated with them.1 Thus all measurements consist of two 
numbers: the value of the measured quantity and its uncertainty2. The uncertainty 
reflects the reliability of the measurement. The range of measurement uncertainties 
varies widely. Some quantities, such as the mass of the electron me = (9.1093897 ± 

0.0000054) ×10-31 kg, are known to better than one part per million. Other quantities are 
only loosely bounded: there are 100 to 400 billion stars in the Milky Way. 

Note that we not talking about “human error”! We are not talking about mistakes! 
Rather, uncertainty is inherent in the instruments and methods that we use even when 
perfectly applied. The goddess Athena cannot not read a digital scale any better than 
you. 

Significant Figures 

The electron mass above has eight significant figures (or digits). However, the 
measured number of stars in the Milky Way has barely one significant figure, and it 
would be misleading to write it with more than one figure of precision. The number of 
significant figures reported should be consistent with the uncertainty of the 
measurement. In general, uncertainties are usually quoted with no more significant 
figures than the measured result; and the last significant figure of a result should match 
that of the uncertainty. For example, a measurement of the acceleration due to gravity 

on the surface of the Earth might be given as g = 9.7 ± 1.2 m/s2 or g = 9.9 ± 0.5 m/s2 but 

                                                 
1 Possible exceptions are counted quantities. “There are exactly 12 eggs in that carton.” 

2 Sometimes this is also called the error of the measurement, but uncertainty is the modern preferred term. 
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not as g = 9.7 ± 1.25 m/s2 or g = 9.92 ± 0.5 m/s2. In the last two cases, the last 
significant figure of the result and uncertainty do not match. 

When multiplying or dividing two numbers that have the same number of significant 
figures but differ in magnitude (e.g. 125 × 5.25), the final results should be quoted to the 
same number of significant figures (656).  When adding and subtracting a two numbers, 
the lowest number of decimal places is used to specify the number of significant figures. 
(10.3 + 11.256 = 21.6)  

To minimize errors in calculations due to round off during intermediate calculations, you 
should generally keep at least one additional significant figure than is warranted by the 
uncertainties in each number. 

Work out the following examples in your lab write-up: 

1. The length of the base of a large window is measured in two steps. The first 

section has a length of 1=1.22 m and the length of the second section is 

2=0.7 m. What is the total length of the base of the window? 

 
 
 

2. A student going to lunch walks a distance of x = 102 m in t = 88.645 s.  What 
is the student's average speed? 

 
 
 
 
 
Types of uncertainties 

A systematic uncertainty occurs when all of the individual measurements of a quantity 
are biased by the same amount. These uncertainties can arise from the calibration of 
instruments or by experimental conditions such as slow reflexes on a stopwatch.  

Random uncertainties occur when the result of repeated measurements vary due to truly 
random processes. For example, random uncertainties occur due to small fluctuations in 
experimental conditions or due to variations in the stability of measurement equipment. 
These uncertainties can be estimated from the distribution of values in repeated 
measurements. 
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Mistakes can be made in any experiment, either in making the measurements or in 
calculating the results. However, by definition, mistakes can also be avoided. Such 
blunders and major systematic errors can only be avoided by a thoughtful and careful 
approach to the experiment. 

 

 Estimating uncertainty 

By eye or reason: Measurement uncertainty can often be reasonably estimated from 
properties of the measurement equipment. For example, using a meter stick (with 
marks every millimeter), a straight line can be easily measured to within half a 
millimeter. For an irregularly-edged object, the properties of its edges may limit the 
determination of its length several millimeters. Your reasoned judgment of the 
uncertainty is quite acceptable. 

By repeated observation: If a quantity x is measured repeatedly, then the average or 
mean value of the set of measurements is generally adopted as the "result". If the 
uncertainties are random, the uncertainty in the mean can be derived from the variation 
in the set of observations. Shortly, we will discuss how this is done. (Oddly enough, 
truly random uncertainties are the easiest to deal with.) 

 

Useful definitions 

Here we define some useful terms (with examples) and discuss how uncertainties are 
reported in the lab. 

Absolute uncertainty: This is the magnitude of the uncertainty assigned to a measured 
physical quantity. It has the same units as the measured quantity. 

Example 1.  Suppose we need 330 ml of methanol to use as a solvent for a chemical 
dye in an experiment. We measure the volume using a 500 ml graduated cylinder that 
has markings every 25 ml. A reasonable estimate for the uncertainty in our 
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measurements is ½ of the smallest division. Thus we assign an absolute uncertainty to 
our measurement of ∆V = ±12 ml. Hence, we state the volume of the solvent (before 
mixing) as V = 330±12 ml. 

Relative uncertainty: This is the ratio of the absolute uncertainty and the value of the 
measured quantity. It has no units, that is, it is dimensionless. It is also called the 
fractional uncertainty or, when appropriate, the percent uncertainty. 

Example 2.  In the example above the fractional uncertainty is 

 
12 

0.036 3.6%
330 

V ml

V ml


     (0.13) 

 

Reducing random uncertainty by repeated observation 

By taking a large number of individual measurements, we can use statistics to reduce 
the random uncertainty of a quantity. For instance, suppose we want to determine the 
mass of a standard U.S. penny. We measure the mass of a single penny many times 
using a balance and interpolate between divisions by eye. The results of 17 
measurements on the same penny are summarized in Table 1. 

 

Table 1.  Data recorded measuring the mass of a US penny. 

mass (g)  deviation (g)  mass (g)  deviation (g) 

1  2.43 -0.088 10 2.46 -0.058 

2  2.49 -0.028 11 2.52 0.002 

3  2.49 -0.028 12 2.4 -0.118 

4  2.58 0.062 13 2.58 0.062 

5  2.52 0.002 14 2.61 0.092 

6  2.55 0.032 15 2.49 -0.028 

7  2.52 0.002 16 2.52 0.002 

8  2.64 0.122 17 2.46 -0.058 

9  2.55 0.032 

The mean value m̄ of the measurements is defined to be 
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The deviation di of the ith measurement mi from the mean value m̄ is defined to be 

 i id m m    (0.15) 

Fig. 1 shows a histogram plot of the data on the mass of a US penny. Also on the graph 
is a plot of a smooth, bell-shaped curve that represents what the distribution of 
measured values would look like if we took many, many measurements. The result of a 
large set of repeated measurements subject only to random uncertainties will always 
approach a limiting distribution called the normal or Gaussian distribution. The larger 
the number of measurements, the closer the data will approach the normal distribution. 
This ideal curve has the mathematical form: 
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  (0.16) 

where N is the total number of measurements. The normal distribution is symmetrical 
about m̄.   

 

 

Figure 1.  The Gaussian or normal distribution for the mass of a penny N=17, m̄ =2.518 g, 
∆m=0.063 g. 

We now define the standard deviation ∆m as 
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For standard distributions, 68% of the time the result of an individual measurement 
would be within ± ∆m of the mean value m̄.  Thus, ∆m is the experimental uncertainty for 
an individual measurement of m.   

But the mean m̄ should be better than any individual measurement. How much better? 
It can be shown that this uncertainty or the standard deviation of the mean is  

 
m

m
N


    (0.18) 

 With a set of N=17 measurements, our result is 
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Thus, if our experiment is subject to random uncertainties in an individual measurement 
of ∆m, we can improve the precision of that measurement by doing it repeatedly and 
taking the mean of those results. Note, however, that the precision improves only as 

1/ N  so that to improve by a factor of say 10, we have to make 100 times as many 
measurements. We also have to be careful in trying to get better results by letting      
N→ ∞, because the overall accuracy of our measurements may be limited by systematic 
errors, which do not cancel out the way random errors do.  

 

Combination and propagation of random uncertainties 

To obtain a final result, we have to measure a variety of quantities (say, length and time) 
and mathematically combine them to obtain a final result (speed). How the uncertainties 
in individual quantities combine to produce the uncertainty in the final result is called the 
propagation of uncertainty. 

For all these formulae, it is important that the quantities being combined are the results 
of truly independent measurements and that the uncertainty ∆x assigned to quantity x 
not be related to the uncertainty ∆t assigned to quantity t. For example, we may 
measure the speed of an object by measuring a distance (using a meter stick) and the 
time it takes to traverse that distance (using a clock). The measurement of time and 
distance can be truly independent as they are done with two measurement devices and 
there is no reason to think that if the time measurement is too large, then the distance 
measurement is also too large. 
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Here we summarize a number of common cases. For the most part these should take 
care of what you need to know about how to combine uncertainties. 

Uncertainties in sums and differences:  

If several quantities 1 2 3., ,x x x  are measured with independent, random uncertainties 

1 2 3., ,x x x    then the uncertainty in Q where 1 2 3Q x x x    is 

 2 2 2
1 2 3Q x x x         (0.20) 

In other words, the random uncertainties add as the square root of the sum of the 
squares, whether the terms are all added, subtracted, or some combination of the two. 

 

Uncertainties in products and quotients:  

 Several quantities x, y, z (with independent, random uncertainties ∆x, ∆y, ∆z,) combine 
to form Q, where  

 
x y

Q
z

   (0.21) 

(or any other combination of multiplication and division). Then the uncertainty in Q will be 
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In other words, the fractional uncertainties combine as the square root of the sum of the 
squares of the individual fractional uncertainties in the component terms. 
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EXERCISES: 

Neatly tabulate and record your data on a separate sheet. Present your calculations so 
that it is clear what equations and data you used to find what numbers. 

1. In the book of Genesis (Chapter 6) it is recorded that God told Noah to build an 
ark (that is to say, a box).  

"The length of the ark shall be 300 cubits, its breadth 50 cubits, and its height 30 cubits".  

A cubit is the length of the forearm from the elbow to the tip of the middle finger.  

a .  First, determine the mean length of a cubit in meters by measuring the 
appropriate length on each student in the lab. 

b .  Calculate the standard deviation of these measurements. 
c .  What is your “official” value of a cubit and its associated uncertainty?  
d .  What is your best estimate of the volume of Noah's Ark? (Give both your 

estimate of the volume of the Ark and the uncertainty in the volume.) 
e .  What systematic uncertainties might contribute to your estimate of the ark's 

volume?  
 

2 .   Noah must walk around the ark to inspect it. 
a .  Develop and implement a procedure to measure your walking speed and the 

associated uncertainty. Briefly describe your procedure, tabulate your data 
and present your results 

b .  Calculate the time required to walk around the ark and the associated 
uncertainty. 



Velocity and Acceleration  213 

Vanderbilt University, Dept. of Physics & Astronomy    Modified from: RealTime Physics, P. Laws, D. Sokoloff, R. Thornton 
General Physics Part A, Spring 2013                        and University of VA Physics Labs: S. Thornton 

 
Name________________________ Section _______ Date_____________ 

 
PRE-LAB PREPARATION SHEET FOR  

Position, Velocity, and Acceleration in one-dimensional motion 

 (DUE AT THE BEGINNING OF LAB) 
 

 
Read over the lab and then answer the following questions 

 

1. Given the following position curve, sketch the corresponding velocity curve. 

 

2. Imagine kicking a box across the floor: it suddenly starts moving, slides for a 
short distance, and comes to a stop. Make a sketch of the position and velocity 
curves for such motion. 
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3. Go to the following website and watch the Java applet. 

 

Physics.bu.edu/~duffy/semester1/c01_motion.html 

 

 Sketch the position vs. time curve for the lavender ball during constant acceleration. 
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Position, Velocity, and Acceleration in one-dimensional motion 

 
Objectives:  

 To understand graphical descriptions of the motion of an object. 
 To understand the mathematical and graphical relationships among position, 

velocity and acceleration 

Equipment: 
 2.2-meter track w/ adjustable feet and end stop 
 A block to raise one end of the cart 
 Motion sensor 
 Torpedo level 
 PASCO dynamics cart 

 
DISCUSSION 
Velocity is the rate of change or time derivative of position. 

 
dx

v
dt




  (2.1) 

On a Cartesian plot of position vs. time, the slope of the curve at any point will be the 
instantaneous velocity.  
Likewise, acceleration is the rate of change or time derivative of velocity (the 2nd 
derivative of position). 

 
2

2

dv d x
a

dt dt
 
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  (2.2) 

On a Cartesian plot of velocity vs. time, the slope of the curve at any point will be the 
instantaneous acceleration. 

 
Thus, the shape of any one curve (position, velocity, or acceleration) can determine the 
shape of the other two. 
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Exercise 1: Back and Forth 
 

 
a. Place the friction cart on the track. (That is the one with the friction pad on the 

bottom.  
Without letting go of the cart, quickly push it toward the detector by about a foot, 
then stop it for 1 or 2 seconds. Then quickly but smoothly return the cart to the 
starting point.  
Note the distance it travels, and sketch the position vs. time curve for the block 
on the plot below.  

 

 
 
 
 

b. Now, open the Labfile directory found on your computer’s desktop. Navigate to   
A Labs/Lab2, and select the program Position. The PASCO DataStudio program 
should open and present you with a blank position vs. time graph. 

c. Click the Start button (upper left side of the screen), and repeat the experiment 
above. Click Stop to cease recording data. Note how the PASCO plot compares 
to yours.  

Note: The cart may bounce or stutter in its motion. If you don’t get a 
smooth curve, delete the data1 and repeat the run with more Zen2.  

d. By clicking the scaling icon  (top left corner of the Graph window) you can 
better fill the screen with the newly acquired data. 

e. Select the slope icon . A solid black line will appear on the screen. By dragging 
this line to points along the plot, you can measure the slope of the curve at those 
points. Using this tool, find the steepest part of the curve (that is, the largest 

                                                 
1 To delete data: Top bar, Experiment, Delete ALL Data Runs 
2  “This time, let go your conscious self and act on instinct.” Obi-Wan Kenobi 
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velocity). Then, sketch the velocity curve for the block in the graph below. Add 
appropriate numbers to the x and y axes. 

 
 
 
 
 

f. How does the shape of the position curve determine the sign of the velocity 
curve? 
 

 
 
 
 
 

g. Now, let’s see how well you drew it! Double-click on the new graph icon  (left 
side of the screen, lower half) and select Velocity for the y-axis. Note the shape 
and position of the curve and see how well it matches your sketch. Also note how 
it aligns with the position curve. 

h. Use the slope tool to find the changing slope along the velocity curve. With this 
information, sketch the acceleration curve for the block. Again, appropriately 
mark the axes. 
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i. Let’s see what PASCO says about the acceleration. Again, create a new graph 

 and select Acceleration for the y-axis. Compare it to your acceleration curve 
and PASCO’s velocity curve. 

j. How does the shape of the position curve determine the sign of the acceleration 
curve? 

 
 
 
 
 
 
 

k. Print out the three PASCO plots. On these plots, annotate the times when the 
push began, when the push ended, when it was slowing, and when it stopped. 
Notice how these times correspond to features on the three curves. 
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Exercise 2: Skidding to a Stop 
Delete your previous runs. (Top bar, Experiment, Delete ALL Data Runs). With a left 
click of the mouse, you can remove the slope tools. 

a. Move the cart to end of the track opposite the detector. 
b. Start recording data, then give the cart a quick, firm push so that it slides a few 

feet before coming to rest. Stop the data acquisition. 

c. By clicking the scaling icon , you can better fill the screen with the newly 
acquired data. Again, if the data is not reasonably smooth, delete the data and 
repeat the experiment with more Zen. 

d. Print out the curves and annotate on the graphs with the times when the push 
began, when the push ended, and when the cart was sliding on its own. 

You should notice that as the cart is slowing down, the acceleration curve is nearly a 
constant flat line.  

e. Given constant acceleration, what mathematical expression describes the 
velocity? 

 
 
 
 

f. What mathematical expression describes the position? 

 
 
 
 
You can verify that these expressions work by numerically fitting the data.  
 

g. With a click and drag of the mouse, highlight the region of the velocity curve 

where the cart is slowing down. Then, select the fitting tool  and choose the 
appropriate expression to describe the data. Record the results of the fit below. 
(Note the uncertainty provided by the fit.) 
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h. Similarly, apply a numerical fit to the position data. Record the results below. Are 
the results consistent with the velocity and acceleration curves? 

 
 
 
 
 
 
 
 
 

i. Similarly, find the average acceleration of this region. 

 
 
 
 
 
 
 
 

j. Are the results of the fit consistent with each other? 
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Exercise 3: Up and Down 
a. Place a block under one of the track stands to form a ramp. The detector must be 

on the raised end. 
b. Place a low friction cart on the track and give it a push so that it rolls a few feet 

up the incline and then rolls back. After a few practice runs, run the detector and 
acquire motion data.  

c. With a click and drag of the mouse, highlight that section of the data where the 

cart is freely rolling along the track. Then use the scaling tool to zoom-in on 
that section of the data. 

d. Print out these plots and annotate the graphs with the following information. 

When and where does the velocity of the cart go to zero? 
When and where does the acceleration of the cart go to zero? 
 

e. Find the average acceleration going up the slope and down the slow. Record the 
the results below. 

 

 

 

 

 

f. How does the acceleration up the slope compare with the acceleration down the 
slope? What might account for the difference? 

 
 
 
 
 
 
 
 
 
 
 

 


