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The Riemann zeta function

Let ζ(s) denote the usual Riemann zeta function.

• The Riemann zeta function can be analytically continued to
the whole complex plane except a simple pole at s = 1.

• There are countably infinite number of zeros (non-trivial zeros
of ζ(s)) in the critical strip 0 ≤ Re(s) ≤ 1.

The Riemann hypothesis (RH)

All non-trivial zeros of ζ(s) lie on the critical line Re(s) = 1
2 .
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Pair correlation of zeros of the Riemann zeta function

Assume RH, and let ρ = 1/2 + iγ be nontrivial zeros of the
Riemann zeta function.

Let N(T ) be the number of nontrivial zeros ρ, where 0 < γ < T .
(The number of zeros up to height T .)

N(T ) ∼ T

2π
logT .

If γ, γ′ are consecutive ordinates in [0,T ],

Average of |γ − γ′| ∼ 2π

logT
=: AS

on average.
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Montgomery’s work

How often is |γ − γ′| < AS
2 ? (Related to Siegel zeros - see

Conrey-Iwaniec.)

Montgomery studied a quantity of the form∑
0<γj1 ,γj2≤T

j1 ̸=j2

f

(
(γj1 − γj2)

logT

2π

)
,

where f is a suitable test function whose Fourier transform f̂ is
supported in (-1, 1). (Bandwidth limited.)

Bandwidth limit is a serious impediment.
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Montgomery showed that as T → ∞

1

N(T )

∑
0<γ ̸=γ′≤T

f

(
(γ − γ′)

logT

2π

)
→
∫ ∞

−∞
f (x)

(
1 −

(
sinπx

πx

)2
)

dx ,

and conjectured that this holds for all nice f.

Freeman Dyson pointed out to Montgomery that the factor

1 −
(
sinπx
πx

)2
is the same as the distribution of the spacings of

eigenvalues of the Gaussian unitary ensemble (GUE) distribution
from random matrix theory.
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Odlyzko’s graph

Nearest neighbor spacings among 70 million zeroes beyond the
1020-th zero of zeta, verses GUE. Source: Zeros of zeta functions
and symmetry, Katz and Sarnak. Bulletin of AMS.
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Statistics of L-functions: Katz-Sarnak philosophy

• Heuristic: statistics of families of L-functions should match
analogous statistics from classical compact groups of random
matrices. Katz and Sarnak proved that such heuristics hold in
many examples of zeta and L-functions over function fields.

• The t-aspect pair correlation corresponds to unitary symmetry.
Examples should exist for other symmetry groups (orthogonal
and symplectic) for L-functions over number fields.
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Other families: Iwaniec, Luo and Sarnak

Iwaniec, Luo, and Sarnak studied the one level density of low lying
zeros of different families of L-functions.

The Katz-Sarnak philosophy predicts that the distribution of the
low-lying zeros is governed by some underlying symmetry group.

Iwaniec, Luo and Sarnak verified this for certain families with
bandwidth restrictions.
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Holomorphic Hecke eigencuspforms

1 Let Sk(q) be the space of cusp forms of fixed weight k and
level q.

2 Let Hk(q) ⊂ Sk(q) be an orthogonal basis of the space of
newforms consisting of Hecke cusp newforms, normalized so
that the first Fourier coefficient is 1.

3 For f ∈ Hk(q), assume that the L-function L(s, f ) satisfies
GRH and write the non-trivial zeros as 1/2 + iγf .
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One level density

Now let Φ(x) be an even Schwartz class function, and let Φ̂(t) be
the usual Fourier transform.
Let

O(q) :=
∑h

f ∈Hk (q)

∑
γf

Φ
( γf

2π
log q

)
.

Imagine that we want to know how many zeros of L(s, f ) are near
1/2. Then we would want to set Φ to approximate the indicator
function of a short interval centered at 1/2.
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Density conjecture and result of Iwaniec, Luo, and Sarnak

The Density Conjecture from the Katz-Sarnak philosophy predicts
that

lim
q→∞

O(q) =

∫ ∞

−∞
Φ(x)

(
1 +

1

2
δ0(x)

)
dx .

Iwaniec, Luo, and Sarnak verify that this holds for squarefree q,
assuming GRH, and that the support of Φ̂ is compact and
contained in (−2, 2).
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We study a larger family of orthogonal GL(2) L-functions by
including an average over q. Fix a nice smooth function Ψ
compactly supported on R>0 and let

OL (Q) :=
1

N(Q)

∑
q

Ψ

(
q

Q

) ∑h

f ∈Hk (q)

∑
γf

Φ
( γf

2π
log q

)
,

where

N(Q) :=
∑
q

Ψ

(
q

Q

) ∑h

f ∈Hk (q)

1.
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Main result

Joint with S. Baluyot and V. Chandee:

Theorem
Assume GRH. Let Φ be an even Schwartz function with Φ̂
compactly supported in (−4, 4). Then with notation as before,

lim
Q→∞

OL (Q) =

∫ ∞

−∞
Φ(x)

(
1 +

1

2
δ0(x)

)
dx ,

where δ0(x) is the Dirac δ distribution at x = 0.
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Comments

The size of the support of Φ̂ is doubled in our result compared to
the result of Iwaniec, Luo and Sarnak.

We have taken advantage of the additional average over all levels
q around size Q. This family of around Q2 forms has elements
with conductors around Q.

The ideas lead (after overcoming significant difficulties) to sixth
and eighth moment asymptotics, critical line theorem, etc.

It is instructive to compare this with results on the similar family of
Dirichlet L-functions attached to Dirichlet characters χ mod q with
q around size Q. (Also a family of size Q2 with conductor around
Q.)
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Comparison with Dirichlet L-functions

Fiorilli and Miller studied the family of Dirichlet L-functions over
all characters modulo q, where q ≍ Q and wanted to understand∑

q≍Q

∑
χ mod q

∑
γf

Φ
( γf

2π
log q

)
.

Hughes and Rudnick studided verified the analogous density
conjecture (for a smaller family of Dirichlet L-functions) with the
support of Φ̂ restricted within [−2, 2].

Fiorilli and Miller were able to extend the support to (−4, 4)
assuming both GRH and a very strong “de-averaging hypothesis”
on the variance of primes in residue classes.
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Comparison with Dirichlet L-functions II

Drappeau, Pratt and Radziwi l l considered the one level density for
the large family of Dirichlet L-functions and showed that the
support of Φ̂ can be extended to be within
(−2 − 50/1093, 2 + 50/1093) unconditionally.

Extending the support to something more like (−4, 4) conditionally
on GRH appears challenging.
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One way to explain the difference:

1 When averaging over m, n and modulus q ≍ Q, the
asymptotic large sieve from Conrey, Iwaniec, Soundararajan
depends on a “complementary divisor trick” that allows us to
switch the modulus to m±n

Q .

2 In our family of cusp forms, we use a ”complementary level

trick”, which allows us to switch to level
√
mn
Q .

3 The geometric mean
√
mn is the same as the arithmetic mean

m+n
2 if and only if m = n, and is far smaller when m and n are

far apart. In the context of one level density, we essentially
have m ≪ Q4−ϵ and n = 1.
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Initial setup

The explicit formula relates a sum over zeros to a sum over primes
via −L′

L (s), and reduces the problem to understanding

∑
q

Ψ

(
q

Q

) ∑h

f ∈Hk (q)

∑
p

log pλf (p)
√
p

Φ̂

(
log p

log q

)

We now apply a version of Petersson’s formula for newforms (extra
work); for simplicity, let’s apply the usual Petersson’s formula.
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Ideas and ingredients

We are led to consider∑
q

Ψ

(
q

Q

)∑
p

log p
√
p

Φ̂

(
log p

log q

)∑
c≥1

S(p, 1; cq)Jk−1

(
4π

√
p

cq

)
.

(1)

The sum in (1) is easy to bound if Φ̂ is supported on (−2, 2) by an
application of the additive Large Sieve.
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We need to understand (1) when Φ̂ has support extended to
(−4, 4). To do this, we extract non-trivial cancellation in the sum
over Kloosterman sums.

For simplicity, suppose we are in transition region of the Bessel
function, so that cq ≍ √

p.

The support of Φ̂ is compact and contained in (−4, 4), so the sum
over p is restricted to p ≤ Q4−δ for some δ > 0 depending on Φ.
Hence, we see that in this range

c ≪ Q1−δ/2.
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Complementary level
This motivates us to write (1) as

1

N(Q)

∑
p

log p
√
p

∑
c≥1

S(p, c)

where

S(p, c) =
∑
q

S(p, 1; cq)Ψ

(
q

Q

)
Φ̂

(
log p

log q

)
Jk−1

(
4π

√
p

cq

)
can be transformed into a sum of forms of level c via Kuznetsov’s
formula.

We started with a sum over forms of level q ≍ Q and in applying
Kuznetsov’s formula, we have lowered the conductor from q ≍ Q
to c ≪ Q1−δ/2.
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We have morally that∑
p≍P

log p
√
p
λg (p) ≪ log2Q

where λg is some type of Hecke eigenvalue associated to a
holomorphic form, a Maass form, or an Eisenstein series, and
P ≍ Q4−δ.

For holomorphic forms and Maass forms, we reduce the problem to
bounding these sums by choosing a special basis based on
Atkin-Lehner theory.

For Eisenstein series, we use recent explicit calculations of Kiral
and Young.
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Eisenstein contribution

In the case of an Eisenstein series, we may morally replace λg (p)
with sums involving χ(p) for certain Dirichlet characters χ.

When χ is non-principal, the approach from the last slide holds.

When χ = χ0 is principal, the sum over p is genuinely large and is
essentially P1/2−itṼ (1/2 − it) for some rapidly decaying function
Ṽ , where t is the spectral parameter and P can be as large as
Q4−δ.
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Eisenstein contribution

This contribution turns out to be small by taking advantage of the
average over the spectral parameter. This is in contrast to other
situations (e.g. Duke-Friedlander-Iwaniec), where a truly large
contribution arises from the Eisenstein series.

To be more precise, this naturally leads to something like∫
(1/2)

Ps Ṽ (s)

L(2s, χ)ζ(2s)
ds.
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Thank you for your attention!
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