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Motohashi formula: moments

• V ∈ C∞
c (R):∫

R
|ζ(12 + it)|4V (t)dt = main term

+
∑
j

L(12 , ψj)
3

L(1, ψj ,Ad)
V̂ (tj) + continuous.

• V ⇝ V̂ certain integral transform given in terms of
hypergeometric functions.

• {ψj} an orthonormal basis of cusp forms for SL2(Z).
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Motohashi formula: shifted convolution

• V and ψ as before.∑
n⩾1

τ(n)τ(n + b)V
(n
b

)
= main term

+
∑
j

b1/2λj(b)L(
1
2 , ψj)

2

L(1, ψj ,Ad)
Ṽ (tj) + continuous

• V ⇝ Ṽ certain integral transform.

• τ : divisor sum, λj : Hecke eigenvalues.
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Motohashi formula: integral transform

Ṽ (t) =

∫ ∞

0
K1(t, y)V (y)dy

and

V̂ (t) =

∫ ∞

0
K2(t, y)V (y)dy ;

where

K1(t, y) :=
1

2

∑
±

(
1± i

sinh(πt)

)
y−

1
2
∓it Γ(

1
2 ± it)

2

Γ(1± 2it)

F
(
1
2 ± it, 12 ± it, 1± 2it,−1/y

)
and

K2(t, y) := 2

∫ ∞

0

(∫ ∞

−∞
cos
(
y log

x + 1

x

))
K1(t, x)

dx√
x(1 + x)

.
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Remarks

• None of these formulas are easy to predict.

• No apparent reason for the existence of a relation between the
fourth moment of GL(1) and the cubic moment of GL(2)
L-functions.

• The integral transforms look “artificial”.
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Questions

1 Can one replace τ(n) by other Hecke eigenvalues?

2 How about replacing |ζ(12 + it)|2 by L(12 + it, π) for some
GL(2)-automorphic π?

3 Can one give more structural interpretations of the integral
transforms from a representation theoretic point of view?
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Prior work

• Blomer–Harcos (2008): For h ∈ C∞
c ((R×)2) and π1, π2

cuspidal representations for GL(2), there exists

{Wπ : R× → C | π unitary aut. rep. for GL(2)}

such that for b > 0∑
n1+n2=b

λπ1(|n1|)λπ2(|n2|)√
|n1n2|

h(n1, n2) =

∫
π ̸=triv

λπ(b)√
b

Wπ(b)

• Growth properties of Wπ are obtained that are enough for
certain applications.
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Other related works

• Blomer–Humphries–Khan–Milanovich (2020):
Non-archimedean analogue of Motohashi (a fourth moment of
Dirichlet L-functions)

• Michel–Venkatesh (2010): formally discussed a
period-theoretic approach. Sheds some light on the local
transforms.

• Wu (2022): Somewhat different period theoretic approach.
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Other related works

Cubic moment ⇝ fourth moment:

• Ivić (2001)

• Conrey–Iwaniec (2000): Quadratic twists.

• Petrow (2015), Petrow–Young (2020, 2023): General twists.

• Nelson (2019+), Bolkanova–Frolenkov–Wu (2021+): Period
theoretic approach.

• Kwan (2023): Cuspidal variants of the cubic moment.
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Today’s content

1 Replace τ(n) by λπ(n) in the shifted convolution problem.

2 Replace |ζ(12 + it)|2 by L(12 + it, π)

3 Structural description of the local integral transforms.

4 Integral transforms in the Maass cusp form case match with
Motohashi’s.
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Difficulties

• Motohashi’s proof does not generalize right away!

• Factorization for τ(n) (equivalently, |ζ|2) is not available for λ
(equivalently, L).

• Use: Michel–Venkatesh/Nelson’s period approach.

• Integral transform: from local viewpoint. Serious
convergence/regularization issue!
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Global result (shifted convolution)

Theorem (BJN, 2024+)

Let π1, π2 be two Maass-cusp forms for SL2(Z). We have∑
n1−n2=b

λπ1(|n1|)λπ2(|n2|)√
|n1n2|

h(n1, n2) =

∫
π ̸=triv

λπ(b)√
b

c(π)h∨(π, b)dπ

where

|c(π)| =

√
L(12 , π1 ⊗ π2 ⊗ π)

L(1,Ad, π)

and h⇝ h∨ is a certain integral transform.

• Generalization to arbitrary number fields, ramifications, and
cuspidal representations.
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Local result (shifted convolution)

Theorem (BJN, 2024+)

We have

h∨(π, b) :=

∫
R×

h(tb, (t − 1)b)κ(t, π;π1, χ2)d
×t

where

κ(t, π;π1, χ2) := χ2

(
t − 1

t

) ∣∣∣∣ t

t − 1

∣∣∣∣1/2
×
∫
ℜ(χ)=σ

γ(12 , π ⊗ χ)γ(1, π1 ⊗ χ2
−1 ⊗ χ−1)χ−1(t)dχ

where χ2 is the character of R× that induces π2.

Subhajit Jana Queen Mary University of London Motohashi formula and its generalization in a non-split case



Global result (Moments of L-functions)

Theorem (BJN, 2024+)

Let

ω(t) :=

∫
R×

∫
R×

h(z , yz)|y |it d×y d×z , h♯(π) :=

∫
R×

h∨(π, y) d×y .

Then∫
R
L(12+it, π1)L(

1
2−it, π2)ω(t) dt = M+

∫
π ̸=triv

L(12 , π)c(π)h
♯(π) dπ

where

M := lim
s→0

∑
±

L(1± s, π1 ⊗ π2)

ζ(1± 2s)

∫
R×

h(z , z)J±π1,π2
(z)|z |s d×z

and J±π1,π2
are the Bessel distributions attached to π1 ⊗ π2.
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Proof idea: Moments

• Kirillov theory: φj ∈ πj with

W1(a(y1))W2(a(y2)) = h(y1, y2).

Wj are Whittaker functions of φj .

• Mellin expansion + Hecke theory of GL(2)× GL(1):

LHS =

∫
R

∫
Q×\A×

φ1(a(y))|y |it
∫
Q×\A×

φ2(a(y))|y |−it dt

=

∫
Q×\A×

φ1φ2(a(y)).
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Proof idea

• Spectral decomposition:

LHS “=”

∫
π

∑
φ∈B(π)

⟨φ1φ2, φ⟩

(∫
Q×\A×

φ

)
dπ.

• Watson–Ichino + Hecke theory of GL(2)× GL(1)⇝ RHS

• The last integral does not converge if π is Eisenstein!
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Proof ideas

• Regularization:

φ0 :=

∫
Q\A

φ(n(x)·), φreg := φ− φ0.

• Hecke theory:
∫
Q×\A× φreg(a(y))|y |s converges absolutely for

ℜ(s) > 1/2.

• Re-work with∫
Q×\A×

(φ1φ2)reg (a(y))|y |
s +

∫
Q×\A×

(φ1φ2)0 (a(y))|y |
s .

• Meromorphic continuation to ℜ(s) = 0; Residues +
Degenerate term = M.
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Proof idea

• Induced vector f2 ⇝W2.

• Then

h♯(π) :=
∑

W∈B(π)

(∫
R×

W (a(y))

)∫
N\G

W1f2W .

• Local representation theory (Mellin theory of Bessel
distribution):

Jπ(g) :=
∑

W∈B(π)

W (g)W (1)

• Can we find the inverse transform?
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Local result

Theorem (BJN, 2024+)

If

h∨(π, y) :=
∑

W∈B(π)

W (a(y))

∫
N\G

W1f2W ,

then we have

h(y1, y2) =
|y2|

|y1 − y2|

∫
Ĝ
h∨(π, y1 − y2)κ

(
y1

y1−y2
, π;π1, χ

−1
2

)
dπ

where Ĝ is the class of unitary irreducible representations of
PGL2(R).
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Local result

What we have so far:

Whit(π1)⊗Whit(π2) Whit(π1)⊗ Ind(χ2)

{h : R× × R× → C} {h∨ : Ĝ × R× → C}.
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An application

Theorem (BJN, 2024+)

Let 1 ⩽ Y ⩽ X/10, 1 ⩽ b ⩽ X/2 an integer, and V ∈ C∞([1, 2]).
Then

S(X ,Y , b) : =
∑
n

λπ1(n + b)λπ2(n)V
(n − X

Y

)
≪V ,π1,π2,ε

X 1+ε

Y
(Y 1/2 + b1/2)min

(
bθ, 1 +

Yb1/4

X

)
and ∫ 2X

X
|S(x ,Y , b)|2 dx ≪V ,π1,π2,ε b

2θX 2+ε
(
1 +

b

Y

)
with θ ⩽ 7/64.
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Thanks for your attention!
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