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An automorphic function for SL(n,Z) is a smooth function
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Definition: (Automorphic function)

An automorphic function for SL(n,Z) is a smooth function
¢ : h" — C satisfying:

o(vg) = 9(g)

for all v € SL(n,Z) and all g € h".

In addition we require that ¢ be square integrable, i.e.,
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Automorphic functions for SL(n, Z)

Definition: (Automorphic function)

An automorphic function for SL(n,Z) is a smooth function
¢ : h" — C satisfying:

¢(vg) = ¢(g)
for all v € SL(n,Z) and all g € h".
In addition we require that ¢ be square integrable, i.e.,
2
[ 1@ de < o
SL(n,Z)\b"

Remark: Note that ¢ defined on h” means that | ¢(dgk) = ¢(g) | for all
g € GL(n,R), k € O(n,R) and all matrices d in the center of GL(n,R).
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Elementary explanation of notation for Langlands

Eisenstein series for SL(n, Z)

Let n > 2. A Langlands Eisenstein series for SL(n,Z) depends on:

e An integer partition ’ n=ny+---+n, ‘ denoted P = Py, . p,-

e A tensor product ’CD =01 R PR R Py, ‘ where each
¢; 1 h"% — C is an automorphic function for SL(n;, Z).
In the special case nj =1, i.e., ¢j is on GL(1) then we always take ¢; = 1.

r
e A vector s = (s1,%,...,5) € C" satisfying > n;s; = 0.
i=1

Notation for Langlands Eisenstein series

For g € h", the Eisenstein series is denoted: | Ep o(g,s).
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Power function on h?

Motivating idea of a power function for 2

Let g = (g (1)> € h? and s € C. The power function is

e The classical Eisenstein series for SL(2,Z) is obtained by

. ys . .
summing g over all coprime integers c, d.

e This can be realized by letting matrices (2 5) € SL(2,Z) act on
the power function via matrix multiplication.
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Ingredients for the power function

e A partition n=n; + ny +--- + n, (denoted P =P, ).

mp % .- X
my .- %k

e A matrix m = . e GL(I’I,R) where mj (S GL(mj,R)

me

.
e A vector s = (s1,%,...,5) € C" satisfying > n;s; = 0.

i=1
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Power function on h”

Ingredients for the power function

e A partition n=n; + ny +--- + n, (denoted P =P, ).

my % - %
my - %

e A matrix m = . e GL(I’I,R) where mj (S GL(mj,R)
I‘I‘.l,

.
e A vector s = (s1,%,...,5) € C" satisfying > n;s; = 0.
i=1

Definition (Power function | |5, )

r

‘m|; = H’detm,-‘si
=

,

The condition > n;s; = 0 assures that the above power function is
i=1

invariant under multiplication by elements of the center of GL(n, R).
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Examples of Langlands Eisenstein series of small rank

Power function on h2

Ingredients:
o A partition 2=1+1 (denoted P; 1).

e A matrix m =

m=1€ GL(].).

my * . .
D n € GL(2,R) with m; =y € GL(1) and
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Examples of Langlands Eisenstein series of small rank

Power function on h2

Ingredients:
o A partition 2=1+1 (denoted P; 1).

e A matrix m = (n(l)l nj: ) € GL(2,R) with m;y =y € GL(1) and
2

m=1€ GL(l).

e A vector s = (51, 5,) € C? satisfying s; + s, = 0.

2
e The power function |m’;“ =[] |detm;|” = y=.
: i=1

Langlands Eisenstein series for SL(2,7Z)
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Examples of Langlands Eisenstein series of small rank

Power function on h2

Ingredients:

o A partition 2=1+1 (denoted P; 1).
q my * q
e A matrix m = 0 m) € GL(2,R) with m; = y € GL(1) and
2
m=1€ GL(l).

e A vector s = (51, 5,) € C? satisfying s; + s, = 0.

2
e The power function |m’;“ =[] |detm;|” = y=.
: i=1

Langlands Eisenstein series for SL(2,7Z)

s+(1/2,—1/2 s
Eru(es)= Y. |elpl2T = Y (Imyz)rt?
ve(§ H\sLez) ve(§ H\sL22)

where g = (§5)(%9) and z = x + iy.
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Fourier expansion and functional equation of Ep, (g, s)

The Fourier expansion
Ep,,(g,5) =y™"2 + (s + 3)y? "

1 ,
—51 K. (2 2mwimx
+—C*(251H)n; 025 ()| m| =y Ko (2] mly) ™™,
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Fourier expansion and functional equation of Ep, (g, s)

The Fourier expansion

1 1_
EP1.1(g’5) = y51+2 + (25(51 + %)yz 5

1 —Ss1 2mwimx
+ T2 +1) n;) 025, (M)|m| ™y K, (27| m|y)e”™ ™,
where
Cla) =m T, o) = SR o) = S
d>0
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The Fourier expansion

Ep.(g.s) =y + ¢(s1 + L)y? ™™
1

—S1 2mimx
+ T2 +1) n%:g 025 (M) M|~ /)y K, (27| m|y)e ™™,
where
<*(51) = 7T_51/2 r(%l)C(sl)7 qb(sl) = C*g(_fész)l)7 Usl(n) — % ds.
d>0

Functional equation of Ep,,(g,s)

8/29



Fourier expansion and functional equation of Ep, (g, s)

The Fourier expansion

Ep.(g.s) =y + ¢(s1 + L)y? ™™
1

ST —s1 27 imx
TSy mzﬂ) oas (m)|m|~* Vy Kay (2| mly)e*™,
where
C*(s1) =7 92T(2) s1),  @(s1) = Cfé;)l) g (n) = dzln ey
d>0

Functional equation of Ep,,(g,s)

Shifting s by % simplifies the functional equation which is given by
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Fourier expansion and functional equation of Ep, (g, s)

The Fourier expansion

EP1.1(g’ 5) = ySH—% + (;5(51 + %)y%_s1
1

—S1 2mimx
+ T2 +1) n%:g 025 (M) M|~ /)y K, (27| m|y)e ™™,
where
<*(51) = 7T_51/2 r(%)c(51)7 qb(sl) = C*g(_fész)l)7 Usl(n) — % ds.
d>0

Functional equation of Ep,,(g,s)

Shifting s by % simplifies the functional equation which is given by

E;;l,l(g7s) = C*(251 + 1)E771‘1(ga S) = E7§1,1(g7 _5)-

Note that when multiplying by (*(2s; + 1) we are clearing the
denominator in the Fourier expansion.
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The Borel Eisenstein series Ep, ,,(g,s) for SL(3,Z)

h3z{xy=(

oo

X1 X3 yiy2 0 0
1 X2 0 n 0
01 0 01

X1,X2,X3 € R, Yi,y2 > O} .
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The Borel Eisenstein series Ep, ,,(g,s) for SL(3,Z)

3 1 x1 x3 yiy2 0 0
h’> = xy:(01xz)(0y10)
00 1 0 01
Let s = (s1, 52, 53) € C® with 51 + s, + s3 = 0. Then the power function
is given by

X1,X2,X3 € R, Yi,y2 > O} .

yiy2 0 0 |®

ookt < |(F 33)

= (y1y2)™y7°,
P11

where d is in the center of GL(3,R) and k € O(n,R).
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The Borel Eisenstein series Ep, ,,(g,s) for SL(3,Z)

1 x1 x3 yiy2 00
h3:{Xy:(OlX2)( 0 y10) X1, X2, x3 € R, yl,y2>0}.
00 1 0 01

Let s = (s1, 52, 53) € C® with 51 + s, + s3 = 0. Then the power function
is given by

yiy2 0 0 |®

ookt < |(F 33)

= (y1y2)™
P11

where d is in the center of GL(3,R) and k € O(n,R).

Definition: (The Eisenstein series Ep, ,,(g,5s))

Then for g € GL(3,R) we have

EPl,l,l(ga 5) = Z |,Yg ;tfll’io,fl)
V€<1 1 %)\SL(&Z)
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The Borel Eisenstein series Ep, ,,(g,s) for SL(3,Z)

1x1 x3 yiy2 00
h3:{Xy:(OlX2)( 0 y10) X1, X2, x3 € R, yl,y2>0}.
00 1 0 01

Let s = (s1, 52, 53) € C® with 51 + s, + s3 = 0. Then the power function
is given by

yiy2 0 0 |®

ookt < |(F 33)

= (y1y2)™
P11

where d is in the center of GL(3,R) and k € O(n,R).

Definition: (The Eisenstein series Ep, ,,(g,5s))

Then for g € GL(3,R) we have

s+(1,0,—1)

EPl,l,l(g5 5) = Z |’Yg 731,1,1
1e(M11)\ste)

The shift by (1,0, —1) makes the form of the functional equations as
simple as possible.
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1<j<e<3
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The Functional Equation of Ep,, (g, s)
Functional Equation (Selberg, Langlands, Bump)
Let g € b3 and s = (s1,5,53) € C3 with s; + s, + s3 = 0. Define

Plll(gv s) = ( [I ¢(+s- 5@)) - Epyy.(g)9)-

1<j<e<3

Then Ep, | (g, ) satisfies the functional equation

Ep, .. (8:51,9,53) = Ep ., (& So(1),S0(2): So(3))

for any o € S3.

Theorem (G, Stade, Woodbury, 2023)
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The Functional Equation of Ep,, (g, s)
Functional Equation (Selberg, Langlands, Bump)
Let g € b3 and s = (s1,5,53) € C3 with s; + s, + s3 = 0. Define

Plll(gv s) = ( [I ¢(+s- 5@)) - Epyy.(g)9)-

1<j<e<3

Then Ep, | (g, ) satisfies the functional equation

Ep, .. (8:51,9,53) = Ep ., (& So(1),S0(2): So(3))

for any o € S3.

Theorem (G, Stade, Woodbury, 2023)

This functional equation is unique in that, if x4 is any real affine
transformation of s such that

Ep, .. (8:51,5,53) = Ep, , (g, 1(5));

then u(s) is a permutation of s, s, s3.
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The Eisenstein series E, . .(g,5)

P12, 1Q¢

Ingredients for the Eisenstein series

e The partition 3 =1 + 2 denoted by P; .
® S = (51752) € C? with s1+2s, =0.
e ¢ denotes a Maass cusp form for SL(2,Z) In the tensor product 1 ® ¢.

e The power function for g € h3:
S

< Yiyo 0 0 Vi O S
lglp,, =]l © »n O = (y1y2)™ |det (0 1) =y 2y
’ 0 0 1

1,2
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The Eisenstein series £, ,_.(g,5)

Ingredients for the Eisenstein series

e The partition 3 =1 + 2 denoted by P; .

e s=(s1,5) € C? with s; +2s, = 0.

e ¢ denotes a Maass cusp form for SL(2,Z) In the tensor product 1 ® ¢.

e The power function for g € h3:

s Yiyo 0 0 Vi 0 S
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e ¢ denotes a Maass cusp form for SL(2,Z) In the tensor product 1 ® ¢.

e The power function for g € h3:

s Yiyo 0 0 Vi 0 S
lelp, =1 O »n O = (y1y2)™ |det (o 1) =y oy
’ 0 0 1

1,2

Definition of the Eisenstein series

Every g € b3 can be written in the form g = (ml(g) m;zg)) where
my(g) € GL(1,R) 2 R* and my(g) € GL(2,R).
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The Eisenstein series £, ,_.(g,5)

Ingredients for the Eisenstein series

e The partition 3 =1 + 2 denoted by P; .

e s=(s1,5) € C? with s; +2s, = 0.

e ¢ denotes a Maass cusp form for SL(2,Z) In the tensor product 1 ® ¢.

e The power function for g € h3:

. yiyo 0 0 w 0\|?
|g‘7)12 = 0 1 0 = (Y1Y2)sl det (O 1) -yf1+szy '
’ 0 0 1

1,2

Definition of the Eisenstein series

Every g € b3 can be written in the form g = (ml(g) m;zg)) where
my(g) € GL(1,R) Z R* and my(g) € GL(2,R). Then we define:

Erppios(8:5) = D 6(ma(rg)) | detma(vg)|" " [det ma(rg)[*

* ok %
'ye( : *>\SL 3,7)
*

*
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The functional equation for E, . (g,s)

Let ¢ be a Maass cusp form for SL(2,Z) whose completed L-function
L*(s, ¢) satisfies the functional equation

L*(s,¢) =7 (Z2) T (=£2) L(s,¢) = L*(1 — s, ).
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The functional equation for E, . (g,s)

Let ¢ be a Maass cusp form for SL(2,Z) whose completed L-function
L*(s, ¢) satisfies the functional equation

L*(s,¢) =7 (Z2) T (=£2) L(s,¢) = L*(1 — s, ).
Theorem (Langlands, 1976)
Let s = (s1,52). Define
Ep ,1006(8:5) = L"(1+ 52— 51,0)Ep, ,104(8, 9), (51425, =0),
Ep, o01(8:5) = L"(1+ 5 — 51,0)Ep, , se1(g; 5), (251 + 5, = 0).
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The functional equation for E, . (g,s)

Let ¢ be a Maass cusp form for SL(2,Z) whose completed L-function
L*(s, ¢) satisfies the functional equation
L*(s,¢) =7 (Z2) T (=£2) L(s,¢) = L*(1 — s, ).
Theorem (Langlands, 1976)
Let s = (s1,52). Define
Ep, ,106(8:5) = L"(1+ 52 — 51, 0)Ep, ,.100(85 9), (51425, =0),
Ep, . 601(8,8) = L"(1+ 5 — 51, 0)Ep,, 41(&,5), (251 + 5 =0).

Then we have the functional equation

Ep, 1008 (51,9)) = Ep,, s01(8; (52, 51))-
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The functional equation for E, . (g,s)

Let ¢ be a Maass cusp form for SL(2,Z) whose completed L-function
L*(s, ¢) satisfies the functional equation
L*(s,¢) = m =T (552) T (552) L(s,¢) = L*(1 = 5, ¢).
Theorem (Langlands, 1976)
Let s = (s1,52). Define
Ep, ,106(8:5) = L"(1+ 52 — 51, 0)Ep, ,.100(85 9), (51425 =0),
Ep, . s01(8,5) = L"(1+ % — s1,0)Ep, , gx1(8&) 5), (251 + 5, = 0).

Then we have the functional equation

E7§1,2-,1®¢ (g’ (51’ 52)) = E7§2,17¢®1 (g’ (52’ 51))'

Theorem (G-Stade-Woodbury, 2023)

If 1 is any real linear transformation of s = (s, s) such that
Ep, 100 (g:(s1,%2)) = 5;2,1,¢®1(g7ﬂ(5))7

then u(s) = (s, s1)-

12/29
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i=1

13/29



Langlands Parameters

Definition (Langlands Parameter)

A “Langlands parameter” for GL(n) is an n-tuple
n

a = (a1, ay,...,a,) € C" satisfying 3~ o; = 0.
i=1

Definition (Langlands Parameter for an automorphic form)

Let F: h" — C be a smooth SL(n,Z) invariant function. Suppose F is
an eigenfunction of all GL(n, R)-invariant differential operators on §".
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Langlands Parameters

Definition (Langlands Parameter)

A “Langlands parameter” for GL(n) is an n-tuple
n

a = (a1, ay,...,a,) € C" satisfying 3~ o; = 0.
i=1
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Let F: h" — C be a smooth SL(n,Z) invariant function. Suppose F is
an eigenfunction of all GL(n, R)-invariant differential operators on §".

We say that F has Langlands parameter a = (a1, a, . .. a,) if F has the
same eigenvalues as the power function:

HHd

where B denotes the partition n=1+1+---+1, and

_(n—1 n-3 1—n
pB_ 2 I 2 P} 2 .
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Ingredients for the Eisenstein series

e The partition 4 = 2 + 2 denoted by P 5.

o s=(s1,5) € C? with 2s5; + 25, = 0.
® &1, ¢ are Maass cusp forms for SL(2,Z) In the tensor product ¢; ® ¢».

e The power function for g € h*:

yiyay3 0 00
|g|s - 0 »y» 00
Papo 0 0 »0

0 0 01

S

= Jdet (2,0, )|+ It (3 D)7

yiy2
P22

_ 2s1+s 251 s
=N Y2 Y3 -
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Then we define:

Eppoen(gs) = 2. éu(m(g)) é2(ma(rg) - el

k 3k ok ok
ve(* - 1)\&(4,2)
* ok

Recall the Rankin-Selberg L-function L™ (s, ¢1 X ¢2). The completed L-function for this is given by

2 St Hante?
L*(s, ¢1 X ) = w2 ( I1 r(#)) (s, d1 X b2).
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Functional Equation of Ep,, 4,c4,(8,5)

Definition of the Eisenstein series

. N
| (S’

Every g € h* can be written in the form g = (ml(g) y ) where

ma(g)
my(g) € GL(2,R) and my(g) € GL(2,R).
Then we define:

Eppoen(gs) = 2. éu(m(g)) é2(ma(rg) - el
ve(ziz£>\SL(4,Z)

Recall the Rankin-Selberg L-function L™ (s, ¢1 X ¢2). The completed L-function for this is given by

2 St Hante?
(s, 1 % 62) = w2 [ TT T(ZUREU2EY ) (s, 1 % ).
J k=1

Theorem (Langlands 1976)
Let s = (s1,52). Then

ED,, 6190,(8:5) = L* (14 2 — 51,81 X ¢2)Ep, 5, 4,24,(8> )
= E7>;2,27¢2®¢1 (g’ (s2, 51))
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Standard Parabolic Subgroup

GL(m) = *

0 GL(m) -~ =

P = Puim,..n, = : . ) :

0 0 - GL(n)
Unipotent radical of P
Iny * *
0 In, *
N7 = : , (/k = k X k identity matrix)

00 I
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Parabolic subgroups of GL(n, R)

Standard Parabolic Subgroup

GL(m) = *
0 GL(np) - *
P = Puim,..n, =
0 0 - GL(n)

In1 * *
0 I, *
NP .= _2 , (/k = k X k identity matrix)
00 I
Levi subgroup of P

GL(m) 0 - 0

P 0  GL(m) 0
0 - GL(:n )
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Automorphic form & associated to a parabolic P

e Partition n = ny + --- + n, denoted P =P, ,» C GL(n,R).

e ¢; : GL(n;,R) — C be either the constant function 1 (if n; = 1)
or a Maass cusp form for SL(n;, Z) (if n; > 1).

Definition (The automorphic form ®)

Let GL(n,R) = P(R)K where K = O(n,R). Define [® :=¢1 ® --- ® ¢,
by the formula

o(umk) == [ ] 4i(mi). (ue NP, me MP ke K)
i=1

0 mp - 0
where m € M” has the form m = ( : .2 . ) , with m; € GL(n;, R).
0 0 - m,

y
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e Partition n = n; + --- + n, denoted P =P, , C GL(n,R).

.
e Complex variables s = (s1, s, ...,s,) € C" satisfying > n;s; = 0.

i=
For g € P, with diagonal block entries m; € GL(n;,R), recall the power

function:

lgl3 = [T Idet(m))["
i1

Definition (p-function for a parabolic subgroup P )

Let P be the parabolic subgroup P := Py, p,.....n,- Then we define

n—ny i—1
— 2 J )
P () { ";"/ - —nj_1, j>2,
and p, = (p,,(l),p,,(2),...,p,,(r)). )

18/29



Power function for a parabolic subgroup P

e Partition n = n; + --- + n, denoted P =P, , C GL(n,R).

.
e Complex variables s = (s1, s, ...,s,) € C" satisfying > n;s; = 0.

i=1
For g € P, with diagonal block entries m; € GL(n;,R), recall the power
function:

lgl3 = [T Idet(m))["
i1

Definition (p-function for a parabolic subgroup P )

Let P be the parabolic subgroup P := Py, p,.....n,- Then we define

and p, = (pp(1),P5(2),- -, pp(r))-

Remark: The p-function is introduced as a normalizing factor (a shift in
the s variable) in Eisenstein series to simplify later formulae.
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Langlands Eisenstein series for SL(n, Z)

Definition

Ingredients:
o[, =SL(nZ).
® P :="Pni .n...n isa parabolic subgroup.

e ® is a Maass form associated to P.
.

e Complex variables s = (s1,5,...,s,) € C" with > n;s; = 0.
i=1

e The power function |g|3%.

+
Epo(g,s):= Y. ®(yg)-help .
(T PN
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Borel Eisenstein series

Consider the partition

n=1+1+---+1,
~—_—

n times

associated to the Borel parabolic subgroup

* %
0 =
B:=P11,..1:= :
0 0 *
Then the Borel Eisenstein series is
+
Es(g,s)= >, el =
YE(TnNB)\In
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Character of the Unipotent Group

Up(R) := |V ceunr)

Character of the Unipotent Group

Let M = (my, ms,...,m,) € Z".
We define

wM(U) o= 627ri(u112m1+u2,3m2 +“n—1,n’"n)
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Character of the Unipotent Group

1 .
Character of the Unipotent Group

Let M = (my, ms,...,m,) € Z".

We define
wM(u) o= eZwi(u112m1+u2)3m2 +“n—1,nm")
for
1 Upptyz o Uy,
1wy, - s n
u= 2 C Up(R)
1. u
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Jacquet’s Whittaker function

Definition (Completed Whittaker function)

n
Let o = (a1,00, ..., a,) € C" with > a; = 0.
i=1

We define the completed Whittaker function W™ : h" — C, with
Langlands parameter «, by the integral

r<1+a, ak
Wi (g) = H T—ak / |w,,-ug|B "5 pr 1, 1(u) du,

i s
1<j<k<n Un(R)

where w,, is the long element of the Weyl group for GL(n,R), and ||3; is
the power function for the Borel B.
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Theorem (G - 2006))

Let M= (my,...,m,_1) € Z';)l.

Then the M term in the Fourier expansion of Ep ¢ is:
P :

1 1
. A M,s
/---/Em(ug,S) dm(u) ] duij = # Wo, o(5)(Me)
J / 1<i<j<n 1 m:("fk)/z
k=1

where A'P,¢(M7 5) = AP,¢((17 0oag 1)7 5) : )\73,¢(M75)7
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The M Fourier coefficient of Ep o

Theorem (G - 2006))

Let M= (my,...,m,_1) € Z';)l.

Then the M term in the Fourier expansion of Ep ¢ is:

1 1
. A M,s
/---/Em(ug,S) dm(u) ] duij = # Wo, o(5)(Me)
J / 1<i<j<n 1 m:("fk)/z
k=1

where Ap o(M,s) = Apo((1,...,1),s) - Ap.o(M,s), and

A’P_yq;((m,].,.‘.,].),s) = Z >\¢1(C1)”'>\¢,(Cr)'Cfl"'crs’

€1,C2,.-,Cr € L0
C1Co--C=m

is the (m,1,...,1)t" Hecke eigenvalue of Ep o.
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The first coefficient Ap,q)((].j ) s) =

Theorem (G-Stade-Woodbury (2023))

Suppose each ¢; in ® has Langlands parameter (a; 1, ...,q; ), with the
convention that if n; = 1 then ;1 = 0. We also assume that each ¢; is
normalized to have Petersson norm (¢;, ¢;) = 1.

Then the first coefficient Ap o ((1,...,1),s) is given by

p
[Trr@Aded)™ [T L(+s—se é5xo0)
k;l 1<j<e<r

ny 1

up to a non-zero constant factor with absolute value depending only on n.
.
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Functional equation of Langlands Eisenstein series Ep ¢

Action of the symmetric group S, on P, ®. s

The action of 0 € S, on P, ®, and s is given by

oP =P, o (1) Me(2)5 >N (r) ? o® = Qbo(l) X ¢a - ¢o(r)

05 = (S5(1): So(2)> -+ Sa(r))-

Theorem (Langlands 1976)

Suppose o € S, acts on P, ®, and s as above. Then we have the
functional equation

E;;,rb(g: s) = E;P, -»(8,08)

for all g € GL(n, R).
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Uniqueness of functional equations

Uniqueness Conjecture (G,-Stade-Woodbury 2023)

Let o' € S;. Suppose E}, (g, s) satisfies a functional equation of
the form
Ep o(8:5) = Egip o10(8; 11(s))

for some affine transformation

S1 a1l ai2 -+ air
( 52]) [321 a - a2r]
Sr ail ai2 -+ arl

where a;;, b; € R forall 1 <i,j <r.

s1 by

S2

Sr b.r
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Uniqueness of functional equations

Uniqueness Conjecture (G,-Stade-Woodbury 2023)

Let o' € S;. Suppose E}, (g, s) satisfies a functional equation of
the form

Epo(g:5) = Egrp ora(g, 1(s))

for some affine transformation

s1 ail a2 - ar s1 by
2 a1 axp - ax 2 by

K : = | : .|
sr anl a v an Sr by

where a;;, b; € R forall 1 <i,j <r.

Then, in fact, 4 = o for some o € S, for which 0P = ¢'P and
od =o'd.
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is the same automorphic form with r > 2.

In this case, every permutation o € S, has the property that
ocP =P and c® = o.
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Uniqueness of functional equations continued

Recall the uniqueness conjecture:

E7*37¢(g,s) = E;’P,a’tb(g’ u(s))

with
51 ai ap -+ air s1 by
S2 a1 azx v az S2 by
2 = + )
Sr a1l a2 -+ an Sr b,
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Uniqueness of functional equations continued

Recall the uniqueness conjecture:

E7*37¢(g,5) = E;’P,a’tb(g’ u(s))

with
51 ai ap -+ air s1 by
S2 a1 azx v az S2 by
2 = + )
Sr a1l a2 -+ an Sr b,

Theorem (G-Stade-Woodbury 2023)

Assume the Maass form Conjecture.

If the transformation u given in the Uniqueness Conjecture is
linear, i.e., b; =0 for each i =1,2,...,r. Then the
Uniqueness conjecture holds.
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