# Restricted Arithmetic Quantum Unique Ergodicity

Peter Humphries

May 15, 2024

Peter Humphries Restricted Arithmetic Quantum Unique Ergodicity

### The Eigenvalue Problem for the Laplacian

(M,g) compact *n*-dimensional Riemannian manifold; e.g. *n*-sphere

$$S^n = \left\{ (x_1, \ldots, x_{n+1}) \in \mathbb{R}^{n+1} : x_1^2 + \cdots + x_{n+1}^2 = n \right\}.$$

We study Laplacian eigenfunctions:  $L^2$ -normalised  $\phi \in L^2(M)$  satisfying

$$\Delta \phi = \lambda \phi,$$
  
 $\Delta := -\frac{1}{\sqrt{|\det g|}} \sum_{k,\ell=1}^{n} \frac{\partial}{\partial x_k} g^{k\ell} \sqrt{|\det g|} \frac{\partial}{\partial x_\ell}.$ 

The Laplacian eigenvalue of  $\phi$  is  $\lambda \in [0, \infty)$ . These functions form an orthonormal basis  $\{\phi_j\}$  of  $L^2(M)$  with  $\lambda_j \to \infty$  as  $j \to \infty$ .

On  $\mathbb{R}^n$ ,

$$\Delta = -\sum_{k=1}^{n} \frac{\partial^2}{\partial x_k^2}.$$

# Quantum Unique Ergodicity

Conjecture (Quantum Unique Ergodicity) For all  $\psi \in C_b(M)$ ,  $\lim_{j \to \infty} \int_M |\phi_j(x)|^2 \psi(x) \, d\operatorname{vol}(x) = \frac{1}{\operatorname{vol}(M)} \int_M \psi(x) \, d\operatorname{vol}(x).$ 

Equivalently,

$$\lim_{j\to\infty}\int_B |\phi_j(x)|^2 \, d\mathrm{vol}(x) = \frac{\mathrm{vol}(B)}{\mathrm{vol}(M)}$$

for every continuity set  $B \subseteq M$ .

This is QUE in *physical space*.

Baby version of a conjecture of Rudnick–Sarnak for *phase space* QUE involving microlocal lifts to  $S^*M$ .

#### Heuristic

L<sup>2</sup>-masses of Laplacian eigenfunctions spread out randomly.

Known results on QUE:

- False without negative curvature of *M*, even if geodesic flow on *M* is ergodic (Hassell);
- True for *almost all* eigenfunctions (Shnirelman, Colin de Verdière, Zelditch);
- Any weak-\* limit has positive entropy; cannot completely concentrate on a geodesic (Anantharaman);
- Any weak-\* limit gives positive measure to nonempty open sets (Dyatlov-Jin).

### Example: Modular Surface

Interesting setting for number theorists: Riemannian locally symmetric spaces  $M = \Gamma \setminus G/K$ ;

- G a Lie group,
- K a maximal compact subgroup of G,
- Γ a lattice in G.

Simplest interesting case:  $G = SL_2(\mathbb{R})$ , K = SO(2),  $\Gamma = SL_2(\mathbb{Z})$ .

•  $G/K \cong \mathbb{H}$ , the upper half-plane

$$\mathbb{H} = \{z = x + iy \in \mathbb{C} : y > 0\},\$$

•  $\Gamma \setminus G/K \cong \Gamma \setminus \mathbb{H}$ , the modular surface  $\Gamma \setminus \mathbb{H} = \left\{ z = x + iy \in \mathbb{H} : -\frac{1}{2} < x < \frac{1}{2}, \ x^2 + y^2 > 1 \right\},$ 

• Laplacian eigenfunctions are automorphic forms.

### Example: Modular Surface

- $\mathbb{H}$  is a negatively curved hyperbolic surface.
- $\Gamma \setminus \mathbb{H}$  inherits a hyperbolic metric from  $\mathbb{H}$ .

• The Laplacian is 
$$\Delta = -y^2 \left( rac{\partial^2}{\partial x^2} + rac{\partial^2}{\partial y^2} 
ight)$$
.

- The volume measure on  $\Gamma \setminus \mathbb{H}$  is  $d\mu(z) = \frac{dx \, dy}{y^2}$ ;  $\operatorname{vol}(\Gamma \setminus \mathbb{H}) = \frac{\pi}{3}$ .
- Nonconstant eigenfunctions of  $\Delta$  on  $\Gamma \setminus \mathbb{H}$  are *Maaß forms*  $\phi_j$  with Laplacian eigenvalue  $\lambda_j = 1/4 + t_j^2$ .
- The space of Maaß forms has an orthonormal basis  $\mathcal{B}_0$  consisting of Hecke–Maaß cusp forms.

### Example: Modular Surface



for

Theorem (Lindenstrauss (2006), Soundararajan (2010)) We have that

$$\lim_{j\to\infty}\int_{\Gamma\setminus\mathbb{H}}|\phi_j(z)|^2\psi(z)\,d\mu(z)=\frac{1}{\operatorname{vol}(\Gamma\setminus\mathbb{H})}\int_{\Gamma\setminus\mathbb{H}}\psi(z)\,d\mu(z)$$
  
all  $\psi\in C_b(\Gamma\setminus\mathbb{H}).$ 

Theorem (Lindenstrauss (2006), Soundararajan (2010)) We have that

$$\lim_{j\to\infty}\int_{B}|\phi_{j}(z)|^{2}\,d\mu(z)=\frac{\mathrm{vol}(B)}{\mathrm{vol}(\Gamma\backslash\mathbb{H})}$$

for every continuity set  $B \subseteq \Gamma \setminus \mathbb{H}$ .

# Effective QUE

Conjecture (Luo–Sarnak (1995)) As  $j \to \infty$ , we have that  $\sup_{B_R(w) \subset \Gamma \setminus \mathbb{H}} \left| \int_{B_R(w)} |\phi_j(z)|^2 \, d\mu(z) - \frac{\operatorname{vol}(B_R(w))}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \right| \ll_{\varepsilon} t_j^{-\frac{1}{2} + \varepsilon}.$ 

Conjecture is an effective form of QUE: (essentially) optimal bounds for the discrepancy.

Theorem (Watson (2002), Young (2016))

Conjecture is true assuming GLH.

#### Heuristic

GLH  $\iff$  central *L*-values  $L(\frac{1}{2}, \Pi)$  are essentially bounded.

#### Remark

 $\mathsf{GRH} \Longrightarrow \mathsf{GLH}.$ 

### Spectral Decomposition of $\Gamma \setminus \mathbb{H}$

 $L^2$ -spectral decomposition of  $\psi \in L^2(\Gamma ackslash \mathbb{H})$  is

$$\psi(z) = rac{\langle \psi, 1 
angle}{\mathrm{vol}(\Gamma ackslash \mathbb{H})} + \sum_{f \in \mathcal{B}_0} \langle \psi, f 
angle f(z).$$

• 
$$\langle g_1,g_2 \rangle \coloneqq \int_{\Gamma \setminus \mathbb{H}} g_1(z) \overline{g_2(z)} \, d\mu(z);$$

•  $\mathcal{B}_0$  orthonormal basis of Hecke–Maaß cusp forms f.

#### Remark

There is also a continuous spectrum involving Eisenstein series, which we ignore for ease of exposition.

## Idea of Proof of Effective QUE

Take  $\psi = \mathbf{1}_{B_R(w)}$  in spectral expansion, multiply by  $|\phi_j|^2$ , and integrate over  $\Gamma \setminus \mathbb{H}$ :

$$\begin{split} \sup_{B_R(w)\subset\Gamma\backslash\mathbb{H}} \left| \int_{B_R(w)} |\phi_j(z)|^2 \, d\mu(z) - \frac{\operatorname{vol}(B_R(w))}{\operatorname{vol}(\Gamma\backslash\mathbb{H})} \right| \\ &= \sup_{B_R(w)\subset\Gamma\backslash\mathbb{H}} \left| \sum_{f\in\mathcal{B}_0} \langle |\phi_j|^2, f \rangle \langle f, 1_{B_R(w)} \rangle \right|. \end{split}$$

Need to bound RHS.

Strategy: take absolute values and bound each term.

- Good (averaged) bounds for  $\langle f, 1_{B_R(w)} \rangle$  known via local Weyl law and properties of Selberg–Harish-Chandra transform;
- Can relate triple product  $\langle |\phi_j|^2, f \rangle$  to *L*-functions.

#### Upshot

Problem reduces to knowing good bounds for L-functions.

# Triple Product Formula

Proposition (Watson (2002), Ichino (2008))  
We have that  

$$\left|\left\langle |\phi_j|^2, f \right\rangle\right|^2 \approx \frac{L\left(\frac{1}{2}, \operatorname{ad} \phi_j \otimes f\right) L\left(\frac{1}{2}, f\right)}{L(1, \operatorname{ad} \phi_j)^2 L(1, \operatorname{ad} f)}$$
  
 $\times \begin{cases} \text{mild polynomial decay} & \text{if } t_f \leq 2t_j, \\ exponential decay} & \text{if } t_f > 2t_j. \end{cases}$ 

#### Remark

Gan–Gross–Prasad for (SO(4), SO(3)):  $\mathfrak{so}_4 \cong \mathfrak{sl}_2 \oplus \mathfrak{sl}_2$ ,  $\mathfrak{so}_3 \cong \mathfrak{sl}_2$ .

Assuming GLH, ratio of *L*-functions is essentially bounded. Exponential decay means  $\sum_{f \in B_0}$  can be truncated to  $t_f \leq 2t_j$ .

#### Upshot

Yields Luo–Sarnak conjecture assuming GLH: effective QUE with (essentially) optimal error term.

Refinements of QUE beyond effective bounds for the discrepancy:

- Small-scale QUE: how fast can *R* shrink as *t<sub>j</sub>* grows for QUE to hold on *B<sub>R</sub>(w)*?
  - Young (2016):  $R \gg t_j^{-1/3}$  under GLH.
  - H. (2018):  $R \gg t_i^{-1}$  for a.e.  $w \in \Gamma \setminus \mathbb{H}$  under GLH.
- Restricted QUE: does QUE hold when restricted to a submanifold?
  - Toth–Zelditch (2013), Dyatlov–Zworski (2013): RQE holds for negatively curved *M* and generic hypersurface Σ for almost all eigenfunctions.
  - Young (2016, 2018): RQUE holds for Eisenstein series restricted to vertical geodesics.
  - Hu (2020): a version of RQUE holds in the level (depth) aspect for Hecke-Maaß cusp forms.

### Theorem (H. (2024+))

Fix a closed geodesic  $C \subset \Gamma \setminus \mathbb{H}$ . Assume GLH. For  $\phi_j \in \mathcal{B}_0$ ,

$$\lim_{j\to\infty}\int_{\mathcal{C}}|\phi_j(z)|^2\psi(z)\,ds=\frac{1}{\operatorname{vol}(\Gamma\backslash\mathbb{H})}\int_{\mathcal{C}}\psi(z)\,ds$$
for all  $\psi\in C(\mathcal{C}).$ 

Proof is effective and gives bounds for the discrepancy:

$$\sup_{I\subseteq \mathcal{C}} \left| \int_{I} |\phi_j(z)|^2 \, ds - \frac{\ell(I)}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \right| \ll t_j^{-\delta}.$$

Maybe  $\delta = 1/4$  is plausible.

Optimal bound is  $\delta = 1/2$ ; currently seems out of reach.

- Proof does not use ergodic theory; instead uses period integrals of automorphic forms.
- Need to assume Laplacian eigenfunctions are Hecke eigenfunctions.
- Requirement of GLH could be weakened;
  - need strong bounds for certain fractional moments of *L*-functions that imply hybrid subconvexity.
- Method works for Hecke–Maaß cusp forms on other congruence subgroups, including compact quotients.
- Method works for vertical geodesics from a rational point  $x \in \mathbb{Q}$  to  $i\infty$ 
  - conditional partial resolution of a conjecture of Young (2018).
- Method might (?) work for other arithmetic submanifolds:
  - horocycles;
  - geodesic circles centred at Heegner points.

### Geodesics on $\Gamma \backslash \mathbb{H}$



### Closed Geodesics on $\Gamma \setminus \mathbb{H}$



Key properties of closed geodesics:

- Bijective correspondence with narrow ideal classes of real quadratic number fields  $\mathbb{Q}(\sqrt{D})$  (*arithmetic* submanifold)
- Length is  $2 \log \epsilon$ , where  $\epsilon$  is the fundamental unit of  $\mathbb{Q}(\sqrt{D})$ .
- Infinitely many closed geodesics.
- Union of all closed geodesics is dense in  $\Gamma \setminus \mathbb{H}$ .
- Topologically equivalent to a circle.
- Period integrals of automorphic forms on closed geodesics are related to *L*-functions (Waldspurger's formula).

For the proof, we assume for ease of exposition that  $h_D^+ = 1$ .

### Reduction of RQUE

Closed geodesic  $\ensuremath{\mathcal{C}}$  is topologically a circle.

Weyl equidistribution criterion: suffices to show for each  $m \in \mathbb{Z}$ ,

$$\begin{split} \lim_{j \to \infty} \int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds &= \frac{1}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \int_{\mathcal{C}} \psi_m(z) \, ds \\ &= \begin{cases} \frac{\ell(\mathcal{C})}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} & \text{if } m = 0, \\ 0 & \text{otherwise.} \end{cases} \end{split}$$

Here  $\psi_m(\theta) = e^{2\pi i m \theta}$ .

#### Remark

For discrepancy bounds, additionally need explicit rate of decay for  $\int_{\mathcal{C}} |\phi_j|^2 \psi_m \, ds$  in both  $t_j$  and m.

## First Approach to RQUE

#### Idea 1 of Proof.

Insert spectral expansion of  $|\phi_j|^2 \in L^2(\Gamma \setminus \mathbb{H})$ :

$$egin{aligned} &\int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds = rac{1}{ ext{vol}(\Gamma ackslash \mathbb{H})} \int_{\mathcal{C}} \psi_m(z) \, ds \ &+ \sum_{f \in \mathcal{B}_0} \langle |\phi_j|^2, f 
angle \int_{\mathcal{C}} f(z) \psi_m(z) \, ds. \end{aligned}$$

First term is desired main term.

Need to show second term is small.

Watson–Ichino and GLH imply  $\langle |\phi_j|^2, f \rangle$  has mild polynomial decay if  $t_f \leq 2t_j$  and exponential decay if  $t_f > 2t_j$ .

For  $\int_{\mathcal{C}} f \psi_m ds$ , apply Waldspurger's formula to relate to *L*-functions.

## Waldspurger's Formula

Proposition (Waldspurger (1985))

We have that

$$\begin{split} \left| \int_{\mathcal{C}} f(z) \psi_m(z) \, ds \right|^2 &\approx \frac{L\left(\frac{1}{2}, f \otimes \Theta_{\psi_m}\right)}{L(1, \operatorname{ad} f)} \\ &\times \begin{cases} \text{mild polynomial decay} & \text{if } |m| \leq t_f, \\ \text{exponential decay} & \text{if } |m| > t_f. \end{cases} \end{split}$$

#### Remark

Gan–Gross–Prasad for (SO(3), SO(2)):  $\mathfrak{so}_3 \cong \mathfrak{sl}_2$ .

 $\Theta_{\psi_m}$  is a dihedral Maaß form of spectral parameter  $\frac{2\pi |m|}{\ell(C)}$ : automorphic induction of the Hecke character  $\psi_m$ .

Assuming GLH, ratio of L-functions on RHS is essentially bounded.

# First Approach to RQUE

Idea 1 of Proof (cont'd).

Want to show that as  $j 
ightarrow \infty$ ,

$$\sum_{f\in\mathcal{B}_0}\langle |\phi_j|^2,f
angle\int_{\mathcal{C}}f(z)\psi_m(z)\,ds=o(1).$$

- Take absolute values;
- Apply Watson-Ichino and Waldspurger;
- Truncate sum to t<sub>f</sub> ≤ 2t<sub>j</sub>, bound each term assuming GLH, and sum via Weyl law.

Eventually get the upper bound  $O(t_i^{1/2})$ .

Much too big!

- Lossy since taking absolute values wastes oscillations of sign of  $\langle |\phi_j|^2, f \rangle$  and  $\int_{\mathcal{C}} f \psi_m \, ds$ .
- After taking absolute values, spectral sum is too long; need to be able to truncate to  $t_f = o(t_i^{1/2})$ .

### Second Approach to RQUE

#### Idea 2 of Proof.

• Use Parseval for  $L^2(\mathcal{C})$ :

$$\int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds = \sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_j(z) \psi_{m+n}(z) \, ds \overline{\int_{\mathcal{C}} \phi_j(z) \psi_n(z) \, ds}.$$

• Uses the fact that 
$$\psi_m(z)\psi_n(z) = \psi_{m+n}(z)$$
 since  $e^{2\pi i m \theta} e^{2\pi i n \theta} = e^{2\pi i (m+n)\theta}$ .

- Take absolute values and apply Waldspurger.
- Truncate sum to |n| ≤ t<sub>j</sub>, bound each term assuming GLH, and sum.

Eventually get the upper bound O(1).

Better, but still not quite good enough.

Method cannot even extract a main term when m = 0!

# Second Approach to RQUE

Second approach can be used to prove good bounds for  $L^2\mbox{-}{\rm restriction}$  problem.

Theorem (Ali (2022))

Unconditionally,

$$\int_{\mathcal{C}} |\phi_j(z)|^2 \, ds \ll_{arepsilon} t_j^{2artheta+arepsilon},$$

where  $\vartheta = \frac{7}{64}$  is the best known exponent towards the Ramanujan conjecture.

#### Remark

For arbitrary (nonarithmetic) compact manifolds, instead get  $\ll t_j^{1/2}$  (Burq–Gérard–Tzvetkov).

Method below gives correct asymptotic  $\int_{\mathcal{C}} |\phi_j|^2 ds \sim \frac{\ell(\mathcal{C})}{\operatorname{vol}(\Gamma \setminus \mathbb{H})}$  under the assumption of GLH.

Second approach barely fails: O(1) instead of  $\frac{1}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \int_{\mathcal{C}} \psi_m \, ds + o(1).$ 

First key idea: determine how to extract a main term from

$$\int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds = \sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_j(z) \psi_{m+n}(z) \, ds \overline{\int_{\mathcal{C}} \phi_j(z) \psi_n(z) \, ds}.$$

#### Step 1 of proof.

Break up above sum into ranges.

By Waldspurger and GLH, **bulk range** is when |n| is close to  $t_j$  (i.e.  $t_j^{1-\delta} \le |n| \le t_j - t_j^{1-2\delta}$ ,  $\delta > 0$  small).

Remaining terms contribute o(1).

Second key idea: modify the Hecke–Maaß cusp form  $\phi_j$  in this period integral of automorphic forms.

Step 2 of proof.

Construct an automorphic form  $\phi_j : \Gamma \setminus SL_2(\mathbb{R}) \to \mathbb{C}$  that closely approximates  $\phi_j$  along  $\mathcal{C}$  (but not necessarily elsewhere in  $\Gamma \setminus \mathbb{H}$ );

•  $\phi_j$  constructed such that for *n* in the bulk range,

$$\int_{\mathcal{C}} \phi_j(z) \psi_n(z) \, ds \sim \int_{\mathcal{C}} \widetilde{\phi_j}(z) \psi_n(z) \, ds.$$

• For *n* outside the bulk range,  $\int_{\mathcal{C}} \widetilde{\phi_j} \psi_n \, ds$  is exponentially small (whereas  $\int_{\mathcal{C}} \phi_j \psi_n \, ds$  is only polynomially small).

#### Step 3 of proof.

Use Parseval for  $L^2(\mathcal{C})$  to write

$$\int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds = \sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_j(z) \psi_{m+n}(z) \, ds \overline{\int_{\mathcal{C}} \phi_j(z) \psi_n(z) \, ds},$$
$$\int_{\mathcal{C}} \phi_j(z) \overline{\widetilde{\phi_j}(z)} \psi_m(z) \, ds = \sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_j(z) \psi_{m+n}(z) \, ds \overline{\int_{\mathcal{C}} \widetilde{\phi_j}(z) \psi_n(z) \, ds}.$$

Expansions essentially equal for n in the bulk range. Both expansions negligibly small for n outside the bulk range.

#### Upshot

$$\int_{\mathcal{C}} |\phi_j(z)|^2 \psi_m(z) \, ds = \int_{\mathcal{C}} \phi_j(z) \overline{\widetilde{\phi_j}(z)} \psi_m(z) \, ds + o(1).$$

#### Step 4 of proof.

Return to first approach using new choice of automorphic form. Insert spectral expansion of  $\phi_j \overline{\phi_j} \in L^2(\Gamma \setminus SL_2(\mathbb{R}))$ :

$$\begin{split} \int_{\mathcal{C}} \phi_j(z) \overline{\widetilde{\phi_j}(z)} \psi_m(z) \, ds \\ &= \frac{1}{\operatorname{vol}(\Gamma \setminus \mathbb{H})} \int_{\Gamma \setminus \operatorname{SL}_2(\mathbb{R})} \phi_j(z) \overline{\widetilde{\phi_j}(z)} \, d\mu(z) \int_{\mathcal{C}} \psi_m(z) \, ds \\ &+ \sum_{f \in \mathcal{B}} \langle \phi_j \overline{\widetilde{\phi_j}}, f \rangle \int_{\mathcal{C}} f(z) \psi_m(z) \, ds. \end{split}$$

Via construction of  $\tilde{\phi}_j$ ,  $\int \phi_j \overline{\tilde{\phi}_j} d\mu \sim 1$ ; gives expected main term. Remains to show that

$$\sum_{f\in\mathcal{B}}\langle \phi_j\widetilde{\phi_j},f
angle\int_{\mathcal{C}}f(z)\psi_m(z)\,ds=o(1).$$

### Step 5 of proof.

Again take absolute values and apply period formulæ to relate to L-functions:

- Watson–Ichino for  $\langle \phi_j \widetilde{\phi_j}, f \rangle$ ;
- Waldspurger for  $\int_{\mathcal{C}} f \psi_m \, ds$ .

Still lossy; wastes oscillations of sign of  $\langle |\phi_j|^2, f \rangle$  and  $\int_{\mathcal{C}} f \psi_m \, ds$ .

Key trick: replacing  $\phi_j$  with  $\tilde{\phi}_j$  gives same *L*-functions but different archimedean weight. Delicate analysis shows that archimedean weight has much smaller support:

- essentially the same as previously for  $t_f = o(t_i^{1/2})$ ;
- exponentially small for  $t_f \gg t_i^{1/2}$ .

Eventually get the upper bound o(1).

#### Upshot

We win since spectral sum is sufficiently short.

Underlying strong Gelfand formation:



- $(G, H_1), (G, H_2), (H_1, H_0), (H_2, H_0)$  are each strong Gelfand pairs.
  - Take automorphic form  $\Phi$  on G, restrict to  $H_0$ , and integrate against an automorphic form  $\phi_0$  on  $H_0$ ;
  - **2** On the one hand, expand on  $H_1$  via Parseval, yielding  $\sum_{\phi_1} \langle \Phi, \phi_1 \rangle \langle \phi_1, \phi_0 \rangle$ ;
  - **3** On the other hand, expand on  $H_2$  via Parseval, yielding  $\sum_{\phi_2} \langle \Phi, \phi_2 \rangle \langle \phi_2, \phi_0 \rangle$ .

Underlying strong Gelfand formation:



• Take automorphic forms  $\varphi_1, \varphi_2$  in an automorphic representation  $\Pi$  on  $Z(\mathbb{A}_{\mathbb{Q}})GL_2(\mathbb{Q})\backslash GL_2(\mathbb{A}_{\mathbb{Q}})$ , restrict to  $\mathbb{A}_{\mathbb{Q}}^{\times}E^{\times}\backslash\mathbb{A}_{E}^{\times}$ , and integrate against a Hecke character  $\Omega$  on  $\mathbb{A}_{\mathbb{Q}}^{\times}E^{\times}\backslash\mathbb{A}_{E}^{\times}$ :  $\int_{\mathcal{C}} \phi_j(z)\overline{\phi_j(z)}\psi_m(z) \, ds = \int_{\mathbb{A}_{\mathbb{Q}}^{\times}E^{\times}\backslash\mathbb{A}_{E}^{\times}} \varphi_1(x)\overline{\varphi_2(x)}\Omega(x) \, d^{\times}x.$ 

② On the one hand, expand on  ${\rm Res}_{E/\mathbb{Q}}\operatorname{GL}_1\times {\rm Res}_{E/\mathbb{Q}}\operatorname{GL}_1$  via Parseval, yielding

$$\sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_j(z) \psi_{m+n}(z) \, ds \overline{\int_{\mathcal{C}} \widetilde{\phi_j}(z) \psi_n(z) \, ds}$$
  
= 
$$\sum_{\Omega' \in \mathbb{A}_{\mathbb{Q}}^{\times} \widehat{E^{\times} \setminus \mathbb{A}_E^{\times}}} \int_{\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \setminus \mathbb{A}_E^{\times}} \varphi_1(x) \Omega \Omega'(x) \, d^{\times}x \overline{\int_{\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \setminus \mathbb{A}_E^{\times}}} \varphi_2(x) \Omega'(x) \, d^{\times}x}$$
  
= 
$$\sum_{\Omega' \in \mathbb{A}_{\mathbb{Q}}^{\times} \widehat{E^{\times} \setminus \mathbb{A}_E^{\times}}} \frac{L\left(\frac{1}{2}, \Pi \otimes \Omega \Omega'\right)^{1/2} L\left(\frac{1}{2}, \widetilde{\Pi} \otimes \Omega'^{-1}\right)^{1/2}}{L(1, \text{ad } \Pi)} \alpha(\Omega').$$

Weight function  $\alpha(\Omega')$  explicitly determined in terms of choice of data of  $\varphi_1, \varphi_2$  (i.e. local Whittaker functions).

• Proof uses uniqueness of linear functionals:

$$\dim \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}(\Pi, \Omega^{-1}{\Omega'}^{-1}) = 1, \qquad \dim \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}(\widetilde{\Pi}, \Omega') = 1.$$

 ${f 0}$  On the other hand, expand on  ${
m GL}_2$  via Parseval, yielding

$$\begin{split} \sum_{f \in \mathcal{B}} \langle \phi_j \overline{\widetilde{\phi_j}}, f \rangle & \int_{\mathcal{C}} f(z) \psi_m(z) \, ds \\ &= \sum_{\pi} \sum_{\phi \in \mathcal{B}(\pi)} \int_{Z(\mathbb{A}_{\mathbb{Q}}) \operatorname{GL}_2(\mathbb{Q}) \setminus \operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})} \varphi_1(h) \overline{\varphi_2(h)\phi(h)} \, dh \\ & \times \int_{\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \setminus \mathbb{A}_E^{\times}} \phi(x) \Omega(x) \, d^{\times}x \\ &= \sum_{\pi} \frac{L\left(\frac{1}{2}, \Pi \otimes \widetilde{\Pi} \otimes \widetilde{\pi}\right)^{1/2} L\left(\frac{1}{2}, \pi \otimes \Omega\right)^{1/2}}{L(1, \operatorname{ad} \Pi)^2 L(1, \operatorname{ad} \pi)} \beta(\pi). \end{split}$$

Weight function  $\beta(\pi)$  explicitly determined in terms of of choice of data of  $\varphi_1, \varphi_2$  (i.e. local Whittaker functions).

• Proof uses uniqueness of trilinear and linear functionals:

$$\dim \operatorname{Hom}_{\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})}(\Pi \otimes \widetilde{\Pi}, \pi) = 1, \quad \dim \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}(\pi, \Omega^{-1}) = 1.$$

### To prove RQUE:

- (i) Take  $\varphi_1, \varphi_2$  to be the adèlic lifts of  $\phi_j, \phi_j$ ,  $\Omega$  to be the adèlic lift of  $\psi_m$ ;
- (ii) Using expansion on  $\operatorname{Res}_{E/\mathbb{Q}} \operatorname{GL}_1 \times \operatorname{Res}_{E/\mathbb{Q}} \operatorname{GL}_1$ , show that choice of  $\varphi_2$  ensures that  $\alpha(\Omega')$  localises to bulk range, so that this expansion closely approximates that of  $\int_{\mathcal{C}} |\phi_j|^2 \psi_m \, ds$  (easy);
- (iii) Using expansion on GL<sub>2</sub>, show that  $\beta(\pi)$  is small once archimedean data of  $\pi$  is  $\gg t_j^{1/2}$ , so that this expansion gives desired main term plus o(1) error term (hard).

# Thank you!