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Hypergeometric data and hypergeometric functions

o A hypergeometric datumis HD = {«, 8}, where o = {ay, ..., an}
B =1{b; =1,by,...,b,} with a;, bj c C.

e Associate the hypergeometric function for z € C
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o ,F,,_1(HD:;z) satisfies an nth order linear ODE with three
regular sigularities at 0,1, co. Solutions at nonsingular points
form a local system of rank n on PY(C)\ {0, 1, c0}. They give
rise to a monodromy representation of the fundamental group

1 (PHC)\ {0, 1, 00}, ).



Hypergeometric data and (zalois representations

o Assume a;,b; € Q* and HD is primitive, i.e., a; — b; ¢ Z for
all 2, 7.

o M = lcd(ar U f3) is the least common denominator of a;, b;.

e Katz introduced an f-adic rank-n hypergeometric sheaf H(H D),
on Gy, with explicit action of the Galois group Gal(Q/Q({yy)) =:
G(M). Its action on the fiber at A € Q({y7)™, denoted
PHD.\ ¢ has Frob. traces equal to hypergeometric character
sums, which are finite field analog of ,,F},_1(H D; \) studied
by Katz, Fuslier-Long-Ramakrishna-Swisher-Tu, etc.



The BCM representation

e HD is defined over Q if {(ZZ> mod Z} is invariant under
(4

multiplication by (Z/MZ)™.

e When HD is defined over QQ, the Katz representation can be
extended to G = Gal(Q/Q). One extension is pg%]\g studied

by Beukers-Cohen-Mellit, with explicit F'rob, traces given by
Hy(HD;\) for A € Q. Whenp=1 mod M, it is
Hy(HD;\)
p—2 n p 1) %wk)g(w@—”bjw’f)

eIk

k—jlg

= 1%) g(w(p_l)bj) wk«—l)n)\).

Here w generates F; . and Hy(HD;\) € Qis indep. of w.
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Theorem [Katz, Beukers-Cohen-Mellit]

Suppose HD = {a, B} is primitive, of length n, defined over
Q, with M = lcd(a U B). Assume that exactly m elements in
B are integers. Let A € Z|1/M|\ {0}. Then for each prime ¢,

o for primes p{ M{ such that ord,\ =0, we have

0
n—m 1
Trpf]%]\{ o(Froby) = <?> p 2 HP(HD;X) c 7.

o The degree d ofpfl%j\fg isn for A\# 1, andn—1 for A =1.

o pf]%j\fg has image in GO4(Qy) for n odd and GSpy(Qy) for
n even.

Here n—m iseven, § = O unless > " a; = 1/2 mod Z and 2|| M,
in which case 0 = 1.



An example

HD = {a, f} where a = %,%} B ={1,1} is primitive, defined
over Q with M = led(a U 8) = 2. Given A € Q, at primes
pfled(z, ), ),

Hp(HD;A) = — Y ¢pla(z — 1)(1 — Az)),
S

where ¢p is the quadratic character of F and ¢p(0) = 0.

In this case

BOM A
Trpprp a o(Frobp) = Hp(H D; ),
showing that at A\ # 1, pg%]\f( ¢ 18 the Galois rep'n on the f-adic

Tate module of the elliptic curve y? = z(z — 1)(1 — 1) and hence

is modular; at A =1, pg%]\{ ¢ 1s the trivial rep'n.

7



Relation between the fundamental and Galois groups

Let X = P\ {0, 1, 00} over Q(¢ys). In the language of schemes,
the algebraic points A come from specializing a generic point x of
X, and the Galois actions come from a rep’n of the étale fun-
damental group w1(Xy,*) of the generic fiber. Have the exact
sequence

0 — m(Xg, *x) = m(Xg, %) = G(M) — 0.

Here m1(X¢, *) is the profinite completion of 71 (X (C), *).

We shall explore this relation and study automorphy of the
BCM /Katz representations.



The Clausen formulas

The classical Clausen formula over C:

Clausen formula over [F;, by Evans-Greene: for 2s = a+0 mod Z,
1 1
Hq({_§+b_37 8}7 {17 b}7 t, w)HQ({_§_b+Sv 1_8}7 {17 l_b}: t, w)

1
— qu(l o t)Hq<{§7 a, 1 — a}7 {17 ba 1 — b}7t7w) + q(s(b)a
when ¢t € F, \ {0,1}. Here §(b) =1 if b € Z and 0 otherwise.
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When t = 1, we have

1
Hy (01— a}, (101 - Bk 10

B 1 Jw<CL + b, b — Cl) 1 9 1 9
0 g, ) <Jw(s 5 s J“’<2 Fembe) )

T

if wla—Dlatd) ig 5 square in IFE;; otherwise

1
H, ({5, a,1 —a},{1,b,1 —b}; 1;w> = 0.

Here J,(s,t) is a Jacobi sum.

Thus p{%,a,l—a},{l,b,l—b},)\,é is the symmetric square of a degree-

2 rep’n up to twist when \ # 1; when A = 1, it is induced from a
character of a quadratic extension.
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Some low degree automorphy results

Suppose HD = {a, B} has length 3, is primitive and defined
over Q.

Theorem. |L-Liu-Long]
(i) The degree-2 ,02%]\{6 is modular and has CM.

(i) For X € Q ~ {0,1}, the degree-3 pg%{\fyg, up to twist
by a character, 1s the symmetric square of a degree-2 modular
representation of G, hence it is automorphic.
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Next consider representations p = pg%]\{ y of G with image in
GO4(Qyp). So o, Bin HD = {«, B} have length 5 and A = 1.

By Liu-Yu, there is a field F' of degree < 2 over Q so that
,0|GF = p1 ® p9, where p; have degree-2.

Theorem. |L-Liu-Long]

(i) If p is induced from a character or F' = Q, then p is
automorphic.

(ii)If F is real quadratic, then p is potentially automorphic.
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Example. For any prime p > 3, we have
11111
Hy({=,=-,—-,=,= 1,1,1,1,1}:1
p ({272727272}7{ /i Ml Bl }7 )

_ Hp( %,%},{1,1};—1) (Hp ({i,%&é},{l@@,uﬁ) —p> |

With o = %, %, %, L %} and 8 ={1,1,1,1,1}, this shows that

BCM
X=1QPHD 1L Pf3200 D Pliraaa
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A Whipple 7 Fj; formula
The well-known Whipple 7Fg(1) formula asserts that

| 1+3 c d e f g '
e ¢ l4+a—cl+a—dl+a—e l+a—f l+a—g
_F(1+a—e)F(1+a—f)F(1+a—g)F(1+a—e—f—g)X
[(l+a)l(l+a—f—gl(l+a—e— f)I'(1+a—e—g)
a e f g
F: 1
X43[ e+f+g—a l+a—c l4+a—d’ ]’

when both sides terminate.

We specialize it to the following selt-dual form with a prime p :

3¢ l-e B f 1-f |
F 1 3 1 p 3 1 1=
12— Ccgteltss—f3+f
NGRNCERINC RN U o A e
PEPT1+2—TE+ ) 1-23—¢c 1y’




We give a (Galois representation theoretic interpretation of the
Whipple 7Fg identity and study the “automorphy”of the Galois
representations.

This is joint work with Ling long and Fang-Ting Tu

The associated HD are

HDI(Q f) =

{aﬁ(caf):{%7671_Caéafvl_f}766<c7f):{172_67%+6717g_f7%+f}};

11 3 1

HD2(Cvf> = {O‘4(f):{§7§7f71_f}754<c>:{17175_67§+C}}'
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A Galois representation theoretic interpretation of the
Whipple 7Fg formula

Theorem.|L-Long-Tu| For (c, f) such that both HD1(c, f) and
HDs(c, f) are primitive, let N(c, f) = lcd(1+2£_26, 3_21_26).
Then M(HD;(c, f))|N(c, f) fori=1,2. Given any prime £,

PHD (e, )16 |G(IN(e.f)) = (€RPHDy(e.).1,01G(N (e, ) DT sym.b

where €y is the L-adic cyclotomic character, and o4y, ¢ 1S a
2-dim’l rep’n of G(N(c, f)) that can be computed explicitly.

Moreover, when H D1(c, f) is defined over Q, PHD,(c,f)1,0 U
semi-simple and hence can be decomposed as above.
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Seven pairs of (¢, f)

e Only seven un-ordered pairs of (¢, f) € (Q*)? are such that
HD1(c, f) is defined over Q and primitive:

11 11 11 11 11 1 2 1 3
2'2)7\2'3)7\2°6/)7\33)°\6'6/) \5'5/ \10°10/

e Among them H Ds(c, f) is primitive for all pairs, but is defined
over Q only for the first five pairs.

o M(c, f) = led(ag(c, f) U Bs(c, f)) = led(aule, ) U Bale, f)).

e For each of the seven pairs, the repn’s can be extended to

BCM BCM '
G, denoted by PHDy(c.f) 10 and PHDy(c.f)1.0 with Frobe-

nius traces in Z.
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BCM BCM

Modularity of PHDy(c.f).1.0 and PHD(c.f).1.0 for the seven

pairs of (c, f)

Katz and Beukers-Cohen-Mellit:

BCM _ BCM . prim BCM,1 _
PHDy(e.f) 1,0 = PHDy(e,f), 1.6 & PHDy(e,),1,0 O degree 2 and 1

BCM _ BCM, prim BCM,1
PHD\(e.f)16 = PHDy(e.f).10 © PHD (e, 1,0 O degree dand L
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Theorem.|L-Long-Tu|] For each of the seven pairs (c, f),
BC M ,prim BCM,1 : .
PHD,(e.f).1.0 and PHDy(e.f).1.0 4T modular, given as follows:

BCM . prim BCM,1
(¢, f) PHDy(c,f),1,0 PHDy(c,f),1,0
(%v %> PfR4a.a €l
(%7 %> Pfiaaa = X=3LPLfo444 X3 €
(%7 %> Pfosaa = X=3D Pfigsaa X—3" ¢
(%v %) Pfroaan = X=3D Pfosaa €
(%7 %> €O PLfryogn = X=3UD Pfrog, X3 €
(%7 %) Plsosan = X5 D Pfensad €0 Ot X5 €
<1_107 1_30) €O PLongoan = XD Phayogql €€ O X5 €
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Theorem.|[-Long-Tu| For each of the seven pairs (c, f),

BC M ,prim : :
PHDy (e f) 1.0 decomposes as a sum of two 2-dimensional G-

modules, all subrepresentations are modular.

BCM

(¢, f) PHD(c.f). 1.0

11 2

(5:3) Plsgaa D (€0@ Plssaa) P X-1€0

1 1

(?7 ? Pligaa D €D Py, )@ X3€%2

<§’ ? Pf66.0.a P (€ ® Pfisaaa) D X—1€ ,

(§7 6) (65 & ’Of8.4.a.a) D <€€ X ’Of24.4.a.a> D X3€£

<%’ %) (G% ® 'Of24.2.a.a) @ <€% ® ’Of72.2.a.a> @ X_1€%

<1%7 %3) (€0 @ Pfiysn,) B (0@ 'Of50.4.a.d) D X—5€%
(19> 10) (E% = pf40.2.a.a) D <€% = 'Of200.2.a.b> D X—5€%
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Traces of Hecke operators
Joint work with Hoffman, Long, and Tu.

Interested in an explicit formula for the trace of Hecke operators
T, on the space Spio(I") of weight k£ + 2 modular/cusp forms
for congruence subgroups I' of SLo(R) such that Xt = I'\H* is
either an elliptic modular curve or a Shimura curve defined over

Q. Hence kisevenit —1 €T

Previous results: Ahlgren for I'g(4), Ahlgren-Ono for I'g(8),
Frechette-Ono-Papanikolas for newforms of I'y(8), Thara and Fuse-
lier for SLo(Z), and Lennon for I'g(3) and I'(9); all used the Sel-

berg trace formula.

Our goal: express Tr(7} | Spo(I')) in terms of hypergeometric
character sums.
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Our geometric approach

For each integer k > 1 and a prime ¢, denote by Vk(F) ¢ the stan-
dard ¢-adic sheaf on X1 ® Q from the moduli interpretation, first
for I' torsion-free using universal elliptic curves/abelian surfaces
with QM, then for I' with torsion by push-forward.

Theorem. [Deligne and Ohta| Given ¢ and k > 1, for almost
all p # ¢,
Tr(Ty | Spra(l)) = Tr(Froby | Hy(Xp ® Q, VH(I),).

Combined with the Letschetz fixed point formula, we get

~Tr(Ty | Spsa(D)) = Y Tr(Froby | (VH(I)y)3).
ANeXp(Fp)
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Idea: Replace VZ(I); or VI(I'), by a twist of the hypergeo-

metric sheaf associated to HD(I') = {«(T"), (") } constructed by

Katz. Use Katz’s rigidity theorem and the comparison theorem to

determine the twists needed to achieve isomorphism.

D) TiB) | o) | SLa(Z)  To2)™ | To(3)T | (2,4,6)
(00, 00,00) | (3, 00,00) (2,0(;,0;) (12,31, 00) (12,41, 00) (12,61,002) iQ,le, 633
Oé(F) {%7% {%7%} {%7§7§ {Qagag} {Qazag} {77373} {Qvg %}
Let B = (%) be the indefinite quaternion algebra over Q

with discriminant 6; O% the norm 1 subgroup of a maximal order

Opg. The group (2,4, 6) is generated by 011}3 and the Atkin Lehner
involutions woy, w3.
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Explicit trace formula
Theorem. [Hoffman-L-Long-Tu]

(I) Let " be one of the last five. Fix a prime { and even k > 2.
For almost all p # ¢, the contributions from Tr(Froby) at
generic A € Xp(IFp) can be expressed in terms of Hy(HD(I'); 1/)N);
the contributions from A\ corresponding to elliptic points can

be expressed by Jacobi sums, and each A corresponding to a
cusp contributes 1.

(IT) For I'=T1(4) and I'1(3), denote by Nr the level of T".

(i)For even k > 2, similar results as in Theorem 1 hold;

(1t)For odd k > 1, Tr(1p|S;o(I")) = 0 for primes p = —1
mod Np. For p = 1 mod Np, stmilar contributions from
A € Xrp(Fp) generic and elliptic; the contribution at X cor-
responding to a regular (resp. irregular) cusp is 1 (resp. -1).
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Example: Sg(2,4,6)

For I' = (2,4, 6) the lowest weight with S, o(I") # 0is Sg(I') =
(h?Q7 where 54(0}3) = (hy). For any prime p > 5, the eigenvalue
of T on h?p denoted ap(hi), is expressed in terms of

ar(p) = Tr(Froby|(VAD)) = (202 i D). )

p
as follows:

—ap(hf) = > (ar(%p)3 — 2par(\, p)* — pPar(A, p) + pg)
AelF,,#0,1

sl DD -+ () + () + ()8

Remark. h? < f58.4.q0 (LMFDB label) by JL, ap(h?) = ap(f5.8.0.0)-
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Some applications of the explicit trace formula
1. Get explicit eigenvalues of T}, on Si.o(I).

2. Get explicit Hecke traces on S}, o(I") for subgroups I of T
whenever there is an explicit covering map X — Xp over Q.

3. Get explicit hypergeometric values, e.g. by the work of Yang,
cw(hi) yields

1

319 [2

210.33.560.71  11-23 2M3(442/2)1(7/6)I(13/24)1(19/24)
114 . 234 ] T 140v3 77/6 ['(5/6)[(17/24)1'(23/24)

DI | =
[N EN[EN GV

4. The coefficients of A(2) = n?*(z) = D _n>1 7(n)e?™"7 satisty

2 mod 10 ifp=1,3 mod 10:;
T(p) =<6 mod 10 ifp=7 mod 10;
0 mod 10 ifp=9 mod 10.
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THANK YOU !!
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