Hypergeometric Functions, Galois Representations, and Modular Forms

International Conference on L-functions and Automorphic Forms Vanderbilt University, Nashville May 14, 2024

> Wen-Ching Winnie Li Pennsylvania State University

Hypergeometric data and hypergeometric functions

- A hypergeometric datum is $HD = \{\alpha, \beta\}$, where $\alpha = \{a_1, ..., a_n\}$, $\beta = \{b_1 = 1, b_2, ..., b_n\}$ with $a_i, b_j \in \mathbb{C}$.
- \bullet Associate the hypergeometric function for $z\in\mathbb{C}$

$$F(HD;z) = {}_{n}F_{n-1} \begin{bmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ b_{2} & \cdots & b_{n} \end{bmatrix} = \sum_{r \ge 0} \frac{(a_{1})_{r} \cdots (a_{n})_{r}}{(b_{1})_{r} \cdots (b_{n})_{r}} z^{r}$$

whenever it converges. Here $(a)_r$ is the Pochhammer symbol

$$(a)_r = a(a+1)\cdots(a+r-1) = \frac{\Gamma(a+r)}{\Gamma(a)}.$$

• ${}_{n}F_{n-1}(HD; z)$ satisfies an *n*th order linear ODE with three regular sigularities at $0, 1, \infty$. Solutions at nonsingular points form a local system of rank *n* on $\mathbb{P}^{1}(\mathbb{C}) \setminus \{0, 1, \infty\}$. They give rise to a monodromy representation of the fundamental group $\pi_{1}(\mathbb{P}^{1}(\mathbb{C}) \setminus \{0, 1, \infty\}, *).$

Hypergeometric data and Galois representations

- Assume $a_i, b_j \in \mathbb{Q}^{\times}$ and HD is primitive, i.e., $a_i b_j \notin \mathbb{Z}$ for all i, j.
- $M = lcd(\alpha \cup \beta)$ is the least common denominator of a_i, b_j .
- Katz introduced an ℓ -adic rank-n hypergeometric sheaf $\mathcal{H}(HD)_{\ell}$ on \mathbb{G}_m with explicit action of the Galois group $Gal(\bar{\mathbb{Q}}/\mathbb{Q}(\zeta_M)) =:$ G(M). Its action on the fiber at $\lambda \in \mathbb{Q}(\zeta_M)^{\times}$, denoted $\rho_{HD,\lambda,\ell}$, has Frob. traces equal to hypergeometric character sums, which are finite field analog of ${}_nF_{n-1}(HD;\lambda)$ studied by Katz, Fuslier-Long-Ramakrishna-Swisher-Tu, etc.

The BCM representation

- HD is defined over \mathbb{Q} if $\{ \begin{pmatrix} a_i \\ b_i \end{pmatrix} \mod \mathbb{Z} \}$ is invariant under multiplication by $(\mathbb{Z}/M\mathbb{Z})^{\times}$.
- When HD is defined over \mathbb{Q} , the Katz representation can be extended to $G_{\mathbb{Q}} = Gal(\overline{\mathbb{Q}}/\mathbb{Q})$. One extension is $\rho_{HD,\ell}^{BCM}$ studied by Beukers-Cohen-Mellit, with explicit $Frob_p$ traces given by $H_p(HD;\lambda)$ for $\lambda \in \mathbb{Q}^{\times}$. When $p \equiv 1 \mod M$, it is

$$= \frac{1}{1-p} \sum_{k=0}^{p-2} \prod_{j=1}^{n} \frac{\mathfrak{g}(\omega^{(p-1)a_j}\omega^k)}{\mathfrak{g}(\omega^{(p-1)a_j})} \frac{\mathfrak{g}(\overline{\omega}^{(p-1)b_j}\overline{\omega}^k)}{\mathfrak{g}(\overline{\omega}^{(p-1)b_j})} \omega^k((-1)^n\lambda).$$

Here ω generates \mathbb{F}_p^{\times} , and $H_p(HD; \lambda) \in \mathbb{Q}$ is indep. of ω .

Theorem [Katz, Beukers-Cohen-Mellit]

Suppose $HD = \{\alpha, \beta\}$ is primitive, of length n, defined over \mathbb{Q} , with $M = lcd(\alpha \cup \beta)$. Assume that exactly m elements in β are integers. Let $\lambda \in \mathbb{Z}[1/M] \setminus \{0\}$. Then for each prime ℓ ,

• for primes $p \nmid M\ell$ such that $ord_p \lambda = 0$, we have

$$Tr\rho_{HD,\lambda,\ell}^{BCM}(Frob_p) = \left(\frac{-1}{p}\right)^{\delta} p^{\frac{n-m}{2}} H_p(HD;\frac{1}{\lambda}) \in \mathbb{Z}.$$

- The degree d of $\rho_{HD,\lambda,\ell}^{BCM}$ is n for $\lambda \neq 1$, and n-1 for $\lambda = 1$.
- $\rho_{HD,\lambda,\ell}^{BCM}$ has image in $GO_d(\mathbb{Q}_\ell)$ for n odd and $GSp_d(\mathbb{Q}_\ell)$ for n even.

Here n - m is even, $\delta = 0$ unless $\sum a_i \equiv 1/2 \mod \mathbb{Z}$ and 2||M, in which case $\delta = 1$.

An example

 $HD = \{\alpha, \beta\}$ where $\alpha = \{\frac{1}{2}, \frac{1}{2}\}, \beta = \{1, 1\}$ is primitive, defined over \mathbb{Q} with $M = lcd(\alpha \cup \beta) = 2$. Given $\lambda \in \mathbb{Q}^{\times}$, at primes $p \nmid lcd(\frac{1}{2}, \lambda, \frac{1}{\lambda}),$

$$H_p(HD;\lambda) = -\sum_{x \in \mathbb{F}_p} \phi_p(x(x-1)(1-\lambda x)),$$

where ϕ_p is the quadratic character of \mathbb{F}_p^{\times} and $\phi_p(0) = 0$. In this case

$$\mathrm{Tr}\rho_{HD,\lambda,\ell}^{BCM}(Frob_p) = H_p(HD;\frac{1}{\lambda}),$$

showing that at $\lambda \neq 1$, $\rho_{HD,\lambda,\ell}^{BCM}$ is the Galois rep'n on the ℓ -adic Tate module of the elliptic curve $y^2 = x(x-1)(1-\frac{x}{\lambda})$ and hence is modular; at $\lambda = 1$, $\rho_{HD,\lambda,\ell}^{BCM}$ is the trivial rep'n.

Relation between the fundamental and Galois groups

Let $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}$ over $\mathbb{Q}(\zeta_M)$. In the language of schemes, the algebraic points λ come from specializing a generic point x of X, and the Galois actions come from a rep'n of the *étale fundamental group* $\pi_1(X_x, *)$ of the generic fiber. Have the exact sequence

$$0 \to \pi_1(X_{\mathbb{C}}, *) \to \pi_1(X_x, *) \to G(M) \to 0.$$

Here $\pi_1(X_{\mathbb{C}}, *)$ is the profinite completion of $\pi_1(X(\mathbb{C}), *)$.

We shall explore this relation and study automorphy of the BCM/Katz representations.

The Clausen formulas

The classical Clausen formula over \mathbb{C} :

$${}_{2}F_{1}\begin{bmatrix}a&b\\a+b+\frac{1}{2};z\end{bmatrix}{}_{2}F_{1}\begin{bmatrix}1-a&1-b\\\frac{3}{2}-a-b;z\end{bmatrix}$$
$$=(1-z)^{-\frac{1}{2}}{}_{3}F_{2}\begin{bmatrix}\frac{1}{2}a-b+\frac{1}{2}&b-a+\frac{1}{2}\\a+b+\frac{1}{2}&\frac{3}{2}-a-b;z\end{bmatrix}.$$

Clausen formula over \mathbb{F}_q by Evans-Greene: for $2s \equiv a+b \mod \mathbb{Z}$,

$$\begin{split} H_q(\{-\frac{1}{2}+b-s,s\},\{1,b\};t,\omega)H_q(\{-\frac{1}{2}-b+s,1-s\},\{1,1-b\};t,\omega) \\ &= \phi_q(1-t)H_q(\{\frac{1}{2},a,1-a\},\{1,b,1-b\};t,\omega) + q^{\delta(b)}, \\ \text{when } t \in \mathbb{F}_q \setminus \{0,1\}. \text{ Here } \delta(b) = 1 \text{ if } b \in \mathbb{Z} \text{ and } 0 \text{ otherwise.} \end{split}$$

When
$$t = 1$$
, we have

$$\begin{aligned} H_q\left(\{\frac{1}{2}, a, 1-a\}, \{1, b, 1-b\}; 1; \omega\right) \\ &= \frac{1}{q^{1-\delta(b)}} \frac{J_{\omega}(a+b, b-a)}{J_{\omega}(\frac{1}{2}, -b)} \left(J_{\omega}(s-b, \frac{1}{2}-s)^2 + J_{\omega}(\frac{1}{2}+s-b, s)^2\right), \\ \text{if } \omega^{(q-1)(a+b)} \text{ is a square in } \widehat{\mathbb{F}_q^{\times}}; \text{ otherwise} \\ H_q\left(\{\frac{1}{2}, a, 1-a\}, \{1, b, 1-b\}; 1; \omega\right) = 0. \end{aligned}$$

Here $J_{\omega}(s,t)$ is a Jacobi sum.

Thus $\rho_{\{\frac{1}{2},a,1-a\},\{1,b,1-b\},\lambda,\ell}$ is the symmetric square of a degree-2 rep'n up to twist when $\lambda \neq 1$; when $\lambda = 1$, it is induced from a character of a quadratic extension.

Some low degree automorphy results

Suppose $HD = \{\alpha, \beta\}$ has length 3, is primitive and defined over \mathbb{Q} .

Theorem. [L-Liu-Long] (i) The degree-2 $\rho_{HD,1,\ell}^{BCM}$ is modular and has CM. (ii) For $\lambda \in \mathbb{Q} \setminus \{0,1\}$, the degree-3 $\rho_{HD,\lambda,\ell}^{BCM}$, up to twist by a character, is the symmetric square of a degree-2 modular representation of $G_{\mathbb{Q}}$, hence it is automorphic. Next consider representations $\rho = \rho_{HD,\lambda,\ell}^{BCM}$ of $G_{\mathbb{Q}}$ with image in $GO_4(\mathbb{Q}_\ell)$. So α, β in $HD = \{\alpha, \beta\}$ have length 5 and $\lambda = 1$.

By Liu-Yu, there is a field F of degree ≤ 2 over \mathbb{Q} so that $\rho|_{G_F} = \rho_1 \otimes \rho_2$, where ρ_i have degree-2.

Theorem. [L-Liu-Long]

(i) If ρ is induced from a character or $F = \mathbb{Q}$, then ρ is automorphic.

(ii) If F is real quadratic, then ρ is potentially automorphic.

Example. For any prime p > 3, we have

$$H_p\left(\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}, \{1, 1, 1, 1, 1\}; 1\right)$$

= $H_p\left(\{\frac{1}{2}, \frac{1}{2}\}, \{1, 1\}; -1\right)\left(H_p\left(\{\frac{1}{4}, \frac{3}{4}, \frac{1}{4}, \frac{3}{4}\}, \{1, 1, 1, 1\}; 1\right) - p\right)$

With $\alpha = \{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ and $\beta = \{1, 1, 1, 1, 1, 1\}$, this shows that $\chi_{-1} \otimes \rho_{HD,1,\ell}^{BCM} \simeq \rho_{f_{32,2.a.a}} \otimes \rho_{f_{32,4.a.a}}.$

A Whipple $_7F_6$ formula

The well-known Whipple $_7F_6(1)$ formula asserts that

$${}_{7}F_{6} \begin{bmatrix} a & 1 + \frac{a}{2} & c & d & e & f & g \\ \frac{a}{2} & 1 + a - c & 1 + a - d & 1 + a - e & 1 + a - f & 1 + a - g \\ \end{bmatrix}$$

$$= \frac{\Gamma(1 + a - e)\Gamma(1 + a - f)\Gamma(1 + a - g)\Gamma(1 + a - e - f - g)}{\Gamma(1 + a)\Gamma(1 + a - f - g)\Gamma(1 + a - e - f)\Gamma(1 + a - e - g)} \times$$

$$\times {}_{4}F_{3} \begin{bmatrix} a & e & f & g \\ e + f + g - a & 1 + a - c & 1 + a - d \\ \end{array}; 1 \end{bmatrix},$$

when both sides terminate.

We specialize it to the following self-dual form with a prime p:

$${}_{7}F_{6}\left[\begin{array}{ccccc} \frac{1}{2} & \frac{5}{4} & c & 1-c & \frac{1-p}{2} & f & 1-f \\ \frac{1}{4} & \frac{3}{2}-c & \frac{1}{2}+c & 1+\frac{p}{2} & \frac{3}{2}-f & \frac{1}{2}+f \end{array}; 1\right] = \\ & \frac{\Gamma(\frac{p}{2})^{2}\Gamma(\frac{3}{2}-f)\Gamma(\frac{1}{2}+f)}{\Gamma(\frac{1}{2})^{2}\Gamma(1+\frac{p}{2}-f)\Gamma(\frac{p}{2}+f)} \times \left(p \cdot {}_{4}F_{3}\left[\begin{array}{cccc} \frac{1}{2} & \frac{1-p}{2} & f & 1-f \\ 1-\frac{p}{2} & \frac{3}{2}-c & \frac{1}{2}+c \end{array}; 1\right]\right).$$

We give a Galois representation theoretic interpretation of the Whipple $_7F_6$ identity and study the "automorphy" of the Galois representations.

This is joint work with Ling long and Fang-Ting Tu The associated HD are

$$\begin{split} HD_1(c,f) &\coloneqq \\ &\left\{ \alpha_6(c,f) = \{\frac{1}{2}, c, 1-c, \frac{1}{2}, f, 1-f\}, \beta_6(c,f) = \{1, \frac{3}{2}-c, \frac{1}{2}+c, 1, \frac{3}{2}-f, \frac{1}{2}+f\} \right\}; \\ & HD_2(c,f) \coloneqq \left\{ \alpha_4(f) = \{\frac{1}{2}, \frac{1}{2}, f, 1-f\}, \beta_4(c) = \{1, 1, \frac{3}{2}-c, \frac{1}{2}+c\} \right\}. \end{split}$$

A Galois representation theoretic interpretation of the Whipple $_7F_6$ formula

Theorem.[L-Long-Tu] For (c, f) such that both $HD_1(c, f)$ and $HD_2(c, f)$ are primitive, let $N(c, f) = lcd(\frac{1+2f-2c}{4}, \frac{3-2f-2c}{4})$. Then $M(HD_i(c, f))|N(c, f)$ for i = 1, 2. Given any prime ℓ ,

$$\rho_{HD_1(c,f),1,\ell}{}^{ss}|_{G(N(c,f))} \cong (\epsilon_\ell \otimes \rho_{HD_2(c,f),1,\ell})|_{G(N(c,f))} \oplus \sigma_{sym,\ell},$$

where ϵ_{ℓ} is the ℓ -adic cyclotomic character, and $\sigma_{sym,\ell}$ is a 2-dim'l rep'n of G(N(c, f)) that can be computed explicitly.

Moreover, when $HD_1(c, f)$ is defined over \mathbb{Q} , $\rho_{HD_1(c,f),1,\ell}$ is semi-simple and hence can be decomposed as above.

Seven pairs of (c, f)

• Only seven un-ordered pairs of $(c, f) \in (\mathbb{Q}^{\times})^2$ are such that $HD_1(c, f)$ is defined over \mathbb{Q} and primitive:

 $\left(\frac{1}{2},\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{3}\right), \left(\frac{1}{2},\frac{1}{6}\right), \left(\frac{1}{3},\frac{1}{3}\right), \left(\frac{1}{3},\frac{1}{3}\right), \left(\frac{1}{6},\frac{1}{6}\right), \left(\frac{1}{5},\frac{2}{5}\right), \left(\frac{1}{10},\frac{3}{10}\right).$

- Among them $HD_2(c, f)$ is primitive for all pairs, but is defined over \mathbb{Q} only for the first five pairs.
- $M(c, f) = lcd(\alpha_6(c, f) \cup \beta_6(c, f)) = lcd(\alpha_4(c, f) \cup \beta_4(c, f)).$
- For each of the seven pairs, the repn's can be extended to $G_{\mathbb{Q}}$, denoted by $\rho_{HD_1(c,f),1,\ell}^{BCM}$ and $\rho_{HD_2(c,f),1,\ell}^{BCM}$, with Frobenius traces in \mathbb{Z} .

Modularity of $\rho^{BCM}_{HD_2(c,f),1,\ell}$ and $\rho^{BCM}_{HD_1(c,f),1,\ell}$ for the seven pairs of (c,f)

Katz and Beukers-Cohen-Mellit:

$$\rho_{HD_{2}(c,f),1,\ell}^{BCM} = \rho_{HD_{2}(c,f),1,\ell}^{BCM,prim} \oplus \rho_{HD_{2}(c,f),1,\ell}^{BCM,1} \text{ of degree 2 and 1};$$

$$\rho_{HD_1(c,f),1,\ell}^{BCM} = \rho_{HD_1(c,f),1,\ell}^{BCM,prim} \oplus \rho_{HD_1(c,f),1,\ell}^{BCM,1} \quad \text{of degree 4 and 1.}$$

Theorem.[L-Long-Tu] For each of the seven pairs (c, f), $\rho_{HD_2(c,f),1,\ell}^{BCM,prim}$ and $\rho_{HD_2(c,f),1,\ell}^{BCM,1}$ are modular, given as follows:

$\begin{pmatrix} c & f \end{pmatrix}$	BCM, prim	BCM,1	
(c, f)	$ ho_{HD_2(c,f),1,\ell}$	$ ho_{HD_2(c,f),1,\ell} $	
$(\frac{1}{2}, \frac{1}{2})$	$ ho_{f_{8.4.a.a}}$	ϵ_ℓ	
$(\frac{1}{2}, \frac{1}{3})$	$\rho_{f_{36.4.a.a}} = \chi_{-3} \otimes \rho_{f_{12.4.a.a}}$	$\chi_3 \cdot \epsilon_\ell$	
$\left(\frac{1}{3},\frac{1}{3}\right)$	$\rho_{f_{6.4.a.a}} = \chi_{-3} \otimes \rho_{f_{18.4.a.a}}$	$\chi_{-3} \cdot \epsilon_\ell$	
$(\frac{1}{2},\frac{1}{6})$	$\rho_{f_{72.4.a.b}} = \chi_{-3} \otimes \rho_{f_{24.4.a.a}}$	ϵ_ℓ	
$(\frac{1}{6}, \frac{1}{6})$	$\epsilon_{\ell} \otimes \rho_{f_{24,2,a,a}} = \chi_{-3} \epsilon_{\ell} \otimes \rho_{f_{72,2,a,a}}$	$\chi_{-3} \cdot \epsilon_\ell$	
$(\frac{1}{5}, \frac{2}{5})$	$\rho_{f_{50.4.a.b}} = \chi_5 \otimes \rho_{f_{50.4.a.d}}$	$\epsilon_\ell \text{ or } \chi_5 \cdot \epsilon_\ell$	
$\left\lfloor \left(\frac{1}{10}, \frac{3}{10}\right) \right\rfloor$	$\epsilon_{\ell} \otimes \rho_{f_{200,2.a.b}} = \chi_5 \epsilon_{\ell} \otimes \rho_{f_{200,2.a.d}}$	$\epsilon_\ell \text{ or } \chi_5 \cdot \epsilon_\ell$	

Theorem.[L-Long-Tu] For each of the seven pairs (c, f), $\rho_{HD_1(c,f),1,\ell}^{BCM,prim}$ decomposes as a sum of two 2-dimensional $G_{\mathbb{Q}}$ -modules, all subrepresentations are modular.

Traces of Hecke operators

Joint work with Hoffman, Long, and Tu.

Interested in an explicit formula for the trace of Hecke operators T_p on the space $S_{k+2}(\Gamma)$ of weight $k + 2 \mod lar/cusp$ forms for congruence subgroups Γ of $SL_2(\mathbb{R})$ such that $X_{\Gamma} = \Gamma \setminus \mathfrak{H}^*$ is either an elliptic modular curve or a Shimura curve defined over \mathbb{Q} . Hence k is even if $-I \in \Gamma$.

Previous results: Ahlgren for $\Gamma_0(4)$, Ahlgren-Ono for $\Gamma_0(8)$, Frechette-Ono-Papanikolas for newforms of $\Gamma_0(8)$, Ihara and Fuselier for $SL_2(\mathbb{Z})$, and Lennon for $\Gamma_0(3)$ and $\Gamma_0(9)$; all used the Selberg trace formula.

Our goal: express $Tr(T_p \mid S_{k+2}(\Gamma))$ in terms of hypergeometric character sums.

Our geometric approach

For each integer $k \geq 1$ and a prime ℓ , denote by $V^k(\Gamma)_{\ell}$ the standard ℓ -adic sheaf on $X_{\Gamma} \otimes \overline{\mathbb{Q}}$ from the moduli interpretation, first for Γ torsion-free using universal elliptic curves/abelian surfaces with QM, then for Γ with torsion by push-forward.

Theorem. [Deligne and Ohta] Given ℓ and $k \geq 1$, for almost all $p \neq \ell$,

 $\operatorname{Tr}(T_p \mid S_{k+2}(\Gamma)) = \operatorname{Tr}(Frob_p \mid H^1_{et}(X_{\Gamma} \otimes \overline{\mathbb{Q}}, V^k(\Gamma)_{\ell})).$ Combined with the Lefschetz fixed point formula, we get

$$-\mathrm{T}r(T_p \mid S_{k+2}(\Gamma)) = \sum_{\lambda \in X_{\Gamma}(\mathbb{F}_p)} \mathrm{T}r(Frob_{\lambda} \mid (V^k(\Gamma)_{\ell})_{\bar{\lambda}}).$$

Idea: Replace $V^2(\Gamma)_{\ell}$ or $V^1(\Gamma)_{\ell}$ by a twist of the hypergeometric sheaf associated to $HD(\Gamma) = \{\alpha(\Gamma), \beta(\Gamma)\}$ constructed by Katz. Use Katz's rigidity theorem and the comparison theorem to determine the twists needed to achieve isomorphism.

Γ	$\Gamma_1(4)$	$\Gamma_1(3)$	$\Gamma_0(2)$	$\operatorname{SL}_2(\mathbb{Z})$	$\Gamma_0(2)^+$	$\Gamma_0(3)^+$	(2, 4, 6)
	(∞,∞,∞)	$(3,\infty,\infty)$	$(2,\infty,\infty)$	$(2,3,\infty)$	$(2,4,\infty)$	$(2, 6, \infty)$	(2, 4, 6)
$\alpha(\Gamma)$	$\{\frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{3}, \frac{2}{3}\}$	$\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$	$\{\frac{1}{2}, \frac{1}{6}, \frac{5}{6}\}$	$\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}\}$	$\{\frac{1}{2}, \frac{1}{3}, \frac{2}{3}\}$	$\{\frac{1}{2}, \frac{1}{4}, \frac{3}{4}\}$
$\beta(\Gamma)$	$\{1, 1\}$	$\{1, 1\}$	$\{1, 1, 1\}$	$\{1, 1, 1\}$	$\{1, 1, 1\}$	$\{1, 1, 1\}$	$\{1, \frac{7}{6}, \frac{5}{6}\}$

Let $B = \begin{pmatrix} -1,3 \\ \mathbb{Q} \end{pmatrix}$ be the indefinite quaternion algebra over \mathbb{Q} with discriminant 6; O_B^1 the norm 1 subgroup of a maximal order O_B . The group (2, 4, 6) is generated by O_B^1 and the Atkin Lehner involutions w_2, w_3 .

Explicit trace formula

Theorem. [Hoffman-L-Long-Tu]

(I) Let Γ be one of the last five. Fix a prime ℓ and even $k \geq 2$. For almost all $p \neq \ell$, the contributions from $Tr(Frob_{\lambda})$ at generic $\lambda \in X_{\Gamma}(\mathbb{F}_p)$ can be expressed in terms of $H_p(HD(\Gamma); 1/\lambda)$; the contributions from λ corresponding to elliptic points can be expressed by Jacobi sums, and each λ corresponding to a cusp contributes 1.

(II) For $\Gamma = \Gamma_1(4)$ and $\Gamma_1(3)$, denote by N_{Γ} the level of Γ . (i)For even $k \geq 2$, similar results as in Theorem 1 hold; (ii)For odd $k \geq 1$, $Tr(T_p|S_{k+2}(\Gamma)) = 0$ for primes $p \equiv -1$ mod N_{Γ} . For $p \equiv 1 \mod N_{\Gamma}$, similar contributions from $\lambda \in X_{\Gamma}(\mathbb{F}_p)$ generic and elliptic; the contribution at λ corresponding to a regular (resp. irregular) cusp is 1 (resp. -1).

Example: $S_8(2, 4, 6)$

For $\Gamma = (2, 4, 6)$ the lowest weight with $S_{k+2}(\Gamma) \neq 0$ is $S_8(\Gamma) =$ $\langle h_4^2 \rangle$, where $S_4(O_B^1) = \langle h_4 \rangle$. For any prime p > 5, the eigenvalue of T_p on h_A^2 , denoted $a_p(h_A^2)$, is expressed in terms of

$$a_{\Gamma}(\lambda, p) = \mathrm{T}r(Frob_{\lambda}|(V^{2}(\Gamma))_{\bar{\lambda}}) = \left(\frac{-3(1-1/\lambda)}{p}\right)pH_{p}(HD(\Gamma), \frac{1}{\lambda})$$

as ionows.

$$\begin{aligned} -a_p(h_4^2) &= \sum_{\lambda \in \mathbb{F}_p, \neq 0, 1} \left(a_{\Gamma}(\lambda, p)^3 - 2pa_{\Gamma}(\lambda, p)^2 - p^2 a_{\Gamma}(\lambda, p) + p^3 \right) \\ &+ p((pH_p(HD(\Gamma); 1))^2 - p^2) + \left(\left(\frac{-1}{p} \right) + \left(\frac{-3}{p} \right) + \left(\frac{-6}{p} \right) \right) p^3. \end{aligned}$$
Remark. $h_4^2 \leftrightarrow f_{6.8.a.a}$ (LMFDB label) by JL, $a_p(h_4^2) = a_p(f_{6.8.a.a})$

Some applications of the explicit trace formula

1. Get explicit eigenvalues of T_p on $S_{k+2}(\Gamma)$.

2. Get explicit Hecke traces on $S_{k+2}(\Gamma')$ for subgroups Γ' of Γ whenever there is an explicit covering map $X_{\Gamma'} \to X_{\Gamma}$ over \mathbb{Q} .

3. Get explicit hypergeometric values, e.g. by the work of Yang, $a_7(h_4^2)$ yields

$${}_{3}F_{2}\left[\begin{smallmatrix}\frac{1}{2} & \frac{1}{4} & \frac{3}{4} \\ \frac{5}{6} & \frac{7}{6}\end{smallmatrix}; \frac{2^{10} \cdot 3^{3} \cdot 5^{6} \cdot 7}{11^{4} \cdot 23^{4}}\right] = \frac{11 \cdot 23}{140\sqrt{3}} \cdot \frac{2^{1/3}(4 + 2\sqrt{2})}{7^{7/6}} \frac{\Gamma(7/6)\Gamma(13/24)\Gamma(19/24)}{\Gamma(5/6)\Gamma(17/24)\Gamma(23/24)}.$$

4. The coefficients of $\Delta(z) = \eta^{24}(z) = \sum_{n \ge 1} \tau(n) e^{2\pi i n z}$ satisfy

$$\tau(p) \equiv \begin{cases} 2 \mod 10 & \text{if } p \equiv 1, 3 \mod 10; \\ 6 \mod 10 & \text{if } p \equiv 7 \mod 10; \\ 0 \mod 10 & \text{if } p \equiv 9 \mod 10. \end{cases}$$

THANK YOU !!