Motohashi formula and its generalization in a non-split case

Subhajit Jana
Queen Mary University of London

Shanks Conference

May 13, 2024

Joint work with Valentin Blomer and Paul D. Nelson

Motohashi formula: moments

- $V \in C_{c}^{\infty}(\mathbb{R})$:

$$
\begin{aligned}
\int_{\mathbb{R}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} V(t) d & =\text { main term } \\
& +\sum_{j} \frac{L\left(\frac{1}{2}, \psi_{j}\right)^{3}}{L\left(1, \psi_{j}, A d\right)} \check{V}\left(t_{j}\right)+\text { continuous. }
\end{aligned}
$$

Motohashi formula: moments

- $V \in C_{c}^{\infty}(\mathbb{R})$:

$$
\begin{aligned}
\int_{\mathbb{R}}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{4} V(t) d & =\text { main term } \\
& +\sum_{j} \frac{L\left(\frac{1}{2}, \psi_{j}\right)^{3}}{L\left(1, \psi_{j}, A d\right)} \widetilde{V}\left(t_{j}\right)+\text { continuous. }
\end{aligned}
$$

- $V \rightsquigarrow \widetilde{V}$ certain integral transform given in terms of hypergeometric functions.
- $\left\{\psi_{j}\right\}$ an orthonormal basis of cusp forms for $\mathrm{SL}_{2}(\mathbb{Z})$.

Motohashi formula: shifted convolution

- V and ψ as before.

$$
\begin{aligned}
& \sum_{n \geqslant 1} \tau(n) \tau(n+b) V\left(\frac{n}{b}\right)=\text { main term } \\
&+\sum_{j} \frac{b^{1 / 2} \lambda_{j}(b) L\left(\frac{1}{2}, \psi_{j}\right)^{2}}{L\left(1, \psi_{j}, \mathrm{Ad}\right)} \widetilde{V}\left(t_{j}\right)+\text { continuous }
\end{aligned}
$$

Motohashi formula: shifted convolution

- V and ψ as before.

$$
\begin{aligned}
& \sum_{n \geqslant 1} \tau(n) \tau(n+b) V\left(\frac{n}{b}\right)=\text { main term } \\
&+\sum_{j} \frac{b^{1 / 2} \lambda_{j}(b) L\left(\frac{1}{2}, \psi_{j}\right)^{2}}{L\left(1, \psi_{j}, \mathrm{Ad}\right)} \widetilde{V}\left(t_{j}\right)+\text { continuous }
\end{aligned}
$$

- $V \rightsquigarrow \widetilde{V}$ certain integral transform.
- τ : divisor sum, λ_{j} : Hecke eigenvalues.

Motohashi formula: integral transform

$$
\widetilde{V}(t)=\int_{0}^{\infty} \mathcal{K}_{1}(t, y) V(y) d y
$$

and

$$
\check{V}(t)=\int_{0}^{\infty} \mathcal{K}_{2}(t, y) V(y) d y
$$

Motohashi formula: integral transform

$$
\widetilde{V}(t)=\int_{0}^{\infty} \mathcal{K}_{1}(t, y) V(y) d y
$$

and

$$
\check{V}(t)=\int_{0}^{\infty} \mathcal{K}_{2}(t, y) V(y) d y ;
$$

where

$$
\begin{aligned}
& \mathcal{K}_{1}(t, y):=\frac{1}{2} \sum_{ \pm}\left(1 \pm \frac{i}{\sinh (\pi t)}\right) y^{-\frac{1}{2} \mp i t} \frac{\Gamma\left(\frac{1}{2} \pm i t\right)^{2}}{\Gamma(1 \pm 2 i t)} \\
& F\left(\frac{1}{2} \pm i t, \frac{1}{2} \pm i t, 1 \pm 2 i t,-1 / y\right)
\end{aligned}
$$

and

$$
\mathcal{K}_{2}(t, y):=2 \int_{0}^{\infty}\left(\int_{-\infty}^{\infty} \cos \left(y \log \frac{x+1}{x}\right)\right) \mathcal{K}_{1}(t, x) \frac{d x}{\sqrt{x(1+x)}} .
$$

Remarks

- None of these formulas are easy to predict.

Remarks

- None of these formulas are easy to predict.
- No apparent reason for the existence of a relation between the fourth moment of $\mathrm{GL}(1)$ and the cubic moment of $\mathrm{GL}(2)$ L-functions.

Remarks

- None of these formulas are easy to predict.
- No apparent reason for the existence of a relation between the fourth moment of $\mathrm{GL}(1)$ and the cubic moment of $\mathrm{GL}(2)$ L-functions.
- The integral transforms look "artificial".

Questions

1 Can one replace $\tau(n)$ by other Hecke eigenvalues?

Questions

1 Can one replace $\tau(n)$ by other Hecke eigenvalues?

2 How about replacing $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ by $L\left(\frac{1}{2}+i t, \pi\right)$ for some GL(2)-automorphic π ?

Questions

1 Can one replace $\tau(n)$ by other Hecke eigenvalues?

2 How about replacing $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ by $L\left(\frac{1}{2}+i t, \pi\right)$ for some GL(2)-automorphic π ?

3 Can one give more structural interpretations of the integral transforms from a representation theoretic point of view?

Prior work

- Blomer-Harcos (2008): For $h \in \mathbb{C}_{c}^{\infty}\left(\left(\mathbb{R}^{\times}\right)^{2}\right)$ and π_{1}, π_{2} cuspidal representations for $\mathrm{GL}(2)$, there exists

$$
\left\{W_{\pi}: \mathbb{R}^{\times} \rightarrow \mathbb{C} \mid \pi \text { unitary aut. rep. for } \mathrm{GL}(2)\right\}
$$

such that for $b>0$

$$
\sum_{n_{1}+n_{2}=b} \frac{\lambda_{\pi_{1}}\left(\left|n_{1}\right|\right) \lambda_{\pi_{2}}\left(\left|n_{2}\right|\right)}{\sqrt{\left|n_{1} n_{2}\right|}} h\left(n_{1}, n_{2}\right)=\int_{\pi \neq \text { triv }} \frac{\lambda_{\pi}(b)}{\sqrt{b}} W_{\pi}(b)
$$

Prior work

- Blomer-Harcos (2008): For $h \in \mathbb{C}_{c}^{\infty}\left(\left(\mathbb{R}^{\times}\right)^{2}\right)$ and π_{1}, π_{2} cuspidal representations for $\mathrm{GL}(2)$, there exists

$$
\left\{W_{\pi}: \mathbb{R}^{\times} \rightarrow \mathbb{C} \mid \pi \text { unitary aut. rep. for } \mathrm{GL}(2)\right\}
$$

such that for $b>0$

$$
\sum_{n_{1}+n_{2}=b} \frac{\lambda_{\pi_{1}}\left(\left|n_{1}\right|\right) \lambda_{\pi_{2}}\left(\left|n_{2}\right|\right)}{\sqrt{\left|n_{1} n_{2}\right|}} h\left(n_{1}, n_{2}\right)=\int_{\pi \neq \text { triv }} \frac{\lambda_{\pi}(b)}{\sqrt{b}} W_{\pi}(b)
$$

- Growth properties of W_{π} are obtained that are enough for certain applications.

Other related works

- Blomer-Humphries-Khan-Milanovich (2020): Non-archimedean analogue of Motohashi (a fourth moment of Dirichlet L-functions)

Other related works

- Blomer-Humphries-Khan-Milanovich (2020): Non-archimedean analogue of Motohashi (a fourth moment of Dirichlet L-functions)
- Michel-Venkatesh (2010): formally discussed a period-theoretic approach. Sheds some light on the local transforms.

Other related works

- Blomer-Humphries-Khan-Milanovich (2020): Non-archimedean analogue of Motohashi (a fourth moment of Dirichlet L-functions)
- Michel-Venkatesh (2010): formally discussed a period-theoretic approach. Sheds some light on the local transforms.
- Wu (2022): Somewhat different period theoretic approach.

Other related works

Cubic moment \rightsquigarrow fourth moment:

Other related works

Cubic moment \rightsquigarrow fourth moment:

- Ivić (2001)

Other related works

Cubic moment \rightsquigarrow fourth moment:

- Ivić (2001)
- Conrey-Iwaniec (2000): Quadratic twists.

Other related works

Cubic moment \rightsquigarrow fourth moment:

- Ivić (2001)
- Conrey-Iwaniec (2000): Quadratic twists.
- Petrow (2015), Petrow-Young (2020, 2023): General twists.

Other related works

Cubic moment \rightsquigarrow fourth moment:

- Ivić (2001)
- Conrey-Iwaniec (2000): Quadratic twists.
- Petrow (2015), Petrow-Young (2020, 2023): General twists.
- Nelson (2019+), Bolkanova-Frolenkov-Wu (2021+): Period theoretic approach.

Other related works

Cubic moment \rightsquigarrow fourth moment:

- Ivić (2001)
- Conrey-Iwaniec (2000): Quadratic twists.
- Petrow (2015), Petrow-Young (2020, 2023): General twists.
- Nelson (2019+), Bolkanova-Frolenkov-Wu (2021+): Period theoretic approach.
- Kwan (2023): Cuspidal variants of the cubic moment.

Today's content

1 Replace $\tau(n)$ by $\lambda_{\pi}(n)$ in the shifted convolution problem.

Today's content

1 Replace $\tau(n)$ by $\lambda_{\pi}(n)$ in the shifted convolution problem.

2 Replace $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ by $L\left(\frac{1}{2}+i t, \pi\right)$

Today's content

1 Replace $\tau(n)$ by $\lambda_{\pi}(n)$ in the shifted convolution problem.

2 Replace $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ by $L\left(\frac{1}{2}+i t, \pi\right)$

3 Structural description of the local integral transforms.

Today's content

1 Replace $\tau(n)$ by $\lambda_{\pi}(n)$ in the shifted convolution problem.

2 Replace $\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2}$ by $L\left(\frac{1}{2}+i t, \pi\right)$

3 Structural description of the local integral transforms.

4 Integral transforms in the Maass cusp form case match with Motohashi's.

Difficulties

- Motohashi's proof does not generalize right away!

Difficulties

- Motohashi's proof does not generalize right away!
- Factorization for $\tau(n)$ (equivalently, $|\zeta|^{2}$) is not available for λ (equivalently, L).

Difficulties

- Motohashi's proof does not generalize right away!
- Factorization for $\tau(n)$ (equivalently, $|\zeta|^{2}$) is not available for λ (equivalently, L).
- Use: Michel-Venkatesh/Nelson's period approach.

Difficulties

- Motohashi's proof does not generalize right away!
- Factorization for $\tau(n)$ (equivalently, $|\zeta|^{2}$) is not available for λ (equivalently, L).
- Use: Michel-Venkatesh/Nelson's period approach.
- Integral transform: from local viewpoint. Serious convergence/regularization issue!

Global result (shifted convolution)

Theorem (BJN, 2024+)
Let π_{1}, π_{2} be two Maass-cusp forms for $\mathrm{SL}_{2}(\mathbb{Z})$. We have
$\sum_{n_{1}-n_{2}=b} \frac{\lambda_{\pi_{1}}\left(\left|n_{1}\right|\right) \lambda_{\pi_{2}}\left(\left|n_{2}\right|\right)}{\sqrt{\left|n_{1} n_{2}\right|}} h\left(n_{1}, n_{2}\right)=\int_{\pi \neq \text { triv }} \frac{\lambda_{\pi}(b)}{\sqrt{b}} c(\pi) h^{\vee}(\pi, b) \mathrm{d} \pi$
where

$$
|c(\pi)|=\frac{\sqrt{L\left(\frac{1}{2}, \pi_{1} \otimes \pi_{2} \otimes \pi\right)}}{L(1, \operatorname{Ad}, \pi)}
$$

and $h \rightsquigarrow h^{\vee}$ is a certain integral transform.

Global result (shifted convolution)

Theorem (BJN, 2024+)
Let π_{1}, π_{2} be two Maass-cusp forms for $\mathrm{SL}_{2}(\mathbb{Z})$. We have
$\sum_{n_{1}-n_{2}=b} \frac{\lambda_{\pi_{1}}\left(\left|n_{1}\right|\right) \lambda_{\pi_{2}}\left(\left|n_{2}\right|\right)}{\sqrt{\left|n_{1} n_{2}\right|}} h\left(n_{1}, n_{2}\right)=\int_{\pi \neq \text { triv }} \frac{\lambda_{\pi}(b)}{\sqrt{b}} c(\pi) h^{\vee}(\pi, b) \mathrm{d} \pi$
where

$$
|c(\pi)|=\frac{\sqrt{L\left(\frac{1}{2}, \pi_{1} \otimes \pi_{2} \otimes \pi\right)}}{L(1, \mathrm{Ad}, \pi)}
$$

and $h \rightsquigarrow h^{\vee}$ is a certain integral transform.

- Generalization to arbitrary number fields, ramifications, and cuspidal representations.

Local result (shifted convolution)

Theorem (BJN, 2024+)
We have

$$
h^{\vee}(\pi, b):=\int_{\mathbb{R}^{\times}} h(t b,(t-1) b) \kappa\left(t, \pi ; \pi_{1}, \chi_{2}\right) \mathrm{d}^{\times} t
$$

where

$$
\begin{aligned}
& \kappa\left(t, \pi ; \pi_{1}, \chi_{2}\right):=\overline{\chi_{2}}\left(\frac{t-1}{t}\right)\left|\frac{t}{t-1}\right|^{1 / 2} \\
& \times \int_{\Re(\chi)=\sigma} \gamma\left(\frac{1}{2}, \pi \otimes \chi\right) \gamma\left(1, \pi_{1} \otimes \overline{\chi 2}^{-1} \otimes \chi^{-1}\right) \chi^{-1}(t) \mathrm{d} \chi
\end{aligned}
$$

where χ_{2} is the character of \mathbb{R}^{\times}that induces π_{2}.

Global result (Moments of L-functions)

Theorem (BJN, 2024+)
Let
$\omega(t):=\int_{\mathbb{R}^{\times}} \int_{\mathbb{R}^{\times}} h(z, y z)|y|^{i t} \mathrm{~d}^{\times} y \mathrm{~d}^{\times} z, \quad h^{\sharp}(\pi):=\int_{\mathbb{R}^{\times}} h^{\vee}(\pi, y) \mathrm{d}^{\times} y$.
Then
$\int_{\mathbb{R}} L\left(\frac{1}{2}+i t, \pi_{1}\right) L\left(\frac{1}{2}-i t, \pi_{2}\right) \omega(t) \mathrm{d} t=\mathcal{M}+\int_{\pi \neq \text { triv }} L\left(\frac{1}{2}, \pi\right) c(\pi) h^{\sharp}(\pi) \mathrm{d} \pi$
where

$$
\mathcal{M}:=\lim _{s \rightarrow 0} \sum_{ \pm} \frac{L\left(1 \pm s, \pi_{1} \otimes \pi_{2}\right)}{\zeta(1 \pm 2 s)} \int_{\mathbb{R}^{\times}} h(z, z) J_{\pi_{1}, \pi_{2}}^{ \pm}(z)|z|^{s} \mathrm{~d}^{\times} z
$$

and $J_{\pi_{1}, \pi_{2}}^{ \pm}$are the Bessel distributions attached to $\pi_{1} \otimes \pi_{2}$.

Proof idea: Moments

- Kirillov theory: $\varphi_{j} \in \pi_{j}$ with

$$
W_{1}\left(a\left(y_{1}\right)\right) \overline{W_{2}\left(a\left(y_{2}\right)\right)}=h\left(y_{1}, y_{2}\right)
$$

W_{j} are Whittaker functions of φ_{j}.

Proof idea: Moments

- Kirillov theory: $\varphi_{j} \in \pi_{j}$ with

$$
W_{1}\left(a\left(y_{1}\right)\right) \overline{W_{2}\left(a\left(y_{2}\right)\right)}=h\left(y_{1}, y_{2}\right)
$$

W_{j} are Whittaker functions of φ_{j}.

- Mellin expansion + Hecke theory of GL(2) $\times \mathrm{GL}(1)$:

$$
\begin{aligned}
\text { LHS } & =\int_{\mathbb{R}} \int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{1}(a(y))|y|^{i t} \int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \overline{\varphi_{2}(a(y))}|y|^{-i t} \mathrm{~d} t \\
& =\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{1} \overline{\varphi_{2}}(a(y)) .
\end{aligned}
$$

Proof idea: Moments

- Kirillov theory: $\varphi_{j} \in \pi_{j}$ with

$$
W_{1}\left(a\left(y_{1}\right)\right) \overline{W_{2}\left(a\left(y_{2}\right)\right)}=h\left(y_{1}, y_{2}\right)
$$

W_{j} are Whittaker functions of φ_{j}.

- Mellin expansion + Hecke theory of GL(2) $\times \mathrm{GL}(1)$:

$$
\begin{aligned}
\text { LHS } & =\int_{\mathbb{R}} \int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{1}(a(y))|y|^{i t} \int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \overline{\varphi_{2}(a(y))}|y|^{-i t} \mathrm{~d} t \\
& =\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{1} \overline{\varphi_{2}}(a(y)) .
\end{aligned}
$$

Proof idea

- Spectral decomposition:

$$
\text { LHS " }=" \quad \int_{\pi} \sum_{\varphi \in \mathcal{B}(\pi)}\left\langle\varphi_{1} \overline{\varphi_{2}}, \varphi\right\rangle\left(\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi\right) \mathrm{d} \pi
$$

Proof idea

- Spectral decomposition:

$$
\operatorname{LHS} \quad "=" \quad \int_{\pi} \sum_{\varphi \in \mathcal{B}(\pi)}\left\langle\varphi_{1} \overline{\varphi_{2}}, \varphi\right\rangle\left(\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi\right) \mathrm{d} \pi
$$

- Watson-Ichino + Hecke theory of GL(2) $\times \mathrm{GL}(1) \rightsquigarrow$ RHS

Proof idea

- Spectral decomposition:

$$
\operatorname{LHS} \quad "=" \quad \int_{\pi} \sum_{\varphi \in \mathcal{B}(\pi)}\left\langle\varphi_{1} \overline{\varphi_{2}}, \varphi\right\rangle\left(\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi\right) \mathrm{d} \pi
$$

- Watson-Ichino + Hecke theory of GL(2) \times GL(1) \rightsquigarrow RHS
- The last integral does not converge if π is Eisenstein!

Proof ideas

- Regularization:

$$
\varphi_{0}:=\int_{\mathbb{Q} \backslash \mathbb{A}} \varphi(n(x) \cdot), \quad \varphi_{\mathrm{reg}}:=\varphi-\varphi_{0}
$$

Proof ideas

- Regularization:

$$
\varphi_{0}:=\int_{\mathbb{Q} \backslash \mathbb{A}} \varphi(n(x) \cdot), \quad \varphi_{\mathrm{reg}}:=\varphi-\varphi_{0}
$$

- Hecke theory: $\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{\text {reg }}(a(y))|y|^{s}$ converges absolutely for $\Re(s)>1 / 2$.

Proof ideas

- Regularization:

$$
\varphi_{0}:=\int_{\mathbb{Q} \backslash \mathbb{A}} \varphi(n(x) \cdot), \quad \varphi_{\mathrm{reg}}:=\varphi-\varphi_{0}
$$

- Hecke theory: $\int_{\mathbb{Q}^{\times} \backslash \mathbb{A} \times} \varphi_{\text {reg }}(a(y))|y|^{s}$ converges absolutely for $\Re(s)>1 / 2$.
- Re-work with

$$
\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{x}}\left(\varphi_{1} \overline{\varphi_{2}}\right)_{\text {reg }}(a(y))|y|^{s}+\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{x}}\left(\varphi_{1} \overline{\varphi_{2}}\right)_{0}(a(y))|y|^{s} .
$$

Proof ideas

- Regularization:

$$
\varphi_{0}:=\int_{\mathbb{Q} \backslash \mathbb{A}} \varphi(n(x) \cdot), \quad \varphi_{\mathrm{reg}}:=\varphi-\varphi_{0}
$$

- Hecke theory: $\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{\times}} \varphi_{\text {reg }}(a(y))|y|^{s}$ converges absolutely for $\Re(s)>1 / 2$.
- Re-work with

$$
\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{x}}\left(\varphi_{1} \overline{\varphi_{2}}\right)_{\text {reg }}(a(y))|y|^{s}+\int_{\mathbb{Q}^{\times} \backslash \mathbb{A}^{x}}\left(\varphi_{1} \overline{\varphi_{2}}\right)_{0}(a(y))|y|^{s} .
$$

- Meromorphic continuation to $\Re(s)=0$; Residues + Degenerate term $=\mathcal{M}$.

Proof idea

- Induced vector $f_{2} \rightsquigarrow W_{2}$.

Proof idea

- Induced vector $f_{2} \rightsquigarrow W_{2}$.
- Then

$$
h^{\sharp}(\pi):=\sum_{W \in \mathcal{B}(\pi)}\left(\int_{\mathbb{R}^{\times}} W(a(y))\right) \int_{N \backslash G} W_{1} \overline{f_{2} W} .
$$

Proof idea

- Induced vector $f_{2} \rightsquigarrow W_{2}$.
- Then

$$
h^{\sharp}(\pi):=\sum_{W \in \mathcal{B}(\pi)}\left(\int_{\mathbb{R}^{\times}} W(a(y))\right) \int_{N \backslash G} W_{1} \overline{f_{2} W} .
$$

- Local representation theory (Mellin theory of Bessel distribution):

$$
J_{\pi}(g):=\sum_{W \in \mathcal{B}(\pi)} W(g) \overline{W(1)}
$$

Proof idea

- Induced vector $f_{2} \rightsquigarrow W_{2}$.
- Then

$$
h^{\sharp}(\pi):=\sum_{W \in \mathcal{B}(\pi)}\left(\int_{\mathbb{R}^{\times}} W(a(y))\right) \int_{N \backslash G} W_{1} \overline{f_{2} W} .
$$

- Local representation theory (Mellin theory of Bessel distribution):

$$
J_{\pi}(g):=\sum_{W \in \mathcal{B}(\pi)} W(g) \overline{W(1)}
$$

- Can we find the inverse transform?

Local result

Theorem (BJN, 2024+)
If

$$
h^{\vee}(\pi, y):=\sum_{W \in \mathcal{B}(\pi)} W(a(y)) \int_{N \backslash G} W_{1} \overline{f_{2} W},
$$

then we have

$$
h\left(y_{1}, y_{2}\right)=\frac{\left|y_{2}\right|}{\left|y_{1}-y_{2}\right|} \int_{\widehat{G}} h^{\vee}\left(\pi, y_{1}-y_{2}\right) \kappa\left(\frac{y_{1}}{y_{1}-y_{2}}, \pi ; \pi_{1}, \chi_{2}^{-1}\right) \mathrm{d} \pi
$$

where \widehat{G} is the class of unitary irreducible representations of $P G L_{2}(\mathbb{R})$.

Local result

What we have so far:

$$
\begin{gathered}
\text { Whit }\left(\pi_{1}\right) \otimes \operatorname{Whit}\left(\pi_{2}\right) \longrightarrow \operatorname{Whit}\left(\pi_{1}\right) \otimes \operatorname{Ind}\left(\chi_{2}\right) \\
\downarrow \\
\left\{h: \mathbb{R}^{\times} \times \mathbb{R}^{\times} \rightarrow \mathbb{C}\right\} \nLeftarrow-\cdots-\cdots-\cdots\left\{h^{\vee}: \widehat{G} \times \mathbb{R}^{\times} \rightarrow \mathbb{C}\right\} .
\end{gathered}
$$

An application

Theorem (BJN, 2024+)
Let $1 \leqslant Y \leqslant X / 10,1 \leqslant b \leqslant X / 2$ an integer, and $V \in C^{\infty}([1,2])$. Then

$$
\begin{aligned}
& \mathcal{S}(X, Y, b):=\sum_{n} \lambda_{\pi_{1}}(n+b) \lambda_{\pi_{2}}(n) V\left(\frac{n-X}{Y}\right) \\
& \ll V, \pi_{1}, \pi_{2}, \varepsilon \\
& \frac{X^{1+\varepsilon}}{Y}\left(Y^{1 / 2}+b^{1 / 2}\right) \min \left(b^{\theta}, 1+\frac{Y b^{1 / 4}}{X}\right)
\end{aligned}
$$

and

$$
\int_{X}^{2 X}|\mathcal{S}(x, Y, b)|^{2} \mathrm{~d} x \ll v, \pi_{1}, \pi_{2}, \varepsilon b^{2 \theta} X^{2+\varepsilon}\left(1+\frac{b}{Y}\right)
$$

with $\theta \leqslant 7 / 64$.

Thanks for your attention!

