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The Eigenvalue Problem for the Laplacian
(M, g) compact n-dimensional Riemannian manifold; e.g. n-sphere

Sn =
{

(x1, . . . , xn+1) ∈ Rn+1 : x2
1 + · · · + x2

n+1 = n
}
.

We study Laplacian eigenfunctions:
L2-normalised ϕ ∈ L2(M) satisfying

∆ϕ = λϕ,

∆ := − 1√
| det g |

n∑
k,ℓ=1

∂

∂xk
gkℓ
√

| det g | ∂
∂xℓ

.

The Laplacian eigenvalue of ϕ is λ ∈ [0,∞).
These functions form an orthonormal basis {ϕj} of L2(M) with
λj → ∞ as j → ∞.

On Rn,

∆ = −
n∑

k=1

∂2

∂x2
k
.
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Quantum Unique Ergodicity
Conjecture (Quantum Unique Ergodicity)
For all ψ ∈ Cb(M),

lim
j→∞

∫
M

|ϕj(x)|2ψ(x) dvol(x) = 1
vol(M)

∫
M
ψ(x) dvol(x).

Equivalently,

lim
j→∞

∫
B

|ϕj(x)|2 dvol(x) = vol(B)
vol(M)

for every continuity set B ⊆ M.

This is QUE in physical space.
Baby version of a conjecture of Rudnick–Sarnak for phase space
QUE involving microlocal lifts to S∗M.

Heuristic
L2-masses of Laplacian eigenfunctions spread out randomly.
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Quantum Unique Ergodicity

Known results on QUE:
False without negative curvature of M, even if geodesic flow
on M is ergodic (Hassell);
True for almost all eigenfunctions (Shnirelman, Colin de
Verdière, Zelditch);
Any weak-* limit has positive entropy; cannot completely
concentrate on a geodesic (Anantharaman);
Any weak-* limit gives positive measure to nonempty open
sets (Dyatlov–Jin).
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Example: Modular Surface
Interesting setting for number theorists:
Riemannian locally symmetric spaces M = Γ\G/K ;

G a Lie group,
K a maximal compact subgroup of G ,
Γ a lattice in G .

Simplest interesting case: G = SL2(R), K = SO(2), Γ = SL2(Z).
G/K ∼= H, the upper half-plane

H = {z = x + iy ∈ C : y > 0},

Γ\G/K ∼= Γ\H, the modular surface

Γ\H =
{

z = x + iy ∈ H : −1
2 < x < 1

2 , x2 + y2 > 1
}
,

Laplacian eigenfunctions are automorphic forms.
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Example: Modular Surface

H is a negatively curved hyperbolic surface.

Γ\H inherits a hyperbolic metric from H.

The Laplacian is ∆ = −y2
(
∂2

∂x2 + ∂2

∂y2

)
.

The volume measure on Γ\H is dµ(z) = dx dy
y2 ; vol(Γ\H) = π

3 .

Nonconstant eigenfunctions of ∆ on Γ\H are Maaß forms ϕj
with Laplacian eigenvalue λj = 1/4 + t2

j .

The space of Maaß forms has an orthonormal basis B0
consisting of Hecke–Maaß cusp forms.
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Example: Modular Surface
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Quantum Unique Ergodicity for Γ\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

lim
j→∞

∫
Γ\H

|ϕj(z)|2ψ(z) dµ(z) = 1
vol(Γ\H)

∫
Γ\H

ψ(z) dµ(z)

for all ψ ∈ Cb(Γ\H).
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Quantum Unique Ergodicity for Γ\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

lim
j→∞

∫
B

|ϕj(z)|2 dµ(z) = vol(B)
vol(Γ\H)

for every continuity set B ⊆ Γ\H.
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Effective QUE
Conjecture (Luo–Sarnak (1995))
As j → ∞, we have that

sup
BR(w)⊂Γ\H

∣∣∣∣∣
∫

BR(w)
|ϕj(z)|2 dµ(z) − vol(BR(w))

vol(Γ\H)

∣∣∣∣∣ ≪ε t− 1
2 +ε

j .

Conjecture is an effective form of QUE:
(essentially) optimal bounds for the discrepancy.

Theorem (Watson (2002), Young (2016))
Conjecture is true assuming GLH.

Heuristic
GLH ⇐⇒ central L-values L(1

2 ,Π) are essentially bounded.

Remark
GRH =⇒ GLH.
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Spectral Decomposition of Γ\H

L2-spectral decomposition of ψ ∈ L2(Γ\H) is

ψ(z) = ⟨ψ, 1⟩
vol(Γ\H) +

∑
f ∈B0

⟨ψ, f ⟩f (z).

⟨g1, g2⟩ :=
∫

Γ\H
g1(z)g2(z) dµ(z);

B0 orthonormal basis of Hecke–Maaß cusp forms f .

Remark
There is also a continuous spectrum involving Eisenstein series,
which we ignore for ease of exposition.

Peter Humphries Restricted Arithmetic Quantum Unique Ergodicity



Idea of Proof of Effective QUE
Take ψ = 1BR(w) in spectral expansion, multiply by |ϕj |2, and
integrate over Γ\H:

sup
BR(w)⊂Γ\H

∣∣∣∣∣
∫

BR(w)
|ϕj(z)|2 dµ(z) − vol(BR(w))

vol(Γ\H)

∣∣∣∣∣
= sup

BR(w)⊂Γ\H

∣∣∣∣∣∣
∑

f ∈B0

⟨|ϕj |2, f ⟩⟨f , 1BR(w)⟩

∣∣∣∣∣∣ .
Need to bound RHS.
Strategy: take absolute values and bound each term.

Good (averaged) bounds for ⟨f , 1BR(w)⟩ known via local Weyl
law and properties of Selberg–Harish-Chandra transform;
Can relate triple product ⟨|ϕj |2, f ⟩ to L-functions.

Upshot
Problem reduces to knowing good bounds for L-functions.
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Triple Product Formula
Proposition (Watson (2002), Ichino (2008))
We have that∣∣∣〈|ϕj |2, f

〉∣∣∣2 ≈
L
(

1
2 , adϕj ⊗ f

)
L
(

1
2 , f

)
L(1, adϕj)2L(1, ad f )

×
{

mild polynomial decay if tf ≤ 2tj ,
exponential decay if tf > 2tj .

Remark
Gan–Gross–Prasad for (SO(4), SO(3)): so4 ∼= sl2 ⊕ sl2, so3 ∼= sl2.

Assuming GLH, ratio of L-functions is essentially bounded.
Exponential decay means

∑
f ∈B0 can be truncated to tf ≤ 2tj .

Upshot
Yields Luo–Sarnak conjecture assuming GLH:
effective QUE with (essentially) optimal error term.
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Refinements of QUE

Refinements of QUE beyond effective bounds for the discrepancy:
Small-scale QUE: how fast can R shrink as tj grows for QUE
to hold on BR(w)?

Young (2016): R ≫ t−1/3
j under GLH.

H. (2018): R ≫ t−1
j for a.e. w ∈ Γ\H under GLH.

Restricted QUE: does QUE hold when restricted to a
submanifold?

Toth–Zelditch (2013), Dyatlov–Zworski (2013):
RQE holds for negatively curved M and generic hypersurface Σ
for almost all eigenfunctions.
Young (2016, 2018): RQUE holds for Eisenstein series
restricted to vertical geodesics.
Hu (2020): a version of RQUE holds in the level (depth)
aspect for Hecke–Maaß cusp forms.

Peter Humphries Restricted Arithmetic Quantum Unique Ergodicity



Restricted Arithmetic Quantum Unique Ergodicity for Γ\H

Theorem (H. (2024+))
Fix a closed geodesic C ⊂ Γ\H. Assume GLH. For ϕj ∈ B0,

lim
j→∞

∫
C

|ϕj(z)|2ψ(z) ds = 1
vol(Γ\H)

∫
C
ψ(z) ds

for all ψ ∈ C(C).

Proof is effective and gives bounds for the discrepancy:

sup
I⊆C

∣∣∣∣∫
I
|ϕj(z)|2 ds − ℓ(I)

vol(Γ\H)

∣∣∣∣ ≪ t−δ
j .

Maybe δ = 1/4 is plausible.

Optimal bound is δ = 1/2; currently seems out of reach.
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Remarks on the Method

Proof does not use ergodic theory;
instead uses period integrals of automorphic forms.
Need to assume Laplacian eigenfunctions are Hecke
eigenfunctions.
Requirement of GLH could be weakened;

need strong bounds for certain fractional moments of
L-functions that imply hybrid subconvexity.

Method works for Hecke–Maaß cusp forms on other
congruence subgroups, including compact quotients.
Method works for vertical geodesics from a rational point
x ∈ Q to i∞

conditional partial resolution of a conjecture of Young (2018).
Method might (?) work for other arithmetic submanifolds:

horocycles;
geodesic circles centred at Heegner points.
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Geodesics on Γ\H
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Closed Geodesics on Γ\H
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Closed Geodesics on Γ\H

Key properties of closed geodesics:
Bijective correspondence with narrow ideal classes of real
quadratic number fields Q(

√
D) (arithmetic submanifold)

Length is 2 log ϵ, where ϵ is the fundamental unit of Q(
√

D).
Infinitely many closed geodesics.
Union of all closed geodesics is dense in Γ\H.
Topologically equivalent to a circle.
Period integrals of automorphic forms on closed geodesics are
related to L-functions (Waldspurger’s formula).

For the proof, we assume for ease of exposition that h+
D = 1.
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Reduction of RQUE

Closed geodesic C is topologically a circle.

Weyl equidistribution criterion: suffices to show for each m ∈ Z,

lim
j→∞

∫
C

|ϕj(z)|2ψm(z) ds = 1
vol(Γ\H)

∫
C
ψm(z) ds

=


ℓ(C)

vol(Γ\H) if m = 0,

0 otherwise.

Here ψm(θ) = e2πimθ.

Remark
For discrepancy bounds, additionally need explicit rate of decay for∫

C |ϕj |2ψm ds in both tj and m.
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First Approach to RQUE

Idea 1 of Proof.
Insert spectral expansion of |ϕj |2 ∈ L2(Γ\H):
∫

C
|ϕj(z)|2ψm(z) ds = 1

vol(Γ\H)

∫
C
ψm(z) ds

+
∑

f ∈B0

⟨|ϕj |2, f ⟩
∫

C
f (z)ψm(z) ds.

First term is desired main term.
Need to show second term is small.

Watson–Ichino and GLH imply ⟨|ϕj |2, f ⟩ has mild polynomial decay
if tf ≤ 2tj and exponential decay if tf > 2tj .

For
∫

C f ψm ds, apply Waldspurger’s formula to relate to
L-functions.
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Waldspurger’s Formula

Proposition (Waldspurger (1985))
We have that

∣∣∣∣∫
C

f (z)ψm(z) ds
∣∣∣∣2 ≈

L
(

1
2 , f ⊗ Θψm

)
L(1, ad f )

×
{

mild polynomial decay if |m| ≤ tf ,
exponential decay if |m| > tf .

Remark
Gan–Gross–Prasad for (SO(3), SO(2)): so3 ∼= sl2.

Θψm is a dihedral Maaß form of spectral parameter 2π|m|
ℓ(C) :

automorphic induction of the Hecke character ψm.

Assuming GLH, ratio of L-functions on RHS is essentially bounded.
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First Approach to RQUE
Idea 1 of Proof (cont’d).
Want to show that as j → ∞,∑

f ∈B0

⟨|ϕj |2, f ⟩
∫

C
f (z)ψm(z) ds = o(1).

Take absolute values;
Apply Watson–Ichino and Waldspurger;
Truncate sum to tf ≤ 2tj , bound each term assuming GLH,
and sum via Weyl law.

Eventually get the upper bound O(t1/2
j ).

Much too big!

Lossy since taking absolute values wastes oscillations of sign
of ⟨|ϕj |2, f ⟩ and

∫
C f ψm ds.

After taking absolute values, spectral sum is too long;
need to be able to truncate to tf = o(t1/2

j ).
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Second Approach to RQUE

Idea 2 of Proof.
Use Parseval for L2(C):∫

C
|ϕj(z)|2ψm(z) ds =

∞∑
n=−∞

∫
C
ϕj(z)ψm+n(z) ds

∫
C
ϕj(z)ψn(z) ds.

Uses the fact that ψm(z)ψn(z) = ψm+n(z) since
e2πimθe2πinθ = e2πi(m+n)θ.

Take absolute values and apply Waldspurger.
Truncate sum to |n| ≤ tj , bound each term assuming GLH,
and sum.

Eventually get the upper bound O(1).

Better, but still not quite good enough.

Method cannot even extract a main term when m = 0!
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Second Approach to RQUE
Second approach can be used to prove good bounds for
L2-restriction problem.

Theorem (Ali (2022))
Unconditionally, ∫

C
|ϕj(z)|2 ds ≪ε t2ϑ+ε

j ,

where ϑ = 7
64 is the best known exponent towards the Ramanujan

conjecture.

Remark
For arbitrary (nonarithmetic) compact manifolds, instead get
≪ t1/2

j (Burq–Gérard–Tzvetkov).

Method below gives correct asymptotic
∫

C |ϕj |2 ds ∼ ℓ(C)
vol(Γ\H) under

the assumption of GLH.
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Proof of RQUE

Second approach barely fails:
O(1) instead of 1

vol(Γ\H)
∫

C ψm ds + o(1).

First key idea: determine how to extract a main term from∫
C

|ϕj(z)|2ψm(z) ds =
∞∑

n=−∞

∫
C
ϕj(z)ψm+n(z) ds

∫
C
ϕj(z)ψn(z) ds.

Step 1 of proof.
Break up above sum into ranges.

By Waldspurger and GLH, bulk range is when |n| is close to tj
(i.e. t1−δ

j ≤ |n| ≤ tj − t1−2δ
j , δ > 0 small).

Remaining terms contribute o(1).
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Proof of RQUE

Second key idea: modify the Hecke–Maaß cusp form ϕj in this
period integral of automorphic forms.

Step 2 of proof.

Construct an automorphic form ϕ̃j : Γ\SL2(R) → C that closely
approximates ϕj along C (but not necessarily elsewhere in Γ\H);

ϕ̃j constructed such that for n in the bulk range,∫
C
ϕj(z)ψn(z) ds ∼

∫
C
ϕ̃j(z)ψn(z) ds.

For n outside the bulk range,
∫

C ϕ̃jψn ds is exponentially small
(whereas

∫
C ϕjψn ds is only polynomially small).
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Proof of RQUE

Step 3 of proof.
Use Parseval for L2(C) to write∫

C
|ϕj(z)|2ψm(z) ds =

∞∑
n=−∞

∫
C
ϕj(z)ψm+n(z) ds

∫
C
ϕj(z)ψn(z) ds,

∫
C
ϕj(z)ϕ̃j(z)ψm(z) ds =

∞∑
n=−∞

∫
C
ϕj(z)ψm+n(z) ds

∫
C
ϕ̃j(z)ψn(z) ds.

Expansions essentially equal for n in the bulk range.
Both expansions negligibly small for n outside the bulk range.

Upshot∫
C

|ϕj(z)|2ψm(z) ds =
∫

C
ϕj(z)ϕ̃j(z)ψm(z) ds + o(1).
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Proof of RQUE
Step 4 of proof.
Return to first approach using new choice of automorphic form.
Insert spectral expansion of ϕj ϕ̃j ∈ L2(Γ\SL2(R)):∫

C
ϕj(z)ϕ̃j(z)ψm(z) ds

= 1
vol(Γ\H)

∫
Γ\SL2(R)

ϕj(z)ϕ̃j(z) dµ(z)
∫

C
ψm(z) ds

+
∑
f ∈B

⟨ϕj ϕ̃j , f ⟩
∫

C
f (z)ψm(z) ds.

Via construction of ϕ̃j ,
∫
ϕj ϕ̃j dµ ∼ 1; gives expected main term.

Remains to show that∑
f ∈B

⟨ϕj ϕ̃j , f ⟩
∫

C
f (z)ψm(z) ds = o(1).
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Proof of RQUE
Step 5 of proof.
Again take absolute values and apply period formulæ to relate to
L-functions:

Watson–Ichino for ⟨ϕj ϕ̃j , f ⟩;
Waldspurger for

∫
C f ψm ds.

Still lossy; wastes oscillations of sign of ⟨|ϕj |2, f ⟩ and
∫

C f ψm ds.
Key trick: replacing ϕj with ϕ̃j gives same L-functions but different
archimedean weight. Delicate analysis shows that archimedean
weight has much smaller support:

essentially the same as previously for tf = o(t1/2
j );

exponentially small for tf ≫ t1/2
j .

Eventually get the upper bound o(1).

Upshot
We win since spectral sum is sufficiently short.
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Period Integral Framework
Underlying strong Gelfand formation:

G

H1 H2

H0

(G ,H1), (G ,H2), (H1,H0), (H2,H0) are each strong Gelfand pairs.
1 Take automorphic form Φ on G , restrict to H0, and integrate

against an automorphic form ϕ0 on H0;
2 On the one hand, expand on H1 via Parseval, yielding∑

ϕ1⟨Φ, ϕ1⟩⟨ϕ1, ϕ0⟩;
3 On the other hand, expand on H2 via Parseval, yielding∑

ϕ2⟨Φ, ϕ2⟩⟨ϕ2, ϕ0⟩.
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Period Integral Framework
Underlying strong Gelfand formation:

GL2 × GL2

ResE/Q GL1 × ResE/Q GL1 GL2

ResE/Q GL1

1 Take automorphic forms φ1, φ2 in an automorphic
representation Π on Z(AQ)GL2(Q)\GL2(AQ), restrict to
A×
QE×\A×

E , and integrate against a Hecke character Ω on
A×
QE×\A×

E :∫
C
ϕj(z)ϕ̃j(z)ψm(z) ds =

∫
A×
Q E×\A×

E

φ1(x)φ2(x)Ω(x) d×x .
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Period Integral Framework
2 On the one hand, expand on ResE/Q GL1 × ResE/Q GL1 via

Parseval, yielding
∞∑

n=−∞

∫
C
ϕj(z)ψm+n(z) ds

∫
C
ϕ̃j(z)ψn(z) ds

=
∑

Ω′∈ ̂A×
Q E×\A×

E

∫
A×
Q E×\A×

E

φ1(x)ΩΩ′(x) d×x
∫

A×
Q E×\A×

E

φ2(x)Ω′(x) d×x

=
∑

Ω′∈ ̂A×
Q E×\A×

E

L
(

1
2 ,Π ⊗ ΩΩ′

)1/2
L
(

1
2 , Π̃ ⊗ Ω′−1

)1/2

L(1, ad Π) α(Ω′).

Weight function α(Ω′) explicitly determined in terms of choice
of data of φ1, φ2 (i.e. local Whittaker functions).

Proof uses uniqueness of linear functionals:

dim HomA×
E

(Π,Ω−1Ω′−1) = 1, dim HomA×
E

(Π̃,Ω′) = 1.
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Period Integral Framework
3 On the other hand, expand on GL2 via Parseval, yielding∑

f ∈B
⟨ϕj ϕ̃j , f ⟩

∫
C

f (z)ψm(z) ds

=
∑
π

∑
ϕ∈B(π)

∫
Z(AQ)GL2(Q)\GL2(AQ)

φ1(h)φ2(h)ϕ(h) dh

×
∫

A×
Q E×\A×

E

ϕ(x)Ω(x) d×x

=
∑
π

L
(

1
2 ,Π ⊗ Π̃ ⊗ π̃

)1/2
L
(

1
2 , π ⊗ Ω

)1/2

L(1, ad Π)2L(1, adπ) β(π).

Weight function β(π) explicitly determined in terms of of
choice of data of φ1, φ2 (i.e. local Whittaker functions).

Proof uses uniqueness of trilinear and linear functionals:
dim HomGL2(AQ)(Π ⊗ Π̃, π) = 1, dim HomA×

E
(π,Ω−1) = 1.
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Period Integral Framework

4 To prove RQUE:
(i) Take φ1, φ2 to be the adèlic lifts of ϕj , ϕ̃j ,

Ω to be the adèlic lift of ψm;
(ii) Using expansion on ResE/Q GL1 × ResE/Q GL1, show that

choice of φ2 ensures that α(Ω′) localises to bulk range, so that
this expansion closely approximates that of

∫
C |ϕj |2ψm ds

(easy);
(iii) Using expansion on GL2, show that β(π) is small once

archimedean data of π is ≫ t1/2
j , so that this expansion gives

desired main term plus o(1) error term (hard).
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Thank you!
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