Averages of Long Dirichlet Polynomial Approximations of Primitive Dirichlet L-functions

Caroline Turnage-Butterbaugh Carleton College

International Conference on L-Functions and Automorphic Forms Vanderbilt University May 15, 2024

$$M_{k}(T) := \int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} dt$$

Hardy \notin Littlewood initiated the study of $M_k(T)$. • Lindelöff Hypothesis: For any E>O, $|\xi(\pm + it)| \ll t^E$.

$$M_{k}(T) := \int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} dt$$

Hardy \$Littlewood initiated the study of $M_{\kappa}(T)$. • Lindelöff Hypothesis: For any E>O, $|\xi(\frac{1}{2}+it)| \ll t^{E}$.

• LH \Leftrightarrow for any $\varepsilon > 0$, $M_{k}(T) \ll T^{1+\varepsilon}$ for all $k \in \mathbb{N}$.

$$M_{k}(T) := \int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} dt$$

Applications: Moments can be used to

·study the vertical distribution of non-trivial zeros;

$$M_{k}(T) := \int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} dt$$

Applications: Moments can be used to

- ·study the vertical distribution of non-trivial zeros;
- · count zeros on the critical line;

$$M_{k}(T) := \int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2k} dt$$

Applications: Moments can be used to

- ·study the vertical distribution of non-trivial zeros;
- · count zeros on the critical line;
- · study extreme values of |3(±+it)|

Folklore Conjecture

$$\int_{0}^{T} |5(\frac{1}{2}+it)|^{2k} dt \sim C\kappa T(\log T)^{k^{2}}$$
where Ck is a constant

Folklore Conjecture

$$\int_{0}^{T} |S(\pm i\pm)|^{2K} dt \sim C\kappa T(\log T)^{K^{2}}$$
where C_{K} is a constant

$$T(\log T)^{\kappa^{2}} < \int_{0}^{T} |S(\frac{1}{2}+it)|^{2\kappa} dt < T(\log T)^{\kappa^{2}}$$

Lower Bound: holds unconditionally for K20

- Radziwitt Soundararajan (2013)
- Heap-Soundararaján (2020)

Folklore Conjecture

$$\int_{0}^{T} |5(\frac{1}{2}+it)|^{2k} dt \sim C\kappa T(\log T)^{k^{2}}$$
where C_{k} is a constant

$$T(\log T)^{k^{2}} \ll \int_{0}^{T} |5(\frac{1}{2}+it)|^{2k} dt \ll T(\log T)^{k^{2}}$$

Upper Bound : holds unconditionally for:
• $K = \frac{1}{n}, n \in \mathbb{N}$ Heath-Broww (1981)
• $K = 1 + \frac{1}{n}, n \in \mathbb{N}$ Bettin-Chandee-Radziwill (2017)
• $0 \leq K \leq 2$ Heap-Radziwill-Soundararajab (2019)

Folklore Conjecture

$$\int_{0}^{T} |5(\frac{1}{2}+it)|^{2k} dt \sim C\kappa T(\log T)^{k^{2}}$$
where Ck is a constant

Asymptotics

- Hardy + Littlewood (1918): M, (T) ~ T logT
- Ingham (1926): $M_2(T) \sim \frac{T}{2\pi^2} \log^4 T$

Asymptotics

$$M_{k}(T) = \int_{0}^{1} |\zeta(\frac{1}{2} + it)|^{2k} dt$$

• Hardy + Littlewood (1918): M, (T) ~ T logT

For k~3, no asymptotic formula has been proven unconditionally.

Asymptotics

$$M_{k}(T) = \int_{0}^{T} |\zeta(\frac{1}{2} + it)|^{2k} dt$$

• Hardy + Littlewood (1918): M, (T) ~ T logT

For k~3, no asymptotic formula has been proven unconditionally.

• Ng (2016) : M3(T) with a power saving error term, assuming a ternary additive divisor conjecture.

• Ng-Shen-Wong (2022): My(T) assuming RH and a quaternary additive divisor conjecture.

Why are asymptotics difficult for large K?

*credit to Fai Chandee for this overview *

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2\kappa} dt = \int_{0}^{T} \zeta^{\kappa}\left(\frac{1}{2} + it\right) \overline{\zeta^{\kappa}\left(\frac{1}{2} + it\right)} dt$$

Why are asymptotics difficult for large K?

$$\int_{0}^{T} \left| \zeta(\frac{1}{2} + it) \right|^{2\kappa} dt = \int_{0}^{T} \zeta^{\kappa}(\frac{1}{2} + it) \overline{\zeta^{\kappa}(\frac{1}{2} + it)} dt$$

For Re(s)>1,

$$\zeta^{\kappa}(s) = \sum_{n=1}^{\infty} \frac{d_{\kappa}(n)}{n^{s}}$$

Why are asymptotics difficult for large K?

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|^{2\kappa} dt = \int_{0}^{T} \zeta^{\kappa}\left(\frac{1}{2} + it\right) \overline{\zeta^{\kappa}\left(\frac{1}{2} + it\right)} dt$$

For Re(s)>1,

$$\zeta^{k}(s) = \sum_{\substack{n=1\\n=1}}^{\infty} \frac{d_{\kappa}(n)}{h^{s}}$$

where dk(n) is the k-th divisor function:

$$d_{k}(n) = \sum_{m_{1} \cdots m_{k} = n} 1 = \# \left\{ (m_{1}, \dots, m_{k}) \in \mathbb{N}^{k} : m_{1} \cdots m_{k} = n \right\}$$

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|_{dt}^{2\kappa} = \int_{0}^{T} \zeta^{\kappa}\left(\frac{1}{2} + it\right) \overline{\zeta^{\kappa}\left(\frac{1}{2} + it\right)} dt$$

We expect that

$$\zeta^{\kappa}(\frac{1}{2}+it) \approx \sum_{n \leq t^{\kappa}} \frac{d_{\kappa}(n)}{n^{1/2}+it}$$

50

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|_{dt}^{2K} \approx \int_{0}^{T} \sum_{m,n \leq T} \frac{d_{k}(m)d_{k}(n)}{(mn)^{1/2}} \left(\frac{m}{n}\right)^{-it} dt$$

 $\frac{1}{2}$

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|_{dt}^{2\kappa} = \int_{0}^{T} \zeta^{\kappa}\left(\frac{1}{2} + it\right) \overline{\zeta^{\kappa}\left(\frac{1}{2} + it\right)} dt$$

We expect that

•

$$\zeta^{\kappa}(\frac{1}{2}+it) \approx \sum_{n \leq t^{\kappa}} \frac{d_{\kappa}(n)}{n^{1/2+it}}$$

50

$$\int_{0}^{T} \left| \zeta\left(\frac{1}{2} + it\right) \right|_{dt}^{2K} \approx \int_{0}^{T} \sum_{m,n \leq T} \frac{d_{k}(m)d_{k}(n)}{(mn)^{1/2}} \left(\frac{m}{n}\right)^{-it} dt$$

Note:

$$\int_{0}^{T} \left(\frac{m}{n}\right)^{-it} dt = \begin{cases} T & \text{if } m=n \\ \frac{\sin(T\log(m/n))}{\log(m/n)} & \text{if } m\neq n \end{cases}$$

$$\int_{0}^{T} \left| \xi\left(\frac{1}{2} + it\right) \right|^{2\kappa} dt \approx T \sum_{\substack{n \leq T^{\kappa} \mid 2}} \frac{d_{\kappa}(n)^{2}}{n} + \sum_{\substack{m,n \leq T^{\kappa} \mid 2}} \frac{d_{\kappa}(m) d_{\kappa}(n)}{\sqrt{m} \sqrt{n}} \frac{\sin(T \log(m/n))}{\log(m/n)} + \sum_{\substack{m,n \leq T^{\kappa} \mid 2}} \frac{d_{\kappa}(m) d_{\kappa}(n)}{\sqrt{m} \sqrt{n}} \frac{\sin(T \log(m/n))}{\log(m/n)}$$

$$\int_{0}^{T} \left| \xi\left(\frac{1}{2} + it\right) \right|^{2k} \underset{n \leq T^{k|2}}{\sim} T \sum_{\substack{n \leq T^{k|2}}} \frac{d_{k}(n)^{2}}{n} + \sum_{\substack{m,n \leq T^{k|2}}} \frac{d_{k}(m)d_{k}(n)}{\sqrt{m}\sqrt{n}} \frac{\sin(T\log(m/n))}{\log(m/n)}$$

Example: K=3

$$\sum_{\substack{d_3(m)d_3(n) \\ \sqrt{m}\sqrt{n}}} \frac{d_3(m)d_3(n)}{\sin(T\log(m/n))}$$

m,n $\leq T^{3/2}$
m $\neq n$

• For
$$m = T^{5/4} + T^{1/4}$$
 and $n = T^{5/4}$

$$\log\left(\frac{m}{n}\right) \approx \log\left(1 + \frac{1}{T}\right) \approx \frac{1}{T}$$

$$\frac{\sin(T\log(m/h))}{\log(m/n)} \approx T$$

Example: K=3

$$\sum_{\substack{d_3(m)d_3(n) \\ \sqrt{m}\sqrt{n}}} \frac{d_3(m)d_3(n)}{\sin(T\log(m/n))}$$

m,n $\leq T^{3/2}$
 $m \neq n$

• This leads to the difficult problem of additive divisor sums:

$$\sum_{n \leq x} d_k(n) d_k(n+r).$$

* K=2 √ Motohashi K73 NO asymptotics

Folklore Conjecture

$$M_{k}(T) \sim \frac{g_{k}}{(k^{2})!} a_{k}T(\log T)^{k^{2}}$$

where

•
$$0_{\kappa}$$
: defined via $\sum_{n \in T} \frac{d_{\kappa}(n)^2}{n} \sim \frac{0_{\kappa}}{(\kappa!)^2} (\log T)^{\kappa^2}$

Folklore Conjecture

$$M_{k}(T) \sim \frac{g_{k}}{(k^{2})!} a_{k}T(\log T)^{k^{2}}$$

where

•
$$Q_{k}$$
: defined via $\sum_{n \in T} \frac{d_{k}(n)^{2}}{n} \sim \frac{Q_{k}}{(k!)^{2}} (\log T)^{k^{2}}$

$$a_{k} = \prod_{p} \left(\left| -\frac{1}{p} \right)^{2} \sum_{j=0}^{k-1} \left(\frac{k-1}{j} \right)^{2} \frac{1}{p^{j}}$$

Folklore Conjecture

$$M_{k}(T) \sim \frac{g_{k}}{(k^{2})!} a_{k}T(\log T)^{k^{2}}$$

where

- Ok: defined via $\sum_{n \in T} \frac{d_k(n)^2}{n} \sim \frac{Q_k}{(k!)^2} (\log T)^{k^2}$
- can show that $a_{k} = \prod_{P} \left(\left| -\frac{1}{P} \right\rangle^{\left(k-1\right)^{2}} \sum_{j=0}^{k-1} \left(\left| -\frac{k-1}{p} \right|^{2} - \frac{1}{p^{j}} \right)^{j}$
- gk: some constant; for k=3, we have <u>conjectures</u> for its value.

Folklore Conjecture

$$M_{k}(T) \sim \frac{g_{k}}{(k^{2})!} a_{k}T(\log T)^{k^{2}}$$
Conjectures for g_{k} :
· Conrey + Ghosh (1996) Dirichlet polynomials + AFE $g_{3} = 42$
· Conrey + Gonek (1998) Dirichlet polynomials + AFE $g_{4} = 24024$
· Keating + Snaith (1998) RMT, $Re(k)_{2}^{-1}$
· Dioconu- Goldfeld - Hoffstein (2000) mult. Dirichlet series, $k \in \mathbb{N}$
· Conrey - Farmer - Keating - Rubenstein - Snaith (2000) recipe, $k \in \mathbb{N}$
Where does the conjectured
combinatorial structure come from?

The CFKRS recipe for shifted moments of S(s)

$$\mathcal{M}_{A,B}(T) := \int_{0}^{T} \prod_{d \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt$$

• "shifts" α, β are small complex numbers (« 1/10gT)

The CFKRS recipe for shifted moments of S(s)

$$\mathcal{M}_{A,B}(T) := \int_{0}^{T} \prod_{d \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt$$

• "shifts" α, β are small complex numbers (« 1/10gT)

Basic recipe (conjectures lower order terms = their coefficients too) (1) use the approximate functional equation:

$$\zeta(s) \approx \sum_{m} \frac{1}{m^{s}} + \chi(s) \sum_{n} \frac{1}{n^{1-s}}$$

where

$$\chi(s) = \left(\frac{t}{2\pi}\right)^{\frac{1}{2}-s} e^{it + \pi i/4} \left(1 + O\left(\frac{1}{t}\right)\right)$$

(2) multiply out

(3) Ignore terms where the product of X-factors is oscillating rapidly
(4) Ignore off-diagonal contributions of what's left.

$$\mathcal{M}_{A_{i}B}(T) := \int_{0}^{T} \prod_{d \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{B \in B} \zeta(\frac{1}{2} + \beta - it) dt$$

$$\frac{\text{Conjecture (CFKRS, 2000)}}{M_{AB}(T)} \sim \int_{\substack{u \in A, V \in B \\ |u| = |V|}}^{T} \left(\frac{t}{2\pi}\right)^{-\sum \alpha - \sum \beta} \int_{n=1}^{\infty} \frac{T_{A \setminus u \cup V}(n) T_{B \setminus v \cup u}(n)}{n} dt$$

$$TT \zeta(\alpha+S) =: \sum_{n=1}^{\infty} \frac{T_A(n)}{n^s} \qquad T_A(n) = \sum_{m_1m_2\cdots m_k=n} m_1^{-\alpha_1} m_2^{-\alpha_2} \cdots m_k^{-\alpha_k}$$

$$\mathcal{U}^{*} = \{-\alpha : \alpha \in \mathcal{U}\}$$

• We call the cardinality 121=111 the number of "swaps."

12

$$CFKRS Recipe Prediction
\int_{0}^{T} \prod \zeta(\frac{1}{2} + \alpha + it) \prod \zeta(\frac{1}{2} + \beta - it) dt$$

$$\sim \sum_{\substack{u \in A, v \in B \\ |u|=|v|}} \int_{\alpha \in u}^{T} \left(\frac{t}{2\pi}\right)^{-\sum \alpha} \int_{n=1}^{\infty} \frac{T_{A \setminus u \cup v}(n) T_{B \setminus v \cup u}(n)}{n} dt$$

For the fourth moment, take |A| = |B| = 2:

$$A = \{ d_{1}, d_{2} \}$$

$$U = A : \phi, \{ d_{1} \}, \{ d_{2} \}, \{ d_{2} \}, \{ d_{3}, d_{2} \}$$

$$CFKRS Recipe Prediction
\int_{0}^{T} \prod \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt$$

$$\sim \sum_{\substack{u \in A, V \in B \\ |U|=|V|}} \int_{\alpha \in U}^{T} \left(\frac{t}{2\pi}\right)^{-\sum \alpha} \int_{n=1}^{\infty} \frac{T_{A \setminus U \cup V}(n) T_{B \setminus V \cup U}(n)}{n} dt$$

For the fourth moment, take |A| = |B| = 2:

 $A = \{ \alpha_{1}, \alpha_{2} \}$ $U = A : \phi, \{ \alpha_{1} \}, \{ \alpha_{2} \}, \{ \alpha_{2} \}, \{ \alpha_{3}, \alpha_{2} \}$

$$B = \{\beta_{1}, \beta_{2}\}$$
$$V = B : \phi, \{\beta_{1}\}, \\ \{\beta_{2}\}, \{\beta_{3}, \beta_{2}\}$$

<u>CFKRS Recipe Prediction</u> $\mathcal{M}_{\alpha,\beta}(T) \sim \sum_{\substack{u \in A, v \in B}} \int_{0}^{T} \left(\frac{t}{2\pi}\right)^{-\sum \alpha - \sum \beta} \sum_{\substack{n \in U \\ \beta \in V}} \sum_{\substack{n \in U \\ n = 1}}^{\infty} \frac{T_{A \setminus U \cup V}(n) T_{B \setminus V \cup U}(n)}{n} dt$

"O-swap"
$$(U = V = \emptyset)$$
:

$$\frac{\sum_{n=1}^{\infty} \underline{T_{A}(n) T_{B}(n)}}{n} = \frac{\sum (1 + \alpha_{1} + \beta_{1}) \sum (1 + \alpha_{1} + \beta_{2}) \sum (1 + \alpha_{2} + \beta_{1}) \sum (1 + \alpha_{2} + \beta_{2})}{\sum (2 + \alpha_{1} + \alpha_{2} + \beta_{1} + \beta_{2})}$$

=:
$$Z(\alpha_1, \alpha_2; \beta_1, \beta_2)$$

<u>CFKRS Recipe Prediction</u> $\mathcal{M}_{\alpha,\beta}(T) \sim \sum_{\substack{u \in A, v \in B}} \int_{0}^{T} \left(\frac{t}{2\pi}\right)^{-\sum \alpha - \sum \beta} \int_{n=1}^{\infty} \frac{T_{A \setminus u \cup v}(n) T_{B \setminus v \cup u}(n)}{n} dt$

$$Z(a_{1},a_{2};\beta_{1},\beta_{2}) := \frac{\Im(1+a_{1}+\beta_{1})\Im(1+a_{1}+\beta_{2})\Im(1+a_{2}+\beta_{1})\Im(1+a_{2}+\beta_{2})}{\Im(2+a_{1}+a_{2}+\beta_{1}+\beta_{2})}$$

"1-swap" example:
$$\mathcal{U} = \{\alpha, \beta, V = \{\beta_2\}$$

$$A \setminus U \cup V^{-} = \{-\beta_{2}, \alpha_{2}\} \qquad B \setminus V \cup \mathcal{U}^{-} = \{\beta_{1}, -\alpha_{1}\}$$

$$\begin{pmatrix} \pm \\ 2\pi \end{pmatrix}^{-\alpha_1-\beta_2} \sum_{n=1}^{\alpha_0} \frac{\tau_{\{z_{\beta_2,\alpha_2\}}(n)} \tau_{\{\beta_{1,2}-\alpha_{1}\}}(n)}{n} = \begin{pmatrix} \pm \\ 2\pi \end{pmatrix}^{-\alpha_1-\beta_2} Z\left(-\beta_{2,1}\alpha_{2,2}\beta_{1,2}-\alpha_{1}\right)$$

$$\frac{CFKRS \ Recipe \ Prediction}{\int_{0}^{T} \prod_{d \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt}{\sum_{d \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt}$$

$$\sim \sum_{\substack{u \in A, v \in B \\ |u| = |v|}} \int_{0}^{T} \left(\frac{t}{2\pi}\right)^{-\sum_{n \in U} \beta \in V} \sum_{\substack{n = 1 \\ n = 1}}^{\infty} \frac{T_{A \setminus U \cup V^{-}(n)} T_{B \setminus V \cup U^{-}(n)}}{n} dt$$

letting shifts $\rightarrow 0$ *agrees with Heath-Brown*

What is guiding the CFKRS heuristic?

•The CFKRS recipe conjectures are consistent with proven theorems from random matrix theory, where we also see the swapping phenomenon.

What is guiding the CFKRS heuristic?

- •The CFKRS recipe conjectures are consistent with proven theorems from random matrix theory, where we also see the swapping phenomenon.
- •Katz-Sarnak philosophy behind each family of L-functions is a symmetry type.
What is guiding the CFKRS heuristic?

Theorem (CFKRS, 2003)

Let U(N) be the group of N×N unitary matrices.

Then integrating with respect to the Haar measure gives

$$\int_{U(N)} \prod_{d \in A} \det \left(1 - e^{-\alpha} M \right) \prod_{\beta \in B} \left(1 - e^{-\beta} M^{-1} \right) dM$$

$$= \sum_{\substack{\alpha \in \mathcal{U} \\ \alpha \in \mathcal{U}}} (e^{N})^{\frac{-\sum \alpha}{\beta \in \mathcal{V}}} Z(A \setminus U \cup V^{-}, B \setminus V \cup U^{-}),$$

$$u \in A, V \leq B$$
$$|u| = |v|$$

where
$$Z(A,B) := TT(I - e^{-\alpha - \beta})^{-1}$$
.

A new approach to proving high moments

Conrey-Keating: The general idea is to estimate (series of 5 papers, 2015-2019)

$$\mathcal{M}_{A,B}(T) := \int_{0}^{\infty} TT \zeta(\frac{1}{2} + \alpha + it) TT \zeta(\frac{1}{2} + \beta - it) dt$$

using the approximation

$$\int_{0}^{T} \sum_{\substack{m \in X \\ m \in X}} \frac{T_{A}(m)}{m^{\frac{1}{2}+it}} \sum_{\substack{n \in X \\ n \in X}} \frac{T_{B}(n)}{n^{\frac{1}{2}-it}} dt$$

$$T_{A}(n) = \sum_{m_{1}m_{2}\cdots m_{k}=n} m_{1}^{-\alpha_{1}} m_{2}^{-\alpha_{2}} \cdots m_{k}^{-\alpha_{k}}$$

• CFKRS recipe predicts an asymptotic formula for $\int_{\alpha \in A}^{T} \prod \zeta(\frac{1}{2} + \alpha + it) \prod \zeta(\frac{1}{2} + \beta - it) dt$ BEB

with lower order terms.

• The terms in the formula are categorized by certain shared combinatorial properties.

• CFKRS "recipe" predicts an asymptotic formula for $\int_{\alpha \in A}^{T} \prod \zeta(\frac{1}{2} + \alpha + it) \prod \zeta(\frac{1}{2} + \beta - it) dt$ BEB

with lower order terms.

- The terms in the formula are categorized by certain shared combinatorial properties.
- The categories are called "I-swaps."
- If |A| = |B| = k, there are 'l-swap terms' for $l \in \{0, 1, 2, 3, ..., k\}$.

How does X affect the accuracy of the approximation?

$$\begin{cases} \int_{0}^{T} \sum_{m \in X} \frac{\Upsilon_{A}(m)}{m^{1/2+it}} \sum_{n \leq X} \frac{\Upsilon_{B}(n)}{n^{1/2-it}} \approx \int_{0}^{T} \prod_{\alpha \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt \\ CFKRS predicts: \\ O-swaps \\ I-swaps \\ I-swaps \\ \vdots \\ t-swaps \\ \vdots \\ t-swaps \\ truncations \\ t-swaps \\ \vdots \\ t-swaps \\ t-$$

How does X affect the accuracy of the approximation?

$$\int_{0}^{T} \sum_{m \in X} \frac{\mathcal{L}_{A}(m)}{m^{1/2+it}} \sum_{n \in X} \frac{\mathcal{L}_{B}(n)}{n^{1/2-it}} \approx \int_{0}^{T} \prod_{\alpha \in A} \zeta(\frac{1}{2} + \alpha + it) \prod_{\beta \in B} \zeta(\frac{1}{2} + \beta - it) dt$$

$$CFKRS \text{ predicts:} \\ O-swaps \\ I-swaps \\ I-swaps \\ \vdots \\ t-swaps \\ \vdots \\ t-swaps \\ truncations \\ truncations \\ t-swaps \\ \vdots \\ t-swaps \\ t-swaps$$

<u>Conrey-Keating</u>: If $X \gg T^{l}$ then the l-swap terms for the truncations on the LHS are precisely the l-swap terms for the full 2k'th moment on the RHS.

* As X increases, more l-swaps match up. *

• Conrey - Keating (2015) found that the "1-swap" terms for zeta are the consequence of formulas for correlations of divisor sums.

- Conrey Keating (2015) found that the "1-swap" terms for zeta are the consequence of formulas for correlations of divisor sums.
- · This connection has been made rigorous by A. Hamieh + N. Ng.

Theorem (Hamieh and Ng, 2021)
Assume the expected asymptotic formula for correlations of divisor sums.
If
$$X = T^{\eta}$$
 with $|\langle \eta \rangle^{2}$, then as $T \to \infty$,

$$\int_{0}^{T} \sum_{\substack{m \leq X \\ m^{1/2+1+t}}} \frac{T_{B}(n)}{n \leq x} \int_{1}^{\infty} \frac{T_{B}(n)}{n^{1/2-1+t}} dt \sim \frac{1}{(2\pi i)^{2}} \int_{(\varepsilon)} \int_{(\varepsilon)} \frac{X^{Z+W}}{ZW} \sum_{\substack{u \leq A, V \leq B \\ O \leq |u| = |v| \leq 1}} \int_{1}^{\infty} \int_{1}^{\infty} \frac{T_{A}(m)}{m n \leq x} \int_{1}^{\infty} \int_$$

Adapting the Conrey-Keating approach

Family of all Dirichlet L-functions of modulus q $M_{\kappa}(q) = \frac{1}{\varphi^{*}(q)} \sum_{\chi \pmod{q}}^{*} |L(1/2, \chi)|^{2\kappa}$

E*: the sum is over all primitive characters

φ*(q): the number of primitive characters mod q.

Like 5(s), progress on Mk(q) is limited for large K.
 study in t-aspect

What is known?

What is known?

Asymptotics:

• Paley (1934): M, (q) ~ logq

• Heath-Brown (1981), Soundararajan (2007),

What is known?

Asymptotics:

• Paley (1934): M,(q) ~ logq

• Heath-Brown (1981), Soundararajan (2007), Young (2010) gives: $M_2(q) \sim 2b_2 \frac{(\log q)^4}{4!}$ Asymptotics for k^{3} ? Conjecture: $M_{k}(q) \sim g_{k} b_{k} \frac{(\log q)^{k^{2}}}{k^{2}!}$ $g_{k} = k^{2}! \prod_{j=0}^{k-1} \frac{j!}{(k+j)!}$

Introducing extra averaging over q

Using the large sieve inequality to obtain upper bound: Huxley (1970): $\sum_{q \in Q} \left[\sum_{k=1}^{\infty} \left| L(1/2, \chi) \right|^{2k} \ll Q^2 (\log Q)^{k^2}$, where k=3,4

Introducing extra averaging over q

Using the large sieve inequality to obtain upper bound: Huxley (1970): $\sum_{q \in Q} \sum_{k=1}^{\infty} |L(1/2, \chi)|^{2k} \ll Q^2 (\log Q)^{k^2}$, where k=3,4

Using the asymptotic large sieve (for asymptotics!)

• Conrey-Iwaniec-Soundararajan (2012) : 6th moment w/small averaging overt

• Chandee-Li-Matomaki-Radziwitt (2023+):
$$\sum_{q \in Q} \sum_{x(q)}^{*} |L(u_2,x)|^6 \sim 42\tilde{c}_3 Q^2 \frac{(\log Q)^7}{9!}$$

Chandee-Li-Matomaki-Radziwiłł (2023+): 8th moment w/ small averaging overt
 main term is size Q²(logQ)¹⁶

• error term is size Q²(logQ)^{15+E}

Introducing extra averaging over q

Using the large sieve inequality to obtain upper bound: Huxley (1970): $\sum_{q \in Q} \sum_{k=1}^{\infty} |L(1/2, x)|^{2k} \ll Q^2 (\log Q)^{k^2}$, where k=3,4

Using the asymptotic large sieve (for asymptotics!)

• Conrey-Iwaniec-Soundararajan (2012) : 6th moment w/small averaging overt

• Chandee-Li-Matomaki-Radziwitt (2023+):
$$\sum_{q \in Q} \sum_{x(q)}^{*} |L(u_2,x)|^{6} \sim 42\tilde{c}_{3}Q^{2} \frac{(\log Q)^{7}}{9!}$$

Chandee-Li-Matomaki-Radziwiłł (2023+): 8th moment w/ small averaging overt
 main term is size Q²(logQ)¹⁶

• error term is size Q²(logQ)^{15+E}

Asympotic large sieve - a framework that harnesses the extra averaging to work with off-diagonal terms

Adapting the Conrey-Keating approach

Approximate by:

$$\sum_{q \in Q} \sum_{x \mod q} \sum_{m \in X} \frac{T_A(m)\chi(m)}{\sqrt{m}} \sum_{n \in X} \frac{T_B(n)\chi(n)}{\sqrt{n}}$$

b: primitive, even

Adapting the Conrey-Keating approach

Approximate by:

$$\sum_{q \in Q} \sum_{x \mod q} \sum_{m \in X} \frac{T_A(m)\chi(m)}{\sqrt{m}} \sum_{n \in X} \frac{T_B(n)\overline{\chi(n)}}{\sqrt{n}}$$

The twisted 2kth moment, averaged over q.:

$$\sum_{q \in Q} \sum_{x \mod q} \chi(h) \overline{\chi}(k) \sum_{m \leq \chi} \frac{T_A(m) \chi(m)}{\sqrt{m}} \sum_{n \leq \chi} \frac{T_B(n) \overline{\chi}(n)}{\sqrt{n}}$$

b: primitive, even

Twisted moment of Dirichlet polynomial approx.

$$S(h,k) := \sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{\substack{\chi \mod q}}^{b} \chi(h) \overline{\chi}(k)$$

$$\times \sum_{m=1}^{\infty} \frac{T_{A}(m) \chi(m)}{\sqrt{m}} \sqrt{\left(\frac{m}{\chi}\right)} \sum_{n=1}^{\infty} \frac{T_{B}(n) \overline{\chi}(n)}{\sqrt{n}} \sqrt{\left(\frac{n}{\chi}\right)}$$

Here :

- · W, V are smooth cut-off functions
- · b denotes that the sum is over even, primitive characters modulo q

What does the CFKRS recipe predict for S(h,k)?

Notation: gathering the ingredients

$$\begin{split} \mathbf{I}_{\varrho}(h_{1}k) &:= \int_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{\chi modq}^{-b} \frac{1}{(2\pi i)^{2}} \int_{(e)} \int_{(e)} X^{s_{1}+s_{2}} \widetilde{V}(s_{1}) \widetilde{V}(s_{2}) \\ (g_{1},hk) &:= i \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ \text{the sum of all the L-swap terms}} \prod_{\substack{u \in A, V \in \mathcal{B} \\ u \in A, V \in \mathcal{B}}} \prod_{a \in \mathcal{U}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{q^{\alpha + s_{1}}} \prod_{\beta \in V} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{q^{\beta + s_{2}}} \\ \text{is the location of all the location of } u &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \prod_{\substack{u \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{q^{\alpha + s_{1}}} \prod_{\beta \in V} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{q^{\beta + s_{2}}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{q^{\beta + s_{2}}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \frac{\mathfrak{X}\left(\frac{1}{2} + \beta + s_{2}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A}, V \in \mathcal{B} \\ u = iV \mid = l}} \frac{\mathfrak{X}\left(\frac{1}{2} + \alpha + s_{1}\right)}{\sqrt{mn}} \\ &: \sum_{\substack{z \in \mathcal{A},$$

The recipe conjecture

as $Q \rightarrow \infty$.

Recipe Conjecture : Let A={d1,...,dk}, B={B1,...,Bk} with a1, Bj << 1/10gQ. For all X>0, where X is the length of the L-function approximations,

$$S(h,k) \sim \sum_{l=0}^{K} I_{l}(h,k)$$

29

The recipe conjecture

as $Q \rightarrow \infty$.

Recipe Conjecture : Let A={d1,...,dk}, B={B1,...,Bk} with di, Bj << 1/10gQ. For all X>0, where X is the length of the L-function approximations,

$$S(h,k) \sim \sum_{l=0}^{K} I_{l}(h,k)$$

Roughly: the 2k-th moment of the Dirichlet polynomial approximations of the L-functions with length X>O is asymptotic to the sum of the predicted O,1,..., K-swap terms of the approximations.

Main Result

Theorem (S.Baluyot and C.T-B, 2022+) Let Q be a large parameter and $X = Q^n$ with $1 < \eta < 2$. Let $A = \{\alpha_{1}, ..., \alpha_k\}, B = \{\beta_{1}, ..., \beta_k\}$ with $\alpha_{1}, \beta_{1} < 1/\log Q$. Then, assuming the Generalized Lindelöf Hypothesis, we have $S(h,k) \sim T_o(h,k) + T_1(h,k)$.

Main Result

Theorem (S.Baluyot and C.T-B, 2022+) Let Q be a large parameter and $X = Q^n$ with $1 < \eta < 2$. Let $A = \{\alpha_{1}, ..., \alpha_k\}, B = \{\beta_{1}, ..., \beta_k\}$ with $\alpha_i, \beta_j < 1/\log Q$. Then, assuming the Generalized Lindelöf Hypothesis, we have $S(h, k) \sim T_o(h, k) + T_1(h, k)$.

Roughly: the 2k-th moment of the Dirichlet polynomial approximations of the L-functions with lengths Q^n , $1 < \eta < 2$, is asymptotic to the sum of the predicted O_1 -swap terms of the approximations.

Interpretation of result

 the 1-swap terms predicted by the CFKRS recipe are correct for this family of L-functions, averaged over q.

•For the general 2kth moment, this gives the first rigorous proof of the validity of the CFKRS heuristic "beyond the diagonal" for this family of L-functions.

Overview of proof

•Start with

$$S(h,k) := \sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{\substack{x \mod q}}^{b} \chi(h) \overline{\chi}(k)$$

$$x = \sum_{m=1}^{\infty} \frac{T_{A}(m) \chi(m)}{\sqrt{m}} \sqrt{\left(\frac{m}{\chi}\right)} \sum_{n=1}^{\infty} \frac{T_{B}(n) \overline{\chi}(n)}{\sqrt{n}} \sqrt{\left(\frac{n}{\chi}\right)}.$$

Overview of proof

•Start with

$$S(h,k) := \sum_{q=1}^{\infty} W\left(\frac{q}{Q}\right) \sum_{\substack{x \mod q}}^{b} \chi(h) \overline{\chi}(k)$$

$$\times \sum_{\substack{m=1 \\ m=1}}^{\infty} \frac{T_{A}(m) \chi(m)}{\sqrt{m}} \sqrt{\binom{m}{\chi}} \sum_{\substack{n=1 \\ n=1}}^{\infty} \frac{T_{B}(n) \overline{\chi}(n)}{\sqrt{m}} \sqrt{\binom{n}{\chi}}.$$

• Bring in the sum over X, and use the standard lemma

$$\sum_{x \mod q}^{b} \chi(mh) \overline{\chi(nk)} = \frac{1}{2} \left(\sum_{q=dc} \varphi(d) \mu(c) + \sum_{q=dc} \varphi(d) \mu(c) \right)$$

$$d \left[(mh+nk) + 1 \right] \qquad d \left[(mh-nk) + 1 \right]$$

• We then split S(h,k) into three pieces:

$$S(h,k) = L(h,k) + D(h,k) + U(h,k)$$

Where are the 1-swap terms?

The "long" sum, L(h,k), c>C

$$\mathcal{L}(h_{1}k) := \frac{1}{2} \sum_{\substack{l \leq q < \infty \\ (q,hk) = 1}} W\left(\frac{q}{Q}\right) \sum_{\substack{l \leq m, n < \infty \\ (mn,q) = 1}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{mn}} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)$$

$$\times \left(\sum_{\substack{c > C, d \geq 1 \\ c < C, d \geq 1}} \varphi(d) \mu(c) + \sum_{\substack{c > C, d \geq 1 \\ c < d = q}} \varphi(d) \mu(c)\right)$$

$$= \frac{1}{2} \sum_{\substack{l \leq q < \infty \\ c < d = q}} \frac{1}{2} \sum_{\substack{l \leq m, n < \infty \\ (mn,q) = 1}} W\left(\frac{q}{A}\right) \sum_{\substack{l \leq m, n < \infty \\ (mn,q) = 1}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{mn}} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)$$

· detect d mh = nk using orthogonality of characters

The "long" sum, L(h,k), c>C

$$\mathcal{L}(h,k) := \frac{1}{2} \sum_{\substack{l \leq q \neq \infty \\ (q,hk) = 1}} W\left(\frac{q}{d}\right) \sum_{\substack{l \leq m, n \neq \infty \\ (mn,q) = l}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{mn}} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)$$

$$\times \left(\sum_{\substack{c > C, d \neq l \\ c < C, d \neq l}} cq(d) \mu(c) + \sum_{\substack{c > C, d \neq l \\ c < q}} cq(d) \mu(c)\right)$$

$$= \frac{1}{2} \sum_{\substack{l \leq q \neq n \\ cd = q}} \frac{cd = q}{d|mh+nk}$$

- · detect d mh = nk using orthogonality of characters
- split $L(h,k) = L_o(h,k) + L_r(h,k)$
 - · L. (h, k): contribution of the principal character modd
 - · Lr(h,k) the rest.

The "long" sum, L(h,k), c>C

$$\mathcal{L}(h,k) := \frac{1}{2} \sum_{\substack{l \leq q \neq \infty \\ (q,hk) = 1}} W\left(\frac{q}{Q}\right) \sum_{\substack{l \leq m, n \neq \infty \\ (mn,q) = l}} \frac{\tau_{A}(m) \tau_{B}(n)}{\sqrt{mn}} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)$$

$$\times \left(\sum_{\substack{c > C, d \neq l \\ c < C, d \neq l}} cp(d) \mu(c) + \sum_{\substack{c > C, d \neq l \\ c < q}} cp(d) \mu(c)\right)$$

$$= \frac{1}{2} \sum_{\substack{l \leq q \neq \infty \\ c < l}} cq(d) \mu(c) + \sum_{\substack{c > C, d \neq l \\ c < l}} cp(d) \mu(c)\right)$$

- · detect d mh = nk using orthogonality of characters
- split $L(h,k) = L_o(h,k) + L_r(h,k)$
 - · L. (h, k): contribution of the principal character modd
 - · Lr(h,k) the rest.
- · bound $L_r(h,k)$ using the large sieve inequality and GLH
- · Lo(h,k) ends up cancelling with a contribution from U(h,k)

Finding the predicted 1-swap terms

$$S(h, k) = D(h, k) + L(h, k) + U(h, k)$$

short, diagonal
O-Swap
terms

$$\int_{0}(h, k) + Lr(h, k)$$

(eventually
Cancels)
bounded
under GLH

Finding the predicted 1-swap terms

$$S(h,k) = D(h,k) + L(h,k) + U(h,k)$$
short, diagonal
$$O-Swap
terms
L_0(h,k) + L_r(h,k)
\int_{(c)entually} bounded
under GLH
the 1-Swap
terms are hidden
here
$$U(h,k) := \frac{1}{2} \sum_{\substack{i \leq q, x 0 \\ (q,hk) = i}} W\left(\frac{q}{Q}\right) \sum_{\substack{i \leq m, n < x 0 \\ i \leq m, n < x 0 \\ (q,hk) = i}} \frac{T_{a}(m) T_{B}(n)}{1mn} V\left(\frac{m}{X}\right) V\left(\frac{n}{X}\right)$$

$$\left(\sum_{\substack{i \leq q < x 0 \\ i \leq c \leq c, d > i}} Q(d) \mu(c) + \sum_{\substack{i \leq c \leq c, d > i} \\ cd = q \\ d|mh+nk} d|mh-nk} Q(d) \mu(c)\right).$$$$

Finding the predicted 1-swap terms

$$S(h, k) = D(h, k) + L(h, k) + U(h, k)$$
short, diagonal
$$\begin{array}{c} 0 - SWap \\ terms \end{array} + L_{0}(h, k) + L_{r}(h, k) \\ L_{0}(h, k) + L_{r}(h, k) \\ (ancels) \end{array} + L_{r}(h, k) \\ \begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 \\ the 1 - Swap \\ terms are hidden \\ here \end{array}$$

$$\begin{array}{c} 1 \\ the 1 \\ th$$

We switch to the "complementary modulus" $d | lmh \pm nk |$, so instead consider $l := \frac{lmh \pm nk l}{d}$
Crux of argument:

We switch to the "complementary modulus" $d | lmh \pm nk |$, so instead consider $l := \frac{lmh \pm nk l}{d}$

Split $U(h,k) = U_0(h,k) + U_r(h,k)$

· Uo(h,k): contribution from principal character mod l

Bound Ur(thik) - more delicate than Lr(thik)

- interdependence of variables and the complexity of the multivariable Mellin transform.
- · Closely follow work of Conrey-Iwaniec-Soundararajan (2019).
- This is where we must assume GLH, because we are working with an arbitrarily large number of L-functions

Crux of argument:

We switch to the "complementary modulus" $d | lmh \pm nk |$, so instead consider $l := \frac{lmh \pm nk l}{d}$

Split $U(h,k) = U_0(h,k) + U_r(h,k)$

· Uo(h,k): contribution from principal character mod l

Bound Ur(thik) - more delicate than Lr(thik)

- interdependence of variables and the complexity of the multivariable Mellin transform.
- · Closely follow work of Conrey-Iwaniec-Soundararajan (2019).
- This is where we must assume GLH, because we are working with an arbitrarily large number of L-functions

Focusing on $U_0(h,k)$ We apply Mellin inversion to W and move a line of integration to write $U_0(h,k) = U_1(h,k) + U_2(h,k)$ where $U_1(h,k)$ is the residue (from S(1+w)) and $U_2(h,k)$ is the rest.

· After careful manipulation, we realize U,(h,k) cancels with Lo(h,k)!

· After careful manipulation, we realize U.(h.k) cancels with L.(h.k)!

We are left with

$$\begin{aligned} \mathcal{U}_{2}(h,k) &\simeq \frac{Q}{2} \sum_{\substack{l \leq c < C \\ (c,hk)=l}} \frac{\mu(c)}{c} \sum_{\substack{l \leq m,n < \infty \\ (mn,c)=l \\ mh \neq nk}} \frac{\mathcal{T}_{A}(m) \mathcal{T}_{B}(n)}{\sqrt{mn}} \sqrt{\left(\frac{m}{\chi}\right)} \sqrt{\left(\frac{n}{\chi}\right)} \sum_{\substack{l \leq e < \infty \\ (e,g)=l}} \frac{\mu(e)}{e} \\ &\times \sum_{\substack{a \mid g \\ a \mid g}} \frac{\mu(a)}{\varphi(ea)} \cdot \frac{l}{2\pi i} \int_{(-\epsilon)} \left(\frac{clmh \pm nkl}{gQ}\right) \widetilde{W}(l-\omega) \zeta(l+\omega) d\omega. \end{aligned}$$

·Write U2(h,k) as an Euler product after separating the variables in Imh±nk/^W (use a lemma from CIS'19)

• Use Mellin inversion & express U2(h,k) as a quadruple integral.

The recipe tells us what the 1-swaps look like, but no information on how to extract them.

The asymptotic large sieve tells us where the 1-swap terms are hiding.

The recipe tells us what the 1-swaps look like, but no information on how to extract them.

The asymptotic large sieve tells us where the 1-swap terms are hiding.

We find the 1-swaps via strategic contour integration and proving identities involving several Euler products so that we can match to what the recipe predicts. The map of the argument

Generalized Lindelöff Hypothesis

The Lindelöff Hypothesis is true, and for all $\varepsilon>0$ and all nonprincipal characters modq,

$$L(\frac{1}{2}+it,\chi) \ll (q(1+|t|))^{\epsilon}$$
.

• We assume GLH in a handful of places in the proof to control the large number of zeta - and L-function factors.

Generalized Lindelöff Hypothesis

The Lindelöff Hypothesis is true, and for all $\varepsilon > 0$ and all nonprincipal characters modq,

$$L(\frac{1}{2}+it,\chi) \ll (q(1+|t|))^{c}$$
.

• We assume GLH in a handful of places in the proof to control the large number of zeta - and L-function factors.

We expect:

- · K=1,2,3,4: the result is unconditional
- K75: we can assume a weaker hypothesis that depends on K.

Generalized Lindelöff Hypothesis

The Lindelöff Hypothesis is true, and for all $\varepsilon > 0$ and all nonprincipal characters modq,

$$\lfloor (\frac{1}{2} + it, \chi) \ll (q(1 + |t|))^{\epsilon}$$
.

• We assume GLH in a handful of places in the proof to control the large number of zeta - and L-function factors.

We expect:

- · K=1,2,3,4: the result is unconditional
- K75: We can assume a weaker hypothesis that depends on K.

Making this precise is work in-progress with student Bowen Li.

Finding "1-swaps" in other families

NSF FRG : Averages of L-functions & Arithmetic Stratification

- Conrey-Rodgers ('22+)
- family of quadratic
 L-functions
- symplectic
- · Poisson summation
- ·assumes GLH

Conrey-Fazzari (23)

- L-functions assoc. with primitive cusp forms of level 1 in weight aspect
- ·orthogonal
- · Peterrson trace formula
- ·assumes GLH

Thank you for your attention!