Averages of Long Dirichlet Polynomial Approximations of Primitive Dirichlet L-functions

Caroline Turnage-Butterbaugh Carleton College

International Conference on L-Functions and Automorphic Forms Vanderbilt University May 15, 2024

Moments of the Riemann zeta-function

$$
M_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Hardy $\dot{\xi}$ Little wood initiated the study of $M_{k}(T)$.

- Lindelöff Hypothesis: For any $\varepsilon>0$,

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll_{\varepsilon} t^{\varepsilon} .
$$

Moments of the Riemann zeta-function

$$
M_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Hardy $\dot{\varepsilon}$ Littlewood initiated the study of $M_{k}(T)$.

- Lindelöff Hypothesis: For any $\varepsilon>0$,

$$
\left|\zeta\left(\frac{1}{2}+i t\right)\right| \ll_{\varepsilon} t^{\varepsilon} .
$$

- LH \Leftrightarrow for any $\varepsilon>0, M_{k}(T) \ll_{\varepsilon} T^{1+\varepsilon}$ for all $k \in \mathbb{N}$.

Moments of the Riemann zeta-function

$$
M_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Applications: Moments can be used to

- study the vertical distribution of non-trivial zeros;

Moments of the Riemann zeta-function

$$
M_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Applications: Moments can be used to

- study the vertical distribution of non-trivial zeros;
- count zeros on the critical line;

Moments of the Riemann zeta-function

$$
M_{k}(T):=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Applications: Moments can be used to

- study the vertical distribution of non-trivial zeros;
- count zeros on the critical line;
- study extreme values of $\left|\zeta\left(\frac{1}{2}+i t\right)\right|$

Folklore Conjecture

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

where c_{k} is a constant

Folklore Conjecture

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

where c_{k} is a constant

$$
T(\log T)^{k^{2}} \ll \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll T(\log T)^{k^{2}}
$$

Lower Bound: holds unconditionally for $k \geqslant 0$

- Radziwitt-Soundararajan (2013)
- Heap-Soundararaján (2020)

Folklore Conjecture

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

where c_{k} is a constant

$$
T(\log T)^{k^{2}} \ll \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll T(\log T)^{k^{2}}
$$

Upper Bound : holds unconditionally for:

- $k=\frac{1}{n}, n \in \mathbb{N}$ Heath-Broww (1981)
- $K=1+\frac{1}{n}, n \in \mathbb{N}$ Bettin-Chandee-Radziwill (2017)
- $0 \leq K \leq 2$ Heap-Radziwilt-Soundararajan (2019)

Folklore Conjecture

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

where c_{k} is a constant

$$
T(\log T)^{k^{2}} \ll \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \ll T(\log T)^{k^{2}}
$$

Upper Bound : holds on RH for $k \geqslant 0$

- Soundararajan (2007)
- Harper (2013)

Asymptotics

$$
M_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

- Hardy + Little wood (1918): $M_{1}(T) \sim T \log T$
- Ingham (1926): $M_{2}(T) \sim \frac{T}{2 \pi^{2}} \log ^{4} T$

Asymptotic

$$
M_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

- Hardy + Little wood (1918): $M_{1}(T) \sim T \log T$
- Ingham (1926): $M_{2}(T) \sim \frac{T}{2 \pi^{2}} \log ^{4} T$

For $k \geqslant 3$, no asymptotic formula has been proven unconditionally.

Asymptotic

$$
M_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

- Hardy + Little wood (1918): $M_{1}(T) \sim T \log T$
- Ingham (1926): $M_{2}(T) \sim \frac{T}{2 \pi^{2}} \log ^{4} T$

For $k \geqslant 3$, no asymptotic formula has been proven unconditionally.

- $\operatorname{Ng}(2016): M_{3}(T)$ with a power saving error term, assuming a ternary additive divisor conjecture.
- Ng -Shen-Wong (2022): $M_{4}(T)$ assuming RH and a quaternary additive divisor conjecture.

Why are asymptotics difficult for large K?
*credit to Fai Chandee for this overview *

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t=\int_{0}^{T} \zeta^{k}\left(\frac{1}{2}+i t\right) \overline{\zeta^{k}\left(\frac{1}{2}+i t\right)} d t
$$

Why are asymptotic difficult for large K?

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t=\int_{0}^{T} \zeta^{k}\left(\frac{1}{2}+i t\right) \overline{\zeta^{k}\left(\frac{1}{2}+i t\right)} d t
$$

For $\operatorname{Re}(s)>1$,

$$
\zeta^{k}(s)=\sum_{n=1}^{\infty} \frac{d_{k}(n)}{n^{s}}
$$

Why are asymptotics difficult for large K?

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t=\int_{0}^{T} \zeta^{k}\left(\frac{1}{2}+i t\right) \overline{\zeta^{k}\left(\frac{1}{2}+i t\right)} d t
$$

For $\operatorname{Re}(s)>1$,

$$
\zeta^{k}(s)=\sum_{n=1}^{\infty} \frac{d_{k}(n)}{n^{s}}
$$

where $d_{k}(n)$ is the k-th divisor function:

$$
d_{k}(n)=\sum_{m_{1} \cdots m_{k}=n} 1=\#\left\{\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}: m_{1} \cdots m_{k}=n\right\}
$$

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t=\int_{0}^{T} \zeta^{k}\left(\frac{1}{2}+i t\right) \overline{\zeta^{k}\left(\frac{1}{2}+i t\right)} d t
$$

We expect that

$$
\xi^{k}\left(\frac{1}{2}+i t\right) \approx \sum_{n \leq t^{k}} \frac{d_{k}(n)}{n^{1 / 2+i t}},
$$

so

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \approx \int_{0}^{T} \sum_{m, n \leq T^{k / 2}} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}}\left(\frac{m}{n}\right)^{-i t} d t
$$

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t=\int_{0}^{T} \zeta^{k}\left(\frac{1}{2}+i t\right) \overline{\zeta^{k}\left(\frac{1}{2}+i t\right)} d t
$$

We expect that

$$
\xi^{k}\left(\frac{1}{2}+i t\right) \approx \sum_{n \leq t^{k}} \frac{d_{k}(n)}{n^{1 / 2+i t}},
$$

so

$$
\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \approx \int_{0}^{T} \sum_{m, n \leqslant T^{k / 2}} \frac{d_{k}(m) d_{k}(n)}{(m n)^{1 / 2}}\left(\frac{m}{n}\right)^{-i t} d t
$$

Note:

$$
\int_{0}^{T}\left(\frac{m}{n}\right)^{-i t} d t=\left\{\begin{array}{cl}
T & \text { if } m=n \\
\frac{\sin (T \log (m / n))}{\log (m / n)} & \text { if } \quad m \neq n
\end{array}\right.
$$

$$
\begin{aligned}
& \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \approx T \sum_{n \leq T^{k / 2}} \frac{d_{k}(n)^{2}}{n} \\
&+\sum_{\substack{m, n \leq T^{k / 2} \\
m \neq n}} \frac{d_{k}(m) d_{k}(n)}{\sqrt{m} \sqrt{n}} \cdot \frac{\sin (T \log (m / n))}{\log (m / n)}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \approx T \sum_{n \leq T^{k} / 2} \frac{d_{k}(n)^{2}}{n} \\
&+\sum_{\substack{m, n \leq T^{k / 2} \\
m \neq n}} \frac{d_{k}(m) d_{k}(n)}{\sqrt{m} \sqrt{n}} \cdot \frac{\sin (T \log (m / n))}{\log (m / n)}
\end{aligned}
$$

$\log \left(\frac{m}{n}\right)$ is small if m is close to n
\therefore terms with $m=n+r$ and r small contribute to the main term

Example: $k=3$

$$
\sum_{\substack{m, n \leq T^{3 / 2} \\ m \neq n}} \frac{d_{3}(m) d_{3}(n)}{\sqrt{m} \sqrt{n}} \cdot \frac{\sin (T \log (m / n))}{\log (m / n)}
$$

- For $m=T^{5 / 4}+T^{1 / 4}$ and $n=T^{5 / 4}$

$$
\begin{gathered}
\log \left(\frac{m}{n}\right) \asymp \log \left(1+\frac{1}{T}\right) \simeq \frac{1}{T} \\
\frac{\sin (T \log (m / n))}{\log (m / n)}=T
\end{gathered}
$$

Example: $k=3$

$$
\sum_{\substack{m, n \leq T^{3 / 2} \\ m \neq n}} \frac{d_{3}(m) d_{3}(n)}{\sqrt{m} \sqrt{n}} \cdot \frac{\sin (T \log (m / n))}{\log (m / n)}
$$

- This leads to the difficult problem of additive divisor sums:

$$
\sum_{n \leq x} d_{k}(n) d_{k}(n+r)
$$

$* k=2 \checkmark$ Motohashi
$k \geqslant 3 \quad$ no asymptoties

Folklore Conjecture

$$
M_{k}(T) \sim \frac{g_{k}}{\left(k^{2}\right)!} a_{k} T(\log T)^{k^{2}}
$$

where

- a_{k} : defined via $\sum_{n \leq T} \frac{d_{k}(n)^{2}}{n} \sim \frac{a_{k}}{(k!)^{2}}(\log T)^{k^{2}}$

Folklore Conjecture

$$
M_{k}(T) \sim \frac{g_{k}}{\left(k^{2}\right)!} a_{k} T(\log T)^{k^{2}}
$$

where

- $a_{k}:$ defined via $\sum_{n \leq T} \frac{d_{k}(n)^{2}}{n} \sim \frac{a_{k}}{(k!)^{2}}(\log T)^{k^{2}}$
- can show that

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}} \sum_{j=0}^{k-1}\binom{k-1}{j}^{2} \frac{1}{p^{j}}
$$

Folklore Conjecture

$$
M_{k}(T) \sim \frac{g_{k}}{\left(k^{2}\right)!} a_{k} T(\log T)^{k^{2}}
$$

where

- $a_{k}:$ defined via $\sum_{n \leq T} \frac{d_{k}(n)^{2}}{n} \sim \frac{a_{k}}{(k!)^{2}}(\log T)^{k^{2}}$
- can show that

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}} \sum_{j=0}^{k-1}\binom{k-1}{j}^{2} \frac{1}{p^{j}}
$$

- g_{k} : some constant; for $k \geqslant 3$, we have conjectures for its value.

Folklore Conjecture

$$
M_{k}(T) \sim \frac{g_{k}}{\left(k^{2}\right)!} a_{k} T(\log T)^{k^{2}}
$$

Conjectures for g_{k} :

- Conrey + Ghosh (1996) Dirichlet polynomials + AFE $\quad g_{3}=42$
- Conrey \& Gonek (1998) Dirichlet polynomials + AFE $\quad 9_{4}=24024$
- Keating \& Snaith (1998) RMT, Re $(k) \geqslant-\frac{1}{2} \quad g_{k}=\left(k^{2}\right)!\prod_{j=1}^{k-1} \frac{j!}{(j+k)!}$
- Diaconu-Goldfeld-Hoffstein (2000) mult. Dirichlet series, $K \in \mathbb{N}$
- Conrey - Farmer-Keating-Rubenstein-Snaith (2000) recipe, $K \in \mathbb{N}$

Where does the conjectured combinatorial structure come from?

The CFKRS recipe for shifted moments of $\zeta(s)$

$$
\mathcal{M}_{A, B}(T):=\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

- "shifts" α, β are small complex numbers ($<1 / \log T)$

The CFKRS recipe for shifted moments of $\zeta(s)$

$$
\mathcal{M}_{A, B}(T):=\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

- "shifts" α, β are small complex numbers $(\ll 1 / \log T)$

Basic recipe (conjectures lower order terms $\dot{\varepsilon}$ their coefficients too)
(1) use the approximate functional equation:
where

$$
\xi(s) \approx \sum_{m} \frac{1}{m^{s}}+\chi(s) \sum_{n} \frac{1}{n^{1-s}}
$$

$$
x(s)=\left(\frac{t}{2 \pi}\right)^{\frac{1}{2}-s} e^{i t+\pi i / 4}\left(1+O\left(\frac{1}{t}\right)\right)
$$

(2) multiply out
(3) Ignore terms where the product of X-factors is oscillating rapidly
(4) Ignore off-diagonal contributions of what's left.

$$
\mathcal{M}_{A, B}(T):=\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

Conjecture (CFKRS, 2000)

$$
\begin{aligned}
& \mathcal{M}_{A, B}(T) \sim \\
& \sum_{\substack{u \leq A, v \leq B \\
|u|=1 V 1}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in u} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup V-(n) \tau_{B \backslash V \cup u-(n)}}^{n}}{} d t
\end{aligned}
$$

$$
\begin{gathered}
\prod_{\alpha \in A} \zeta(\alpha+S)=\sum_{n=1}^{\infty} \frac{\tau_{A}(n)}{n^{s}} \quad \tau_{A}(n)=\sum_{m_{1} m_{2} \cdots m_{k}=n} m_{1}^{-\alpha_{1}} m_{2}^{-\alpha_{2}} \ldots m_{k}^{-\alpha_{k}} \\
U^{-:}=\{-\alpha: \alpha \in U\}
\end{gathered}
$$

- We call the cardinality $|u|=|V|$ the number of "swaps."

Example: The recipe prediction for the fourth moment

CFKRS Recipe Prediction

$$
\begin{aligned}
\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) & \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t \\
& \sim \sum_{\substack{u \leq A, V \leq B \\
|u|=V 1}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in U} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup V-(n) \tau_{B \backslash V \cup u-(n)}}^{n} d t}{}
\end{aligned}
$$

For the fourth moment, take $|A|=|B|=2$:

$$
\begin{aligned}
& A=\left\{\alpha_{1}, \alpha_{2}\right\} \\
& u \leq A: \quad \phi, \quad\left\{\alpha_{1}\right\} \\
& \\
&
\end{aligned} \quad\left\{\alpha_{2}\right\}, \quad\left\{\alpha_{1}, \alpha_{2}\right\} . ~ l
$$

Example: The recipe prediction for the fourth moment

CFKRS Recipe Prediction

$$
\begin{aligned}
\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) & \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t \\
& \sim \sum_{\substack{u \leq A, V \leq B \\
|u|=|v|}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in U} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup V-(n) \tau_{B \backslash V \cup u-(n)}}^{n} d t}{}
\end{aligned}
$$

For the fourth moment, take $|A|=|B|=2$:

$$
\begin{aligned}
& A=\left\{\alpha_{1}, \alpha_{2}\right\} \\
& u \leq A: \quad \phi, \quad\left\{\alpha_{1}\right\} \\
& \\
&
\end{aligned} \quad\left\{\alpha_{2}\right\}, \quad\left\{\alpha_{1}, \alpha_{2}\right\} . ~ l
$$

$$
\begin{aligned}
B= & \left\{\beta_{1}, \beta_{2}\right\} \\
V \subseteq B: & \phi,\left\{\beta_{1}\right\} \\
& \left\{\beta_{2}\right\},\left\{\beta_{1}, \beta_{2}\right\}
\end{aligned}
$$

Example: The recipe prediction for the fourth moment

CFKRS Recipe Prediction

$$
\mu_{\alpha, B}(T) \sim \sum_{\substack{u \leq A, v \leq B \\|U|=|V|}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in U} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup v-(n) \tau_{B \backslash V \cup u-(n)}}^{n}}{n} d t
$$

"O-swap" $(u=v=\varnothing)$:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{\tau_{A}(n) \tau_{B}(n)}{n} & =\frac{\zeta\left(1+\alpha_{1}+\beta_{1}\right) \zeta\left(1+\alpha_{1}+\beta_{2}\right) \zeta\left(1+\alpha_{2}+\beta_{1}\right) \zeta\left(1+\alpha_{2}+\beta_{2}\right)}{\zeta\left(2+\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}\right)} \\
& =Z\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right)
\end{aligned}
$$

Example: The recipe prediction for the fourth moment
CFKRS Recipe Prediction

$$
\mu_{\alpha, B}(T) \sim \sum_{\substack{u \leq A, V \leq B \\|u=|V|}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{a \in U} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup V-(n)} \tau_{B \backslash V \cup u-(n)}}{n} d t
$$

$$
Z\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right):=\frac{\zeta\left(1+\alpha_{1}+\beta_{1}\right) \zeta\left(1+\alpha_{1}+\beta_{2}\right) \zeta\left(1+\alpha_{2}+\beta_{1}\right) \zeta\left(1+\alpha_{2}+\beta_{2}\right)}{\zeta\left(2+\alpha_{1}+\alpha_{2}+\beta_{1}+\beta_{2}\right)}
$$

"1-swap" example: $U=\left\{\alpha_{1}\right\}, V=\left\{\beta_{2}\right\}$

$$
\begin{gathered}
A \backslash u \cup V^{-}=\left\{-\beta_{2}, \alpha_{2}\right\} \quad B \backslash \vee \cup U^{-}=\left\{\beta_{1},-\alpha_{1}\right\} \\
\left(\frac{t}{2 \pi}\right)^{-\alpha_{1}-\beta_{2}} \sum_{n=1}^{\infty} \frac{\tau_{\left\{-\beta_{2}, \alpha_{2}\right\}}(n) \tau_{\left\{\beta_{1}-\alpha_{1}\right\}}(n)}{n}=\left(\frac{t}{2 \pi}\right)^{-\alpha_{1}-\beta_{2}} Z\left(-\beta_{2}, \alpha_{2} ; \beta_{1,}-\alpha_{1}\right)
\end{gathered}
$$

CFKRS Recipe Prediction

$$
\begin{gathered}
\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t \\
\sim \sum_{\substack{u \leq A, V \leq B \\
|u|=|V|}} \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in U} \alpha-\sum_{\beta \in V} \beta} \sum_{n=1}^{\infty} \frac{\tau_{A \backslash u \cup V-(n) \tau_{B \backslash V \cup u-(n)}}^{n} d t}{n}
\end{gathered}
$$

Theorem (CFKRS, 2000)

$$
\begin{aligned}
& \int_{0}^{T} \zeta\left(\frac{1}{2}+\alpha_{1}+i t\right) \zeta\left(\frac{1}{2}+\alpha_{2}+i t\right) \zeta\left(\frac{1}{2}+\beta_{1}-i t\right) \zeta\left(\frac{1}{2}+\beta_{2}-i t\right) d t \sim \\
& \int_{0}^{T}\left(\begin{array}{l}
Z\left(\alpha_{1}, \alpha_{2} ; \beta_{1}, \beta_{2}\right)
\end{array}\right. \\
& \begin{array}{l}
\text { 1-swaps }
\end{array} \begin{array}{l}
+\left(\frac{t}{2 \pi}\right)^{-\alpha_{1}-\beta_{1}} Z\left(-\beta_{1}, \alpha_{2} ;-\alpha_{1}, \beta_{2}\right)+\left(\frac{t}{2 \pi}\right)^{-\alpha_{1}-\beta_{2}} Z\left(-\beta_{2}, \alpha_{2} ; \beta_{1},-\alpha_{1}\right) \\
+\left(\frac{t}{2 \pi}\right)^{-\alpha_{2}-\beta_{1}} Z\left(\alpha_{1},-\beta_{1} ;-\alpha_{2}, \beta_{2}\right)+\left(\frac{t}{2 \pi}\right)^{-\alpha_{2}-\beta_{2}} Z\left(\alpha_{1},-\beta_{2} ; \beta_{1},-\alpha_{2}\right)
\end{array} \\
& \text { 2-swap }\{+\left(\frac{t}{2 \pi}\right)^{-\alpha_{1}-\alpha_{2}-\beta_{1}-\beta_{2}} Z(-\underbrace{\beta_{1},-\beta_{2}} ;-\underbrace{\left.-\alpha_{1},-\alpha_{2}\right)}) d t
\end{aligned}
$$

What is guiding the CFKRS heuristic?

- The CFKRS recipe conjectures are consistent with proven theorems from random matrix theory, where we also see the swapping phenomenon.

What is guiding the CFKRS heuristic?

- The CFKRS recipe conjectures are consistent with proven theorems from random matrix theory, where we also see the swapping phenomenon.
- Katz-Sarnak philosophy - behind each family of L-functions is a symmetry type.

What is guiding the CFKRS heuristic?

Theorem (CFKRS, 2003)
Let $U(N)$ be the group of $N \times N$ unitary matrices. Then integrating with respect to the Haar measure gives

$$
\begin{aligned}
& \int_{U(N)} \prod_{\alpha \in A} \operatorname{det}\left(1-e^{-\alpha} M\right) \prod_{\beta \in B}\left(1-e^{-\beta} M^{-1}\right) d M \\
&=\sum_{\substack{u \leq A, v \leq B \\
|u|=|v|}}\left(e^{N}\right)^{-\sum_{\alpha<\alpha} \alpha-\sum_{B \in v} \beta} z\left(A \backslash u \cup v^{-}, B \backslash v \cup u^{-}\right),
\end{aligned}
$$

where $Z(A, B):=\prod_{\alpha \in A, \beta \in B}\left(1-e^{-\alpha-\beta}\right)^{-1}$.

A new approach to proving high moments

Conrey-Keating: The general idea is to estimate (series of 5 papers, 2015-2019)

$$
\mathcal{M}_{A, B}(T):=\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

using the approximation

$$
\begin{aligned}
& \int_{0}^{T} \sum_{m \leq x} \frac{\tau_{A}(m)}{m^{\frac{1}{2}+i t}} \sum_{n \leq x} \frac{\tau_{B}(n)}{n^{1 / 2-i t}} d t \\
& \tau_{A}(n)=\sum_{m_{m} m_{2}=m_{k}-n} m_{i}^{-\alpha_{k}} m_{2}^{-\alpha_{2}} \ldots m_{k}{ }^{-\alpha_{k}}
\end{aligned}
$$

How does X affect the accuracy of the approximation?

- CFKRS recipe predicts an asymptotic formula for

$$
\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

with lower order terms.

- The terms in the formula are categorized by certain shared combinatorial properties.

How does X affect the accuracy of the approximation?

- CFKRS "recipe" predicts an asymptotic formula for

$$
\int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

with lower order terms.

- The terms in the formula are categorized by certain shared combinatorial properties.
- The categories are called " ℓ-swaps."
- If $|A|=|B|=k$, there are " l-swap terms" for

$$
l \in\{0,1,2,3, \ldots, k\}
$$

How does X affect the accuracy of the approximation?

$$
\int_{0}^{T} \sum_{m \leq X} \frac{\tau_{A}(m)}{m^{1 / 2+i t}} \sum_{n \leq X} \frac{\tau_{B}(n)}{n^{1 / 2-i t}} \approx \int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t
$$

CFKRS predicts:

CFKRS predicts:

How does X affect the accuracy of the approximation?

$$
\begin{aligned}
& \int_{0}^{T} \sum_{m \leq X} \frac{\tau_{A}(m)}{m^{1 / 2+i t}} \sum_{n \leq X} \frac{\tau_{B}(n)}{n^{1 / 2-i t}} \approx \int_{0}^{T} \prod_{\alpha \in A} \zeta\left(\frac{1}{2}+\alpha+i t\right) \prod_{\beta \in B} \zeta\left(\frac{1}{2}+\beta-i t\right) d t \\
& \text { CFKRS predicts: } \\
& \text { O-swaps } \\
& 1 \text {-swaps } \\
& \text { 2-swaps } \\
& \vdots \\
& \text { CFKRS predicts: } \\
& \left.\begin{array}{l}
\text { 0-swaps } \\
1 \text {-swaps } \\
2 \text {-swaps } \\
\vdots \\
k \text {-swaps }
\end{array}\right\} \begin{array}{c}
\\
\text { for the full } \\
2 k \text {-th moment }
\end{array}
\end{aligned}
$$

Conrey-Keating: If $X \gg T^{l}$ then the l-swap terms for the truncations on the LHS are precisely the l-swap terms for the full $2 k^{\prime}$ th moment on the RHS.

* As X increases, more ℓ-swaps match up. *
- Conrey-Keating (2015) found that the "1-swap"terms for zeta are the consequence of formulas for correlations of divisor sums.
- Conrey-Keating (2015) found that the "1-swap"terms for zeta are the consequence of formulas for correlations of divisor sums.
- This connection has been made rigorous by A. Hamieh $\& \mathrm{~N} . \mathrm{Ng}$.

Theorem (Hamieh and $\mathrm{Ng}, 2021$)
Assume the expected asymptotic formula for correlations of divisor sums.
If $X=T^{\eta}$ with $1<\eta<2$, then as $T \rightarrow \infty$,

$$
\begin{aligned}
& \int_{0}^{T} \sum_{m \leq x} \frac{\tau_{A}(m)}{m^{1 / 2+1 t}} \sum_{n \leq x} \frac{\tau_{B}(n)}{n^{1 / 2-i t}} d t \sim \frac{1}{(2 \pi i)^{2}} \int_{(\varepsilon)} \int_{(\varepsilon)} \frac{x^{z+W}}{z w} \sum_{\substack{u \leq A, V \leq B \\
0 \leq|u|=|v| \leq 1}} \\
& \times \int_{0}^{T}\left(\frac{t}{2 \pi}\right)^{-\sum_{\alpha \in U}(\alpha+z)-\sum_{B \in V}(\beta+w)} \sum_{\substack{(\leq m, n<\infty \\
m=n}} \frac{\tau_{A_{z} \backslash u_{z} \cup v_{w}(m)} \tau_{B_{w} \backslash} \backslash V_{w} \cup u_{z}^{-}(n)}{\sqrt{m n}} d t d w d z .
\end{aligned}
$$

Adapting the Conrey-Keating approach

Family of all Dirichlet L-functions of modulus of

$$
M_{k}(q)=\frac{1}{\varphi^{*}(q)} \sum_{x(\bmod q)}^{*}|L(1 / 2, x)|^{2 k}
$$

Σ^{*} : the sum is over all primitive characters
$\varphi^{*}(q)$: the number of primitive characters mod q.

- Like $\zeta(s)$, progress on $M_{k}(q)$ is limited for large K. study in t-aspect
study in q-aspect

What is known?

Bounds:
$(q$ prime $)$$q(\log q)^{k^{2}} \ll \sum_{x \operatorname{modq}}^{*}|L(1 / 2, x)|^{2 k} \ll q(\log q)^{k^{2}}$

Lowerbound : all $k>0$
$K \geqslant 1$, Radziwith-Soundararajan (2012)
$0<K<1$, Heap-Soundararajan (2020)
Gao (2021)

Upperbound: all $k>0$ under GRH
Soundararajan (2009), Harper (2013)

What is known?

Bounds:
$(q$ prime $)$$q(\log q)^{k^{2}} \ll \sum_{x \operatorname{modq}}^{*}|L(1 / 2, x)|^{2 k} \ll q(\log q)^{k^{2}}$

Lowerbound : all $k>0$
$K \geqslant 1$, Radziwith-Soundararajan (2012)
$0<K<1$, Heap-Soundararajan (2020)
Gao (2021)

Upperbound: all $k>0$ under GRH
Soundararajan (2009), Harper (2013)

Asymptotics:

- Paley (1934): $M_{1}(q) \sim \log q$
- Heath-Brown (1981), Soundararajan (2007),

Young (2010) gives:

$$
M_{2}(q) \sim 2 b_{2} \frac{(\log q)^{4}}{4!}
$$

What is known?

Bounds:
$(q$ prime $)$$\quad q(\log q)^{k^{2}} \ll \sum_{x \bmod q}^{*}|L(1 / 2, x)|^{2 k} \ll q(\log q)^{k^{2}}$

Lowerbound: all $k>0$
$k \geqslant 1$, Radziwitt-Soundararajan (2012)
$0<k<1$, Heap-Soundararajan (2020)
Gao (2021)

Upperbound: all $k>0$ under GRH
Soundararajan (2009), Harper (2013)

Asymptotics:

- Paley (1934): $M_{1}(q) \sim \log q$

Asymptotics for $k \geqslant 3$?

- Heath-Brown (1981), Soundararajan (2007), Young (2010) gives:
conjecture:

$$
M_{2}(q) \sim 2 b_{2} \frac{(\log q)^{4}}{4!}
$$

$$
\begin{aligned}
M_{k}(q) & \sim g_{k} b_{k} \frac{(\log q)^{k^{2}}}{k^{2}!} \\
g_{k} & =k^{2}!\prod_{j=0}^{k-1} \frac{j!}{(k+j)!}
\end{aligned}
$$

Introducing extra averaging over of

Using the large sieve inequality to obtain upper bound: Huxley (1970): $\sum_{q \leqslant Q} \sum_{x \bmod q}^{*}|L(1 / 2, x)|^{2 k} \ll Q^{2}(\log Q)^{k^{2}}$, where $k=3,4$

Introducing extra averaging over of

Using the large sieve inequality to obtain upper bound:
Huxley (1970): $\sum_{q \leqslant Q} \sum_{x \bmod q}^{*}|L(1 / 2, x)|^{2 k} \ll Q^{2}(\log Q)^{k^{2}}$, where $k=3,4$
Using the asymptotic large sieve (for asymptotics!)

- Conrey-Iwaniec-Soundararajan (2012) : fth moment w /small averaging overt
- Chandee-Li-Matomaki-Radziwiłt (2023+): $\sum_{q \leq Q} \sum_{x(q)}^{*}|L(1 / 2, x)|^{6} \sim 42 \widetilde{c}_{3} Q^{2} \frac{(\log Q)^{9}}{9!}$
- Chandee-Li-Matomaki-Radziwiłf (2023+):8th moment w / small averaging overt
- main term is size $Q^{2}(\log Q)^{16}$
- error term is size $Q^{2}(\log Q)^{15+\varepsilon}$

Introducing extra averaging over of

Using the large sieve inequality to obtain upper bound:
Huxley (1970): $\sum_{q \leqslant Q} \sum_{x \bmod q}^{*}|L(1 / 2, x)|^{2 k} \ll Q^{2}(\log Q)^{k^{2}}$, where $k=3,4$

Using the asymptotic large sieve (for asymptotics!)

- Conrey-Iwaniec-Soundararajan (2012) : 6th moment w/ small averaging overt
- Chandee-Li-Matomaki-Radziwitt $(2023+): \sum_{q \leq Q} \sum_{x(q)}^{*}|L(1 / 2, x)|^{6} \sim 42 \widetilde{c}_{3} Q^{2} \frac{(\log Q)^{9}}{9!}$
- Chandee-Li-Matomaki-Radziwiłt (2023+): 8th moment $w /$ small averaging overt

Asympotic large sieve

- a framework that harnesses
the extra averaging to work with off-diagonal terms

Adapting the Conrey-Keating approach
The $2 k$ th moment:

$$
|A|=|B|=K
$$

$$
\sum_{x \operatorname{modq}}^{b} \prod_{a \in A} L\left(\frac{1}{2}+\alpha, x\right) \prod_{\beta \in B} L\left(\frac{1}{2}+\beta, \bar{x}\right)
$$

Approximate by:

$$
\sum_{q \leq Q} \sum_{x \operatorname{modq}}^{b} \sum_{m \leq x} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \sum_{n \leq x} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}}
$$

b: primitive, even

Adapting the Conrey-Keating approach
The $2 k$ th moment:

$$
|A|=|B|=K
$$

$$
\sum_{x \operatorname{modq}}^{b} \prod_{a \in A} L\left(\frac{1}{2}+\alpha, x\right) \prod_{\beta \in B} L\left(\frac{1}{2}+\beta, \bar{x}\right)
$$

Approximate by:

$$
\sum_{q \leq Q} \sum_{x \operatorname{modq}}^{b} \sum_{m \leq x} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \sum_{n \leq x} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}}
$$

The twisted $2 k$ th moment, averaged over q :

$$
\sum_{q \leqslant Q} \sum_{x m o d q}^{b} x(h) \bar{x}(k) \sum_{m \leqslant x} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \sum_{n \leqslant x} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}}
$$

b: primitive, even

Twisted moment of Dirichlet polynomial approx.

$$
\begin{aligned}
S(h, k):=\sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) & \sum_{x m o d q}^{b} x(h) \bar{x}(k) \\
& \times \sum_{m=1}^{\infty} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \vee\left(\frac{m}{x}\right) \sum_{n=1}^{\infty} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}} \vee\left(\frac{n}{x}\right) .
\end{aligned}
$$

Here:

- W,V are smooth cut-off functions
- b denotes that the sum is over even, primitive characters modulo of

What does the CFKRS recipe predict for $S(h, k)$?

Notation: gathering the ingredients

$$
\begin{aligned}
& I_{l}\left(h_{1} k\right):=\sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{x \operatorname{modq}}^{b} \frac{1}{(2 \pi i)^{2}} \int_{(\varepsilon)} \int_{(\varepsilon)} X^{s_{1}+s_{2}} \tilde{V}\left(s_{1}\right) \tilde{V}\left(s_{2}\right) \\
& (q, \text { pk })=1 \\
& : \sum_{u \leq A, v \leq B} \prod_{\alpha \in U} \frac{x\left(\frac{1}{2}+\alpha+s_{1}\right)}{q^{\alpha+s_{1}}} \prod_{\beta \in V} \frac{x\left(\frac{1}{2}+\beta+s_{2}\right)}{q^{\beta+s_{2}}} \\
& |u|=|v|=\ell \\
& \times \sum_{\substack{1 \leq m n<\infty \\
m h n n t \\
(m n, q)=1}} \frac{\tau_{A_{s_{1}} \backslash u_{s_{1}} \cup v_{s_{2}}^{-}(m)} \tau_{B_{s_{2}} \backslash V_{s_{2}} \cup u_{s_{1}}^{-}(n)}}{\sqrt{m n}} d s_{2} d s_{1} \\
& \begin{array}{l}
\tilde{V}(s):=\int_{0}^{\infty} V(x) x^{s-1} d x \\
\text { (Melvin transform of } V)
\end{array} \quad \quad \mathscr{G}(s):=\pi^{s-\frac{1}{2}} \frac{\Gamma\left(\frac{1}{2}-\frac{1}{2} s\right)}{\Gamma\left(\frac{1}{2} s\right)}
\end{aligned}
$$

The recipe conjecture

Recipe conjecture : Let $A=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, B=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ with $\alpha_{i}, \beta_{j} \ll 1 / \log Q$. For all $X>0$, where X is the length of the L-function approximations,

$$
\text { as } Q \rightarrow \infty . \quad S(h,-k) \sim \sum_{l=0}^{K} I_{l}(h, k)
$$

The recipe conjecture

Recipe conjecture : Let $A=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, B=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ with $\alpha_{i}, \beta_{j} \ll 1 / \log Q$. For all $X>0$, where X is the length of the L-function approximations,

$$
S(h,-k) \sim \sum_{l=0}^{K} I_{l}(h, k)
$$

Roughly: the $2 k$-th moment of the Dirichlet polynomial approximations of the L-functions with length $X>0$ is asymptotic to the sum of the predicted $0,1, \ldots, K$-swap terms of the approximations.

Main Result

Theorem (S.Baluyot and C.T-B, 2022t)
Let Q be a large parameter and $X=Q^{\eta}$ with $1<\eta<2$. Let $A=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, B=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ with $\alpha_{i}, \beta_{j} \ll 1 / \log Q$. Then, assuming the Generalized Lindelöf Hypothesis, we have

$$
S(h, k) \sim I_{0}(h, k)+I_{1}(h, k)
$$

Main Result

Theorem (S.Baluyot and C.T-B, 2022t)
Let Q be a large parameter and $X=Q^{\eta}$ with $1<\eta<2$. Let $A=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}, B=\left\{\beta_{1}, \ldots, \beta_{k}\right\}$ with $\alpha_{i}, \beta_{j} \ll 1 / \log Q$. Then, assuming the Generalized Lindelöf Hypothesis, we have

$$
S(h, k) \sim I_{0}(h, k)+I_{1}(h, k)
$$

Roughly: the $2 k$-th moment of the Dirichlet polynomial approximations of the L-functions with lengths $Q^{\eta}, 1<\eta<2$, is asymptotic to the sum of the predicted O,I-swap terms of the approximations.

Interpretation of result

- the 1-swap terms predicted by the CFKRS recipe are correct for this family of L-functions, averaged over of.
- For the general $2 k$ th moment, this gives the first rigorous proof of the validity of the CFKRS heuristic "beyond the diagonal" for this family of L-functions.

Overview of proof

- Start with

$$
\begin{aligned}
& S(h, k):=\sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{x \operatorname{modq}}^{b} x(h) \bar{x}(k) \\
& \times \sum_{m=1}^{\infty} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \vee\left(\frac{m}{x}\right) \sum_{n=1}^{\infty} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}} \vee\left(\frac{n}{x}\right) .
\end{aligned}
$$

Overview of proof

- Start with

$$
\begin{aligned}
& S(h, k):=\sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{x \operatorname{modq}}^{b} x(h) \bar{x}(k) \\
& \times \sum_{m=1}^{\infty} \frac{\tau_{A}(m) x(m)}{\sqrt{m}} \vee\left(\frac{m}{x}\right) \sum_{n=1}^{\infty} \frac{\tau_{B}(n) \bar{x}(n)}{\sqrt{n}} \vee\left(\frac{n}{x}\right) .
\end{aligned}
$$

- Bring in the sum over x, and use the standard lemma

$$
\sum_{x \operatorname{modq}}^{b} x(m h) \overline{x(n k)}=\frac{1}{2}\left(\sum_{\substack{q=d c \\ d \mid(m h+n k)}} \varphi(d) \mu(c)+\sum_{\substack{q=d c \\ d \mid(m h-n k)}} \varphi(d) \mu(c)\right)
$$

- We then split $S(h, k)$ into three pieces:

$$
S(h, k)=L(h, k)+D(h, k)+u(h, k)
$$

where
$\mathcal{L}(h, k)=$ sum of the terms with $c>C$
The role of C : make bound from large sieve $<Q^{2-\varepsilon}$
$D(h, k)=$ sum of the "diagonal" terms with $c \leqslant C$ and $m h=n k$.
$u(h, k)=$ sum of the "off-diagonal" terms with $c \leqslant C$ and $m h \neq n k$

- We then split $S(h i k)$ into three pieces:

$$
S(h, k)=L(h, k)+D(h, k)+u(h, k)
$$

where
$L(h, k)=$ sum of the terms with $c>C$
The role of C : make bound from large sieve $<Q^{2-\varepsilon}$
$D(h, k)=$ sum of the "diagonal" terms with $c \leqslant C$ and $m h=n k$.
$U(h, k)=$ sum of the "off-diagonal" terms with $c \leqslant C$ and $m h \neq n k$

- We then split $S(h, k)$ into three pieces:

$$
S(h, k)=L(h, k)+D(h, k)+u(h, k)
$$

where
$\mathcal{L}(h, k)=$ sum of the terms with $c>C$
The role of c : make bound from large sieve « $Q^{2-\varepsilon}$
$D(h, k)=$ sum of the "diagonal" terms with $c \leqslant C$ and $m h=n k$.
$U(h, k)=$ sum of the "off-diagonal" terms with $c \leq c$ and $m h \neq n k$

Using standard methods, recover the O-swap terms from $D(h, k)$.

Where are the 1-swap terms?

The "long" sum, $\mathcal{L}(h, k), c>C$

$$
\begin{aligned}
& L(h, k):=\frac{1}{2} \sum_{\substack{(\leq q,<\infty \\
(q, h k)=1}} W\left(\frac{q}{Q}\right) \sum_{\substack{1 \leq m, n<\infty \\
(m n, q)=1}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} V\left(\frac{m}{x}\right) V\left(\frac{n}{X}\right) \\
& \times\left(\sum_{\begin{array}{l}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h+n k
\end{array}} \varphi(d) \mu(c)\right.\left.+\sum_{\begin{array}{c}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h-n k
\end{array}} \varphi(d) \mu(c)\right) .
\end{aligned}
$$

- detect $d \mid m h \pm n k$ using orthogonality of characters

The "long" sum, $\mathcal{L}(h, k), c>C$

$$
\begin{aligned}
L(h, k):=\frac{1}{2} \sum_{\substack{(\leq q,<\infty \\
(q, h k)=1}} W\left(\frac{q}{Q}\right) \sum_{\substack{(\leq m, n<\infty \\
(m n, q)=1}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} V\left(\frac{m}{x}\right) V\left(\frac{n}{x}\right) \\
\times\left(\sum_{\begin{array}{l}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h+n k
\end{array}} \varphi(d) \mu(c)+\sum_{\begin{array}{c}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h-n k
\end{array}} \varphi(d) \mu(c)\right) .
\end{aligned}
$$

- detect $d \mid m h \pm n k$ using orthogonality of characters
- split $\mathcal{L}(h, k)=\mathcal{L}_{0}(h, k)+\mathcal{L}_{r}(h, k)$
- L. (h, k) : contribution of the principal character mod
- $L_{r}(h, k)$ the rest.

The "long" sum, $\mathcal{L}(h, k), c>C$

$$
\begin{aligned}
L(h, k):=\frac{1}{2} \sum_{\substack{1 \leq q,<\infty \\
(q, h k)=1}} W\left(\frac{q}{Q}\right) \sum_{\substack{1(m, n<\infty \\
(m n, q)=1}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} V\left(\frac{m}{x}\right) V\left(\frac{n}{X}\right) \\
\times\left(\sum_{\begin{array}{l}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h+n k
\end{array}} \varphi(d) \mu(c)+\sum_{\begin{array}{c}
c>c, d \geqslant 1 \\
c d=q \\
d \mid m h-n k
\end{array}} \varphi(d) \mu(c)\right) .
\end{aligned}
$$

- detect $d \mid m h \pm n k$ using orthogonality of characters
- split $\mathcal{L}(h, k)=\mathcal{L}_{0}(h, k)+\mathcal{L}_{r}(h, k)$
- L. (h, k) : contribution of the principal character mod
- $L_{r}(h, k)$ the rest.
- bound $L_{r}(h, k)$ using the large sieve inequality and GLH
- Lo (h, k) ends up cancelling with a contribution from $U(h, k)$

Finding the predicted 1-swap terms

$$
\begin{aligned}
& S(h, k)=\underset{\text { short, diagonal }}{D}(h, k)+\mathcal{L}(h, k)+\underset{\text { long }}{\mathcal{U}}(h, k) \\
& \text { short, off diagonal } \\
& \text { 0-swap } \\
& \text { terms } \\
& L_{0}(h, k)+\mathcal{L}_{r}(h, k) \\
& \text { (eventually } \\
& \text { cancels) }
\end{aligned}
$$

Finding the predicted 1-swap terms

$$
\begin{aligned}
& S(h, k)=\underset{\text { short, diagonal }}{D(h, k)}+\mathcal{L}(h, k)+u(h, k) \\
& \text { o-swap } \\
& \text { terms }
\end{aligned}
$$

$$
\begin{aligned}
& U(h, k):=\frac{1}{2} \sum_{\substack{1 \leq q<\infty \\
(q, h k)=1}} W\left(\frac{q}{Q}\right) \sum_{\substack{1 \leq m, n<\infty \\
m h \neq n k}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} V\left(\frac{m}{x}\right) V\left(\frac{n}{x}\right) \\
& \times\left(\sum_{\substack{1 \leq c \leq c \mid \\
c d=q \\
d}} \varphi(d) \mu(c)+\sum_{\substack{1 \leq c \leq c, d \geqslant 1 \\
d \mid m h+n k}} \varphi(d) \mu(c)\right) .
\end{aligned}
$$

Finding the predicted 1-swap terms

$$
\begin{aligned}
& S(h, k)=\underset{\text { short, diagonal }}{D(h, k)}+\mathcal{L}(h, k)+u(h, k) \\
& \text { o-swap } \\
& \text { terms } \\
& \begin{array}{c}
\begin{array}{c}
L_{0}(h, k) \\
\begin{array}{c}
\text { (eventually } \\
\text { cancels }
\end{array}
\end{array} \overbrace{\begin{array}{c}
\mathcal{L}_{r}(h, k) \\
\text { bounded } \\
\text { under GLH }
\end{array}} \begin{array}{c}
\text { the } 1 \text {-swap } \\
\text { terms are hidden } \\
\text { here }
\end{array} \\
\end{array} \\
& U(h, k):=\frac{1}{2} \sum_{\substack{(\leq q,<\infty \\
(q, h k)=1}} W\left(\frac{q}{Q}\right) \sum_{\substack{1 \leq m, n<\infty \\
m h \neq n k}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m h}} V\left(\frac{m}{x}\right) V\left(\frac{n}{x}\right) \\
& *\left(\sum_{\substack{1 \leq c \leq c, 1 d \geqslant 1 \\
c d=q \\
d \mid m h+n k}} \varphi(d) \mu(c)+\sum_{\substack{1 \leq c \leq c, d \geqslant 1 \\
c d=q \\
d, m_{h}-n k}} \varphi(d) \mu(c)\right) .
\end{aligned}
$$

The large sieve is not strong enough to use as before because d can be as large as Q.

Crux of argument:
We switch to the"complementary modulus" $d\left||m h \pm n k|\right.$, so instead consider $\ell:=\frac{|m h \pm n k|}{d}$

Crux of argument:
We switch to the"complementary modulus"

$$
d\left||m h \pm n k| \text {, so instead consider } \ell:=\frac{|m h \pm n k|}{d}\right.
$$

Split $u(h, k)=u_{0}(h, k)+u_{r}(h, k)$

- $U_{0}(h, k)$: contribution from principal character $\bmod \ell$

Bound $U_{r}(h, k)$ - more delicate than $\mathcal{L}_{r}(h, k)$

- interdependence of variables and the complexity of the multivariable Mellin transform.
- Closely follow work of Conrey-Iwaniec-Soundararajan (2019).
- This is where we must assume GLH, because we are working with an arbitrarily large number of L-functions

Crux of argument:
We switch to the "complementary modulus"

$$
d\left||m h \pm n k| \text {, so instead consider } \ell:=\frac{|m h \pm n k|}{d}\right.
$$

Split $u(h, k)=u_{0}(h, k)+u_{r}(h, k)$

- $U_{0}(h, k)$: contribution from principal character $\bmod \ell$

Bound $U_{r}(h, k)$ - more delicate than $\mathcal{L}_{r}(h, k)$

- interdependence of variables and the complexity of the multivariable Mellin transform.
- Closely follow work of Conrey-Iwaniec-Soundararajan (2019).
- This is where we must assume GLH, because we are working with an arbitrarily large number of L-functions

Finding the predicted 1-swap terms

Finding the predicted 1-swap terms

Focusing on $U_{0}(h, k)$
We apply Mellin inversion to W and move a line of integration to write

$$
u_{0}(h, k)=u_{1}(h, k)+u_{2}(h, k)
$$

where $U_{1}(h, k)$ is the residue (from $\xi(1+\omega)$) and $U_{2}(h, k)$ is the rest.

Finding the predicted 1-swap terms

- After careful manipulation, we realize $u_{1}(h, k)$ cancels with $L_{0}(h, k)$!

Finding the predicted 1-swap terms

- After careful manipulation, we realize $u_{1}(h, k)$ cancels with $L_{0}(h, k)$!

Finding the predicted 1-swap terms

We are left with

$$
\begin{aligned}
u_{2}(h, k) \approx & \frac{Q}{2} \sum_{\substack{1 \leq c<C \\
(c, h k)=1}} \frac{\mu(c)}{c} \sum_{\substack{1 \leq m, n<\infty \\
(m n, c)=1 \\
m h \neq n k}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{m n}} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)_{\substack{(1, e \ll \infty \\
(e, g)=1}} \frac{\mu(e)}{e} \\
& \times \sum_{a \mid g} \frac{\mu(a)}{\varphi(e a)} \cdot \frac{1}{2 \pi i} \int_{(-\varepsilon)}\left(\frac{c|m h \pm n k|}{g Q}\right)^{\omega} \tilde{W}(1-\omega) \zeta(1+\omega) d \omega .
\end{aligned}
$$

- Write $U_{2}\left(h_{1}, k\right)$ as an Euler product after separating the variables in $|m h \pm n k|^{\omega}$ (use a lemma from CIS '19)
- Use Mellin inversion $\dot{\varepsilon}$ express $U_{2}(h, k)$ as a quadruple integral.

Finding the predicted 1-swap terms

The recipe tells us what the 1-swaps look like, but no information on how to extract them.

Difficulty:
How to bridge the gap?

The asymptotic large sieve tells us where the 1-swap terms are hiding.

Finding the predicted 1-swap terms

The recipe tells us what the 1-swaps look like, but no information on how to extract them.

Difficulty:
How to bridge the gap?

The asymptotic large sieve tells us where the 1-swap terms are hiding.

We find the 1-swaps via strategic contour integration and proving identities involving several Euler products so that we can match to what the recipe predicts.

The map of the argument

The 1-swaps are here! (match with recipe prediction)

Generalized Lindeloff Hypothesis
The Lindelöff Hypothesis is true, and for all $\varepsilon>0$ and all nomprincipal characters mod q,

$$
L\left(\frac{1}{2}+i t, x\right) \ll(q(1+|t|))^{\varepsilon}
$$

- We assume GLH in a handful of places in the proof to control the large number of zeta -and L-function factors.

Generalized Lindeloff Hypothesis
The Lindelöff Hypothesis is true, and for all $\varepsilon>0$ and all nomprincipal characters mod q,

$$
L\left(\frac{1}{2}+i t, x\right) \ll(q(1+|t|))^{\varepsilon}
$$

- We assume GLH in a handful of places in the proof to control the large number of $z e t a$ - and L-function factors.

We expect:

- $K=1,2,3,4$: the result is unconditional
- $k \geqslant 5$: we can assume a weaker hypothesis that depends on K.

Generalized Lindelöff Hypothesis
The Lindeloff Hypothesis is true, and for all $\varepsilon>0$ and all nomprincipal characters mod,

$$
L\left(\frac{1}{2}+i t, x\right) \ll(q(1+|t|))^{\varepsilon} .
$$

- We assume GLH in a handful of places in the proof to control the large number of $z e t a$ - and L-function factors.

We expect:

- $k=1,2,3,4$: the result is unconditional
- $k \geqslant 5$: we can assume a weaker hypothesis that depends on K.

Making this precise is work in-progress with student Bowen Li.

Finding "1-swaps" in other families

NSF FRG: Averages of L-functions $\dot{\sum}$ Arithmetic Stratification

Conrey-Rodgers (' $22+$)

- family of quadratic

L-functions

- symplectic
- Poisson summation
- assumes GLH

Conrey-Fazzari ('23)

- L-functions assoc. with primitive cusp forms of level 1 in Weight aspect
- orthogonal
- Peterson trace formula
- assumes GLH

Thank you for your attention!

