Hypergeometric Functions, Galois Representations, and Modular Forms

International Conference on L-functions and Automorphic Forms
Vanderbilt University, Nashville
May 14, 2024

Wen-Ching Winnie Li
Pennsylvania State University

Hypergeometric data and hypergeometric functions

- A hypergeometric datum is $H D=\{\alpha, \beta\}$, where $\alpha=\left\{a_{1}, \ldots, a_{n}\right\}$, $\beta=\left\{b_{1}=1, b_{2}, \ldots, b_{n}\right\}$ with $a_{i}, b_{j} \in \mathbb{C}$.
- Associate the hypergeometric function for $z \in \mathbb{C}$

$$
F(H D ; z)={ }_{n} F_{n-1}\left[\begin{array}{rrrr}
a_{1} & a_{2} & \cdots & a_{n} \\
& b_{2} & \cdots & b_{n}
\end{array} ; z\right]=\sum_{r \geq 0} \frac{\left(a_{1}\right)_{r} \cdots\left(a_{n}\right)_{r}}{\left(b_{1}\right)_{r} \cdots\left(b_{n}\right)_{r}} z^{r}
$$

whenever it converges. Here $(a)_{r}$ is the Pochhammer symbol

$$
(a)_{r}=a(a+1) \cdots(a+r-1)=\frac{\Gamma(a+r)}{\Gamma(a)}
$$

- ${ }_{n} F_{n-1}(H D ; z)$ satisfies an nth order linear ODE with three regular sigularities at $0,1, \infty$. Solutions at nonsingular points form a local system of rank n on $\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}$. They give rise to a monodromy representation of the fundamental group $\pi_{1}\left(\mathbb{P}^{1}(\mathbb{C}) \backslash\{0,1, \infty\}, *\right)$.

Hypergeometric data and Galois representations

- Assume $a_{i}, b_{j} \in \mathbb{Q}^{\times}$and $H D$ is primitive, i.e., $a_{i}-b_{j} \notin \mathbb{Z}$ for all i, j.
- $M=l c d(\alpha \cup \beta)$ is the least common denominator of a_{i}, b_{j}.
- Katz introduced an ℓ-adic rank- n hypergeometric sheaf $\mathcal{H}(H D)_{\ell}$ on \mathbb{G}_{m} with explicit action of the Galois group $\operatorname{Gal}\left(\overline{\mathbb{Q}} / \mathbb{Q}\left(\zeta_{M}\right)\right)=$: $G(M)$. Its action on the fiber at $\lambda \in \mathbb{Q}\left(\zeta_{M}\right)^{\times}$, denoted $\rho_{H D, \lambda, \ell}$, has Frob. traces equal to hypergeometric character sums, which are finite field analog of ${ }_{n} F_{n-1}(H D ; \lambda)$ studied by Katz, Fuslier-Long-Ramakrishna-Swisher-Tu, etc.

The BCM representation

- $H D$ is defined over \mathbb{Q} if $\left\{\binom{a_{i}}{b_{i}} \bmod \mathbb{Z}\right\}$ is invariant under multiplication by $(\mathbb{Z} / M \mathbb{Z})^{\times}$.
- When $H D$ is defined over \mathbb{Q}, the Katz representation can be extended to $G_{\mathbb{Q}}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$. One extension is $\rho_{H D, \ell}^{B C M}$ studied by Beukers-Cohen-Mellit, with explicit Frob_{p} traces given by $H_{p}(H D ; \lambda)$ for $\lambda \in \mathbb{Q}^{\times}$. When $p \equiv 1 \bmod M$, it is

$$
\begin{aligned}
& H_{p}(H D ; \lambda) \\
= & \frac{1}{1-p} \sum_{k=0}^{p-2} \prod_{j=1}^{n} \frac{\mathfrak{g}\left(\omega^{(p-1) a_{j}} \omega^{k}\right)}{\mathfrak{g}\left(\omega^{(p-1) a_{j}}\right)} \frac{\mathfrak{g}\left(\bar{\omega}^{(p-1) b_{j}} \bar{\omega}^{k}\right)}{\mathfrak{g}\left(\bar{\omega}^{(p-1) b_{j}}\right)} \omega^{k}\left((-1)^{n} \lambda\right) .
\end{aligned}
$$

Here ω generates $\widehat{\mathbb{F}_{p}^{\times}}$, and $H_{p}(H D ; \lambda) \in \mathbb{Q}$ is indep. of ω.

Theorem [Katz, Beukers-Cohen-Mellit]
Suppose $H D=\{\alpha, \beta\}$ is primitive, of length n, defined over \mathbb{Q}, with $M=l c d(\alpha \cup \beta)$. Assume that exactly m elements in β are integers. Let $\lambda \in \mathbb{Z}[1 / M] \backslash\{0\}$. Then for each prime ℓ,

- for primes $p \nmid M \ell$ such that $\operatorname{ord}_{p} \lambda=0$, we have

$$
\operatorname{Tr}_{H D, \lambda, \ell}^{B C M}\left(\text { Frob }_{p}\right)=\left(\frac{-1}{p}\right)^{\delta} p^{\frac{n-m}{2}} H_{p}\left(H D ; \frac{1}{\lambda}\right) \in \mathbb{Z}
$$

- The degree d of $\rho_{H D, \lambda, \ell}^{B C M}$ is n for $\lambda \neq 1$, and $n-1$ for $\lambda=1$.
- $\rho_{H D, \lambda, \ell}^{B C M}$ has image in $G O_{d}\left(\mathbb{Q}_{\ell}\right)$ for n odd and $G S p_{d}\left(\mathbb{Q}_{\ell}\right)$ for n even.

Here $n-m$ is even, $\delta=0$ unless $\sum a_{i} \equiv 1 / 2 \bmod \mathbb{Z}$ and $2 \| M$, in which case $\delta=1$.

An example

$H D=\{\alpha, \beta\}$ where $\alpha=\left\{\frac{1}{2}, \frac{1}{2}\right\}, \beta=\{1,1\}$ is primitive, defined over \mathbb{Q} with $M=l c d(\alpha \cup \beta)=2$. Given $\lambda \in \mathbb{Q}^{\times}$, at primes $p \nmid l c d\left(\frac{1}{2}, \lambda, \frac{1}{\lambda}\right)$,

$$
H_{p}(H D ; \lambda)=-\sum_{x \in \mathbb{F}_{p}} \phi_{p}(x(x-1)(1-\lambda x))
$$

where ϕ_{p} is the quadratic character of \mathbb{F}_{p}^{\times}and $\phi_{p}(0)=0$.
In this case

$$
\operatorname{Tr} \rho_{H D, \lambda, \ell}^{B C M}\left(\operatorname{Frob}_{p}\right)=H_{p}\left(H D ; \frac{1}{\lambda}\right)
$$

showing that at $\lambda \neq 1, \rho_{H D, \lambda, \ell}^{B C M}$ is the Galois rep'n on the ℓ-adic Tate module of the elliptic curve $y^{2}=x(x-1)\left(1-\frac{x}{\lambda}\right)$ and hence is modular; at $\lambda=1, \rho_{H D, \lambda, \ell}^{B C M}$ is the trivial rep'n.

Relation between the fundamental and Galois groups

Let $X=\mathbb{P}^{1} \backslash\{0,1, \infty\}$ over $\mathbb{Q}\left(\zeta_{M}\right)$. In the language of schemes, the algebraic points λ come from specializing a generic point x of X, and the Galois actions come from a rep'n of the étale fundamental group $\pi_{1}\left(X_{x}, *\right)$ of the generic fiber. Have the exact sequence

$$
0 \rightarrow \pi_{1}\left(X_{\mathbb{C}}, *\right) \rightarrow \pi_{1}\left(X_{x}, *\right) \rightarrow G(M) \rightarrow 0
$$

Here $\pi_{1}\left(X_{\mathbb{C}}, *\right)$ is the profinite completion of $\pi_{1}(X(\mathbb{C}), *)$.
We shall explore this relation and study automorphy of the BCM/Katz representations.

The Clausen formulas

The classical Clausen formula over \mathbb{C} :

$$
\left.\begin{array}{rl}
{ }_{2} F_{1}\left[\begin{array}{cc}
a & b \\
a+b+\frac{1}{2}
\end{array} ; z\right]{ }_{2} F_{1}\left[\begin{array}{cc}
1-a & 1-b \\
& \frac{3}{2}-a-b
\end{array} ; z\right.
\end{array}\right] .
$$

Clausen formula over \mathbb{F}_{q} by Evans-Greene: for $2 s \equiv a+b \bmod \mathbb{Z}$,

$$
\begin{gathered}
H_{q}\left(\left\{-\frac{1}{2}+b-s, s\right\},\{1, b\} ; t, \omega\right) H_{q}\left(\left\{-\frac{1}{2}-b+s, 1-s\right\},\{1,1-b\} ; t, \omega\right) \\
=\phi_{q}(1-t) H_{q}\left(\left\{\frac{1}{2}, a, 1-a\right\},\{1, b, 1-b\} ; t, \omega\right)+q^{\delta(b)}
\end{gathered}
$$

when $t \in \mathbb{F}_{q} \backslash\{0,1\}$. Here $\delta(b)=1$ if $b \in \mathbb{Z}$ and 0 otherwise.

When $t=1$, we have

$$
\begin{aligned}
& H_{q}\left(\left\{\frac{1}{2}, a, 1-a\right\},\{1, b, 1-b\} ; 1 ; \omega\right) \\
& =\frac{1}{q^{1-\delta(b)}} \frac{J_{\omega}(a+b, b-a)}{J_{\omega}\left(\frac{1}{2},-b\right)}\left(J_{\omega}\left(s-b, \frac{1}{2}-s\right)^{2}+J_{\omega}\left(\frac{1}{2}+s-b, s\right)^{2}\right)
\end{aligned}
$$

if $\omega^{(q-1)(a+b)}$ is a square in $\widehat{\mathbb{F}_{q}^{\times}}$; otherwise

$$
H_{q}\left(\left\{\frac{1}{2}, a, 1-a\right\},\{1, b, 1-b\} ; 1 ; \omega\right)=0
$$

Here $J_{\omega}(s, t)$ is a Jacobi sum.
Thus $\rho_{\left\{\frac{1}{2}, a, 1-a\right\},\{1, b, 1-b\}, \lambda, \ell}$ is the symmetric square of a degree2 rep'n up to twist when $\lambda \neq 1$; when $\lambda=1$, it is induced from a character of a quadratic extension.

Some low degree automorphy results

Suppose $H D=\{\alpha, \beta\}$ has length 3 , is primitive and defined over \mathbb{Q}.

Theorem. [L-Liu-Long]
(i) The degree-2 $\rho_{H D, 1, \ell}^{B C M}$ is modular and has $C M$.
(ii) For $\lambda \in \mathbb{Q} \backslash\{0,1\}$, the degree-3 $\rho_{H D, \lambda, \ell}^{B C M}$, up to twist by a character, is the symmetric square of a degree-2 modular representation of $G_{\mathbb{Q}}$, hence it is automorphic.

Next consider representations $\rho=\rho_{H D, \lambda, \ell}^{B C M}$ of $G_{\mathbb{Q}}$ with image in $G O_{4}\left(\mathbb{Q}_{\ell}\right)$. So α, β in $H D=\{\alpha, \beta\}$ have length 5 and $\lambda=1$.
By Liu-Yu, there is a field F of degree ≤ 2 over \mathbb{Q} so that $\left.\rho\right|_{G_{F}}=\rho_{1} \otimes \rho_{2}$, where ρ_{i} have degree-2.

Theorem. [L-Liu-Long]
(i) If ρ is induced from a character or $F=\mathbb{Q}$, then ρ is automorphic.
(ii) If F is real quadratic, then ρ is potentially automorphic.

Example. For any prime $p>3$, we have

$$
\begin{aligned}
& H_{p}\left(\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\},\{1,1,1,1,1\} ; 1\right) \\
& =H_{p}\left(\left\{\frac{1}{2}, \frac{1}{2}\right\},\{1,1\} ;-1\right)\left(H_{p}\left(\left\{\frac{1}{4}, \frac{3}{4}, \frac{1}{4}, \frac{3}{4}\right\},\{1,1,1,1\} ; 1\right)-p\right)
\end{aligned}
$$

With $\alpha=\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$ and $\beta=\{1,1,1,1,1\}$, this shows that

$$
\chi_{-1} \otimes \rho_{H D, 1, \ell}^{B C M} \simeq \rho_{f_{32.2 \cdot a \cdot a}} \otimes \rho_{f_{32.4 . a \cdot a}}
$$

A Whipple ${ }_{7} F_{6}$ formula

The well-known Whipple ${ }_{7} F_{6}(1)$ formula asserts that

$$
\begin{aligned}
& { }_{7} F_{6}\left[\begin{array}{ccccccc}
a & 1+\frac{a}{2} & c & d & e & f & g \\
& \frac{a}{2} & 1+a-c & 1+a-d & 1+a-e & 1+a-f & 1+a-g
\end{array}\right] \\
& =\frac{\Gamma(1+a-e) \Gamma(1+a-f) \Gamma(1+a-g) \Gamma(1+a-e-f-g)}{\Gamma(1+a) \Gamma(1+a-f-g) \Gamma(1+a-e-f) \Gamma(1+a-e-g)} \times \\
& \times{ }_{4} F_{3}\left[\begin{array}{ccc}
a & e & f \\
e+f+g-a & 1+a-c & 1+a-d
\end{array} ; 1\right],
\end{aligned}
$$

when both sides terminate.
We specialize it to the following self-dual form with a prime p :

$$
\begin{aligned}
&{ }_{7} F_{6}\left[\begin{array}{ccccc}
\frac{1}{2} & \frac{5}{4} & c & 1-c & \frac{1-p}{2} \\
\begin{array}{ccc}
\frac{1}{4} & f & 1-f
\end{array} ; 1 \\
\frac{1}{4}-c & \frac{1}{2}+c & 1+\frac{p}{2} & \frac{3}{2}-f & \frac{1}{2}+f
\end{array}\right]= \\
& \frac{\Gamma\left(\frac{p}{2}\right)^{2} \Gamma\left(\frac{3}{2}-f\right) \Gamma\left(\frac{1}{2}+f\right)}{\Gamma\left(\frac{1}{2}\right)^{2} \Gamma\left(1+\frac{p}{2}-f\right) \Gamma\left(\frac{p}{2}+f\right)} \times\left(p \cdot{ }_{4} F_{3}\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1-p}{2} & f & 1-f ; 1 \\
1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c
\end{array}\right]\right) .
\end{aligned}
$$

We give a Galois representation theoretic interpretation of the Whipple ${ }_{7} F_{6}$ identity and study the "automorphy" of the Galois representations.

This is joint work with Ling long and Fang-Ting Tu
The associated HD are

$$
\begin{aligned}
& H D_{1}(c, f):= \\
& \left\{\alpha_{6}(c, f)=\left\{\frac{1}{2}, c, 1-c, \frac{1}{2}, f, 1-f\right\}, \beta_{6}(c, f)=\left\{1, \frac{3}{2}-c, \frac{1}{2}+c, 1, \frac{3}{2}-f, \frac{1}{2}+f\right\}\right\} ; \\
& \quad H D_{2}(c, f):=\left\{\alpha_{4}(f)=\left\{\frac{1}{2}, \frac{1}{2}, f, 1-f\right\}, \beta_{4}(c)=\left\{1,1, \frac{3}{2}-c, \frac{1}{2}+c\right\}\right\} .
\end{aligned}
$$

A Galois representation theoretic interpretation of the Whipple ${ }_{7} F_{6}$ formula

Theorem.[L-Long-Tu] For (c, f) such that both $H D_{1}(c, f)$ and $H D_{2}(c, f)$ are primitive, let $N(c, f)=l c d\left(\frac{1+2 f-2 c}{4}, \frac{3-2 f-2 c}{4}\right)$. Then $M\left(H D_{i}(c, f)\right) \mid N(c, f)$ for $i=1,2$. Given any prime ℓ,
$\left.\rho_{H D_{1}(c, f), 1, \ell}{ }^{s s}\right|_{G(N(c, f))} \cong\left(\left.\epsilon_{\ell} \otimes \rho_{\left.H D_{2}(c, f), 1, \ell\right)}\right|_{G(N(c, f))} \oplus \sigma_{s y m, \ell}\right.$,
where ϵ_{ℓ} is the ℓ-adic cyclotomic character, and $\sigma_{\text {sym, } \ell}$ is a 2-dim'l rep'n of $G(N(c, f))$ that can be computed explicitly.

Moreover, when $H D_{1}(c, f)$ is defined over $\mathbb{Q}, \rho_{H D_{1}(c, f), 1, \ell}$ is semi-simple and hence can be decomposed as above.

Seven pairs of (c, f)

- Only seven un-ordered pairs of $(c, f) \in\left(\mathbb{Q}^{\times}\right)^{2}$ are such that $H D_{1}(c, f)$ is defined over \mathbb{Q} and primitive:
$\left(\frac{1}{2}, \frac{1}{2}\right),\left(\frac{1}{2}, \frac{1}{3}\right),\left(\frac{1}{2}, \frac{1}{6}\right),\left(\frac{1}{3}, \frac{1}{3}\right),\left(\frac{1}{6}, \frac{1}{6}\right),\left(\frac{1}{5}, \frac{2}{5}\right),\left(\frac{1}{10}, \frac{3}{10}\right)$.
- Among them $H D_{2}(c, f)$ is primitive for all pairs, but is defined over \mathbb{Q} only for the first five pairs.
- $M(c, f)=l c d\left(\alpha_{6}(c, f) \cup \beta_{6}(c, f)\right)=l c d\left(\alpha_{4}(c, f) \cup \beta_{4}(c, f)\right)$.
- For each of the seven pairs, the repn's can be extended to $G_{\mathbb{Q}}$, denoted by $\rho_{H D_{1}(c, f), 1, \ell}^{B C M}$ and $\rho_{H D_{2}(c, f), 1, \ell}^{B C M}$, with Frobenius traces in \mathbb{Z}.

Modularity of $\rho_{H D_{2}(c, f), 1, \ell}^{B C M}$ and $\rho_{H D_{1}(c, f), 1, \ell}^{B C M}$ for the seven pairs of (c, f)

Katz and Beukers-Cohen-Mellit:

$$
\begin{aligned}
& \rho_{H D_{2}(c, f), 1, \ell}^{B C M}=\rho_{H D_{2}(c, f), 1, \ell}^{B C M, p r i m} \oplus \rho_{H D_{2}(c, f), 1, \ell}^{B C M, 1} \text { of degree } 2 \text { and } 1 ; \\
& \rho_{H D_{1}(c, f), 1, \ell}^{B C M}=\rho_{H D_{1}(c, f), 1, \ell}^{B C M, p r i m} \oplus \rho_{H D_{1}(c, f), 1, \ell}^{B C M, 1} \text { of degree } 4 \text { and } 1 .
\end{aligned}
$$

Theorem.[L-Long-Tu] For each of the seven pairs (c, f), $\rho_{H D_{2}(c, f), 1, \ell}^{B C M, \text { prim }}$ and $\rho_{H D_{2}(c, f), 1, \ell}^{B C M, 1}$ are modular, given as follows:

(c, f)	$\rho_{H D_{2}(c, f), 1, \ell}^{B C M, p r i m}$	$\rho_{H D_{2}(c, f), 1, \ell}^{B C M, 1}$
$\left(\frac{1}{2}, \frac{1}{2}\right)$	$\rho_{f_{8.4 . a . a}}$	ϵ_{ℓ}
$\left(\frac{1}{2}, \frac{1}{3}\right)$	$\rho_{f_{36.4 . a . a}}=\chi_{-3} \otimes \rho_{f_{12.4 . a . a}}$	$\chi_{3} \cdot \epsilon_{\ell}$
$\left(\frac{1}{3}, \frac{1}{3}\right)$	$\rho_{f_{6.4 . a . a}}=\chi_{-3} \otimes \rho_{f_{18.4 . a . a}}$	$\chi_{-3} \cdot \epsilon_{\ell}$
$\left(\frac{1}{2}, \frac{1}{6}\right)$	$\rho_{f_{72.4 . a . b}}=\chi_{-3} \otimes \rho_{f_{24.4 . a . a}}$	ϵ_{ℓ}
$\left(\frac{1}{6}, \frac{1}{6}\right)$	$\epsilon_{\ell} \otimes \rho_{f_{24.2 . a . a}}=\chi_{-3} \epsilon_{\ell} \otimes \rho_{f_{72.2 . a . a}}$	$\chi_{-3} \cdot \epsilon_{\ell}$
$\left(\frac{1}{5}, \frac{2}{5}\right)$	$\rho_{f_{50.4 . a . b}}=\chi_{5} \otimes \rho_{f_{50.4 . a . d}}$	ϵ_{ℓ} or $\chi_{5} \cdot \epsilon_{\ell}$
$\left(\frac{1}{10}, \frac{3}{10}\right)$	$\epsilon_{\ell} \otimes \rho_{f_{200.2 . a . b}}=\chi_{5} \epsilon_{\ell} \otimes \rho_{f_{200.2 . a . d}}$	ϵ_{ℓ} or $\chi_{5} \cdot \epsilon_{\ell}$

Theorem.[L-Long-Tu] For each of the seven pairs (c, f), $\rho_{H D_{1}(c, f), 1, \ell}^{B C M, \text { prim }}$ decomposes as a sum of two 2-dimensional $G_{\mathbb{Q}^{-}}$ modules, all subrepresentations are modular.

(c, f)	$\rho_{H D_{1}(c, f), 1, \ell}^{B C M}$
$\left(\frac{1}{2}, \frac{1}{2}\right)$	$\rho_{f_{8.6 . a . a}} \oplus\left(\epsilon_{\ell} \otimes \rho_{f_{\text {8.4.a.a }}} \oplus \chi_{-1} \epsilon_{\ell}^{2}\right.$
$\left(\frac{1}{2}, \frac{1}{3}\right)$	$\rho_{f_{4.6 . a . a}} \oplus\left(\epsilon_{\ell} \otimes \rho_{f_{12.4 . a .}}\right) \oplus \chi_{3} \epsilon_{\ell}^{2}$
$\left(\frac{1}{3}, \frac{1}{3}\right)$	$\rho_{f_{6.6 . a . a}} \oplus\left(\epsilon_{\ell} \otimes \rho_{f_{18.4 . a . a}}\right) \oplus \chi_{-1} \epsilon_{\ell}^{2}$
$\left(\frac{1}{2}, \frac{1}{6}\right)$	$\left(\epsilon_{\ell} \otimes \rho_{f_{8.4 . a . a}}\right) \oplus\left(\epsilon_{\ell} \otimes \rho_{f_{24.4 . a . a}}\right) \oplus \chi_{3} \epsilon_{\ell}^{2}$
$\left(\frac{1}{6}, \frac{1}{6}\right)$	$\left(\epsilon_{\ell}^{2} \otimes \rho_{f_{24.2 . a . a}}\right) \oplus\left(\epsilon_{\ell}^{2} \otimes \rho_{f_{72.2 . a . a}}\right) \oplus \chi_{-1} \epsilon_{\ell}^{2}$
$\left(\frac{1}{5}, \frac{2}{5}\right)$	$\left(\epsilon_{\ell} \otimes \rho_{f_{10.4 . a . a}}\right) \oplus\left(\epsilon_{\ell} \otimes \rho_{f_{50.4 . a . d}}\right) \oplus \chi_{-5} \epsilon_{\ell}^{2}$
$\left(\frac{1}{10}, \frac{3}{10}\right)\left(\epsilon_{\ell}^{2} \otimes \rho_{f_{40.2 . a . a}}\right) \oplus\left(\epsilon_{\ell}^{2} \otimes \rho_{f_{200.2 . a . b}}\right) \oplus \chi_{-5} \epsilon_{\ell}^{2}$	

Traces of Hecke operators

Joint work with Hoffman, Long, and Tu.
Interested in an explicit formula for the trace of Hecke operators T_{p} on the space $S_{k+2}(\Gamma)$ of weight $k+2$ modular/cusp forms for congruence subgroups Γ of $\mathrm{SL}_{2}(\mathbb{R})$ such that $X_{\Gamma}=\Gamma \backslash \mathfrak{H}^{*}$ is either an elliptic modular curve or a Shimura curve defined over \mathbb{Q}. Hence k is even if $-I \in \Gamma$.

Previous results: Ahlgren for $\Gamma_{0}(4)$, Ahlgren-Ono for $\Gamma_{0}(8)$, Frechette-Ono-Papanikolas for newforms of $\Gamma_{0}(8)$, Ihara and Fuselier for $\mathrm{SL}_{2}(\mathbb{Z})$, and Lennon for $\Gamma_{0}(3)$ and $\Gamma_{0}(9)$; all used the Selberg trace formula.

Our goal: express $\operatorname{Tr}\left(T_{p} \mid S_{k+2}(\Gamma)\right)$ in terms of hypergeometric character sums.

Our geometric approach

For each integer $k \geq 1$ and a prime ℓ, denote by $V^{k}(\Gamma)_{\ell}$ the standard ℓ-adic sheaf on $X_{\Gamma} \otimes \overline{\mathbb{Q}}$ from the moduli interpretation, first for Γ torsion-free using universal elliptic curves/abelian surfaces with QM, then for Γ with torsion by push-forward.

Theorem. [Deligne and Ohta] Given ℓ and $k \geq 1$, for almost all $p \neq \ell$,

$$
\operatorname{Tr}\left(T_{p} \mid S_{k+2}(\Gamma)\right)=\operatorname{Tr}\left(\operatorname{Frob}_{p} \mid H_{e t}^{1}\left(X_{\Gamma} \otimes \overline{\mathbb{Q}}, V^{k}(\Gamma)_{\ell}\right)\right)
$$

Combined with the Lefschetz fixed point formula, we get

$$
-\operatorname{Tr}\left(T_{p} \mid S_{k+2}(\Gamma)\right)=\sum_{\lambda \in X_{\Gamma}\left(\mathbb{F}_{p}\right)} \operatorname{Tr}^{2}\left(\operatorname{Frob}_{\lambda} \mid\left(V^{k}(\Gamma)_{\ell}\right)_{\bar{\lambda}}\right)
$$

Idea: Replace $V^{2}(\Gamma)_{\ell}$ or $V^{1}(\Gamma)_{\ell}$ by a twist of the hypergeometric sheaf associated to $H D(\Gamma)=\{\alpha(\Gamma), \beta(\Gamma)\}$ constructed by Katz. Use Katz's rigidity theorem and the comparison theorem to determine the twists needed to achieve isomorphism.

| Γ | $\Gamma_{1}(4)$ | $\Gamma_{1}(3)$ | $\Gamma_{0}(2)$ | $\mathrm{SL}_{2}(\mathbb{Z})$ | $\Gamma_{0}(2)^{+}$ | $\Gamma_{0}(3)^{+}$ | $(2,4,6)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | (∞, ∞, ∞) | $(3, \infty, \infty)$ | $(2, \infty, \infty)$ | $(2,3, \infty)$ | $(2,4, \infty)$ | $(2,6, \infty)$ | $(2,4,6)$ |
| $\alpha(\Gamma)$ | $\left\{\frac{1}{2}, \frac{1}{2}\right\}$ | $\left\{\frac{1}{3}, \frac{2}{3}\right\}$ | $\left\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\}$ | $\left\{\frac{1}{2}, \frac{1}{6}, \frac{5}{6}\right\}$ | $\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$ | $\left\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\right\}$ | $\left\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}\right\}$ |
| $\beta(\Gamma)$ | $\{1,1\}$ | $\{1,1\}$ | $\{1,1,1\}$ | $\{1,1,1\}$ | $\{1,1,1\}$ | $\{1,1,1\}$ | $\left\{1, \frac{7}{6}, \frac{5}{6}\right\}$ |

Let $B=\left(\frac{-1,3}{\mathbb{Q}}\right)$ be the indefinite quaternion algebra over \mathbb{Q} with discriminant 6; O_{B}^{1} the norm 1 subgroup of a maximal order O_{B}. The group $(2,4,6)$ is generated by O_{B}^{1} and the Atkin Lehner involutions w_{2}, w_{3}.

Explicit trace formula

Theorem. [Hoffman-L-Long-Tu]
(I) Let Γ be one of the last five. Fix a prime ℓ and even $k \geq 2$. For almost all $p \neq \ell$, the contributions from $\operatorname{Tr}\left(\operatorname{Frob}_{\lambda}\right)$ at generic $\lambda \in X_{\Gamma}\left(\mathbb{F}_{p}\right)$ can be expressed in terms of $H_{p}(H D(\Gamma) ; 1 / \lambda)$; the contributions from λ corresponding to elliptic points can be expressed by Jacobi sums, and each λ corresponding to a cusp contributes 1.
(II) For $\Gamma=\Gamma_{1}(4)$ and $\Gamma_{1}(3)$, denote by N_{Γ} the level of Γ.
(i)For even $k \geq 2$, similar results as in Theorem 1 hold;
(ii)For odd $k \geq 1, \operatorname{Tr}\left(T_{p} \mid S_{k+2}(\Gamma)\right)=0$ for primes $p \equiv-1$ $\bmod N_{\Gamma} . \quad$ For $p \equiv 1 \bmod N_{\Gamma}$, similar contributions from $\lambda \in X_{\Gamma}\left(\mathbb{F}_{p}\right)$ generic and elliptic; the contribution at λ corresponding to a regular (resp. irregular) cusp is 1 (resp. -1).

Example: $S_{8}(2,4,6)$
For $\Gamma=(2,4,6)$ the lowest weight with $S_{k+2}(\Gamma) \neq 0$ is $S_{8}(\Gamma)=$ $\left\langle h_{4}^{2}\right\rangle$, where $S_{4}\left(O_{B}^{1}\right)=\left\langle h_{4}\right\rangle$. For any prime $p>5$, the eigenvalue of T_{p} on h_{4}^{2}, denoted $a_{p}\left(h_{4}^{2}\right)$, is expressed in terms of
$a_{\Gamma}(\lambda, p)=\operatorname{Tr}\left(\operatorname{Frob}_{\lambda} \mid\left(V^{2}(\Gamma)\right)_{\bar{\lambda}}\right)=\left(\frac{-3(1-1 / \lambda)}{p}\right) p H_{p}\left(H D(\Gamma), \frac{1}{\lambda}\right)$ as follows:

$$
\begin{aligned}
& -a_{p}\left(h_{4}^{2}\right)=\sum_{\lambda \in \mathbb{F}_{p}, \neq 0,1}\left(a_{\Gamma}(\lambda, p)^{3}-2 p a_{\Gamma}(\lambda, p)^{2}-p^{2} a_{\Gamma}(\lambda, p)+p^{3}\right) \\
& +p\left(\left(p H_{p}(H D(\Gamma) ; 1)\right)^{2}-p^{2}\right)+\left(\left(\frac{-1}{p}\right)+\left(\frac{-3}{p}\right)+\left(\frac{-6}{p}\right)\right) p^{3}
\end{aligned}
$$

Remark. $h_{4}^{2} \leftrightarrow f_{6.8 . a . a}$ (LMFDB label) by JL, $a_{p}\left(h_{4}^{2}\right)=a_{p}\left(f_{6.8 . a . a}\right)$.

Some applications of the explicit trace formula

1. Get explicit eigenvalues of T_{p} on $S_{k+2}(\Gamma)$.
2. Get explicit Hecke traces on $S_{k+2}\left(\Gamma^{\prime}\right)$ for subgroups Γ^{\prime} of Γ whenever there is an explicit covering map $X_{\Gamma^{\prime}} \rightarrow X_{\Gamma}$ over \mathbb{Q}.
3. Get explicit hypergeometric values, e.g. by the work of Yang, $a_{7}\left(h_{4}^{2}\right)$ yields

$$
{ }_{3} F_{2}\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\
\quad & \frac{5}{6} & \frac{7}{6}
\end{array} ; \frac{2^{10} \cdot 3^{3} \cdot 5^{6} \cdot 7}{11^{4} \cdot 23^{4}}\right]=\frac{11 \cdot 23}{140 \sqrt{3}} \cdot \frac{2^{1 / 3}(4+2 \sqrt{2})}{7^{7 / 6}} \frac{\Gamma(7 / 6) \Gamma(13 / 24) \Gamma(19 / 24)}{\Gamma(5 / 6) \Gamma(17 / 24) \Gamma(23 / 24)} .
$$

4. The coefficients of $\Delta(z)=\eta^{24}(z)=\sum_{n \geq 1} \tau(n) e^{2 \pi i n z}$ satisfy

$$
\tau(p) \equiv\left\{\begin{array}{lll}
2 & \bmod 10 & \text { if } p \equiv 1,3 \quad \bmod 10 \\
6 & \bmod 10 & \text { if } p \equiv 7 \quad \bmod 10 \\
0 & \bmod 10 & \text { if } p \equiv 9 \quad \bmod 10
\end{array}\right.
$$

THANK YOU !!

