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The Eigenvalue Problem for the Laplacian

(M, g) compact n-dimensional Riemannian manifold; e.g. n-sphere
5”: {(X177Xn+1) ER”+1 X]?++X§+]_ — n}'

We study Laplacian eigenfunctions:
L2-normalised ¢ € L?(M) satisfying

Ap = Ao,
A=— Z etg\i.
V/ detg = 18X Ox¢

The Laplacian eigenvalue of ¢ is A € [0, 00).
These functions form an orthonormal basis {¢;} of L2(M) with
Aj — 00 as j — oo.

On R",
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Quantum Unique Ergodicity

Conjecture (Quantum Unique Ergodicity)
For all ¢ € Cp(M),

lim [ 16;(x)/2u(x) dvol(x

J—00

x) dvol(x

Equivalently,
_ vol(B)
Jim [ 16007 dvol(x) = TS

for every continuity set B C M.

This is QUE in physical space.

Baby version of a conjecture of Rudnick—Sarnak for phase space
QUE involving microlocal lifts to S*M

Heuristic

L%-masses of Laplacian eigenfunctions spread out randomly.
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Quantum Unique Ergodicity

Known results on QUE:

o False without negative curvature of M, even if geodesic flow
on M is ergodic (Hassell);

@ True for almost all eigenfunctions (Shnirelman, Colin de
Verdiere, Zelditch);

@ Any weak-* limit has positive entropy; cannot completely
concentrate on a geodesic (Anantharaman);

@ Any weak-* limit gives positive measure to nonempty open
sets (Dyatlov—Jin).
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Example: Modular Surface

Interesting setting for number theorists:
Riemannian locally symmetric spaces M =T\ G/K;

e G a Lie group,
@ K a maximal compact subgroup of G,
o [ alattice in G.

Simplest interesting case: G = SLy(R), K = SO(2), I = SLx(Z).
e G/K = H, the upper half-plane
H={z=x+iyecC:y >0},

e N\G/K = N\H, the modular surface

1 1
F\I[-]I:{z:x—i-iyeIHI:—2<X<27 x2+y2>1},

@ Laplacian eigenfunctions are automorphic forms.
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Example: Modular Surface

e H is a negatively curved hyperbolic surface.

M\H inherits a hyperbolic metric from H.

, [ #? 9
The Laplacian is A = — —+ =
e Laplacian is y (8)(2 + (9)/2)

The volume measure on MN\H is du(z) = d);fy; vol(M\H) = %.

Nonconstant eigenfunctions of A on IN'\H are MaaB forms ¢;
with Laplacian eigenvalue \; =1/4 + tJ-2.

The space of MaaB forms has an orthonormal basis By
consisting of Hecke—MaaB cusp forms.
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Example: Modular Surface
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Quantum Unique Ergodicity for N'\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

im [ 16i(2)Pb(z) dulz) = —~

j—oo JI\H _W F\HQIZ)(Z) d,LL(Z)

for all 1 € Cp(M\H).
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Quantum Unique Ergodicity for N'\H

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

) _ vol(B)
Jim [ 16/ du@) = e

for every continuity set B C I'\H.
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Effective QUE

Conjecture (Luo—Sarnak (1995))
As j — 0o, we have that

1
_7+€
su 7 2
BR(W)CF\H

. _ vol(Bgr(w))
/B |61 du(z) — ‘

Conjecture is an effective form of QUE:
(essentially) optimal bounds for the discrepancy.

Theorem (Watson (2002), Young (2016))

Conjecture is true assuming GLH.

Heuristic

GLH <= central L-values L(3,TT) are essentially bounded.

Remark
GRH = GLH.
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Spectral Decomposition of '\H

L2-spectral decomposition of 1 € L2(M'\H) is

Wz = Vol F\H + 2w

feBy

° (g1.82) = | &i(2)e2) dn(e)

@ By orthonormal basis of Hecke—MaaB cusp forms f.

Remark

There is also a continuous spectrum involving Eisenstein series,
which we ignore for ease of exposition.
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Idea of Proof of Effective QUE

Take ) = 1g,(,) in spectral expansion, multiply by |¢;]2, and
integrate over MN\H:

vol(Br(w))
sup / 6i(2)?du(z) — ——22 -2
Br(w)CM\H BR(W)‘ ) (=) vol(M\H)
= sup (5%, F)(F, LBa(w))| -
Br(w)CM\H f;‘o ’ r(w)

Need to bound RHS.

Strategy: take absolute values and bound each term.

@ Good (averaged) bounds for (f,1g,,)) known via local Weyl
law and properties of Selberg—Harish-Chandra transform;
o Can relate triple product (|¢;|2, f) to L-functions.

Upshot
Problem reduces to knowing good bounds for L-functions. J
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Triple Product Formula

Proposition (Watson (2002), Ichino (2008))
We have that
o f>‘2 L (3.adg;@f)L(3,7)
I L(1,ad ¢;)2L(1,ad f)
mild polynomial decay if tr < 2t;,
x {exponentia/ decay if tr > 2t;.

Remark
Gan—Gross—Prasad for (SO(4),SO(3)): soa = sly @ slp, s03 = slp.

Assuming GLH, ratio of L-functions is essentially bounded.
Exponential decay means > ¢, can be truncated to tr < 2t;.

Upshot

Yields Luo—Sarnak conjecture assuming GLH:
effective QUE with (essentially) optimal error term.
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Refinements of QUE

Refinements of QUE beyond effective bounds for the discrepancy:

@ Small-scale QUE: how fast can R shrink as t; grows for QUE
to hold on Bg(w)?

e Young (2016): R > tj_1/3 under GLH.
o H. (2018): R> tj_l for a.e. w € MNH under GLH.
@ Restricted QUE: does QUE hold when restricted to a
submanifold?

o Toth—Zelditch (2013), Dyatlov—Zworski (2013):
RQE holds for negatively curved M and generic hypersurface ¥
for almost all eigenfunctions.

e Young (2016, 2018): RQUE holds for Eisenstein series
restricted to vertical geodesics.

e Hu (2020): a version of RQUE holds in the level (depth)
aspect for Hecke—MaaB cusp forms.
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Restricted Arithmetic Quantum Unique Ergodicity for '\ H

Theorem (H. (2024+))
Fix a closed geodesic C C T'\H. Assume GLH. For ¢; € By,

im /|¢J iz = ol( F\]HI /¢
for all ¢ € C(C).

Proof is effective and gives bounds for the discrepancy:

?gg ‘/I|¢j(z)|2 ds — voli(r%lﬂ)‘

Maybe 6 = 1/4 is plausible.

-4
<< tJ .

Optimal bound is § = 1/2; currently seems out of reach.
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Remarks on the Method

Proof does not use ergodic theory;
instead uses period integrals of automorphic forms.
Need to assume Laplacian eigenfunctions are Hecke
eigenfunctions.
Requirement of GLH could be weakened;

e need strong bounds for certain fractional moments of

L-functions that imply hybrid subconvexity.

Method works for Hecke—MaaB cusp forms on other
congruence subgroups, including compact quotients.

Method works for vertical geodesics from a rational point
x € Q to ico

e conditional partial resolution of a conjecture of Young (2018).
Method might (?) work for other arithmetic submanifolds:

e horocycles;
e geodesic circles centred at Heegner points.
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Geodesics on M\ H
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Closed Geodesics on N\ H

:
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Closed Geodesics on N\ H

Key properties of closed geodesics:

@ Bijective correspondence with narrow ideal classes of real
quadratic number fields Q(v/D) (arithmetic submanifold)

Length is 2log e, where € is the fundamental unit of Q(v/D).
Infinitely many closed geodesics.
Union of all closed geodesics is dense in '\ H.

Topologically equivalent to a circle.

Period integrals of automorphic forms on closed geodesics are

related to L-functions (Waldspurger's formula).

For the proof, we assume for ease of exposition that hg =1
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Reduction of RQUE

Closed geodesic C is topologically a circle.

Weyl equidistribution criterion: suffices to show for each m € Z,

Jim [ 10,200z ds = s [ e

( ) _
_ ) v Tm=0

0 otherwise.

Here ¢,(0) = e2™m".

Remark

For discrepancy bounds, additionally need explicit rate of decay for
Jo |6j|*1m ds in both t; and m.
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First Approach to RQUE

Idea 1 of Proof.
Insert spectral expansion of |¢;|? € L2(M'\H):

1
o on(z) e = iy [ i) s
+ S (6P ) /C F(2)ihm(z) ds.

feBy

First term is desired main term.
Need to show second term is small.

Watson—Ichino and GLH imply {|¢;|2, f) has mild polynomial decay
if tr < 2t; and exponential decay if tf > 2t;.

For [, fim ds, apply Waldspurger's formula to relate to
L-functions.
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Waldspurger's Formula

Proposition (Waldspurger (1985))
We have that

> L(%,f@@wm)

f m(z) d:
‘/c G L(1,ad f)
mild polynomial decay if |m| < tf,
X
exponential decay if |[m| > tf.
Remark

Gan—Gross—Prasad for (SO(3),SO(2)): so3 = sl.

©y,, is a dihedral MaaB form of spectral parameter ey
automorphic induction of the Hecke character ¥p,.

Assuming GLH, ratio of L-functions on RHS is essentially bounded.
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First Approach to RQUE

Idea 1 of Proof (cont'd).
Want to show that as j — oo,

S (165 F) [ F2)m(2) ds = o(D).

feBy
@ Take absolute values;

@ Apply Watson—Ichino and Waldspurger;

@ Truncate sum to tr < 2t;, bound each term assuming GLH,
and sum via Weyl law.

Eventually get the upper bound O(t 1/2) O

Much too big!

@ Lossy since taking absolute values wastes oscillations of sign
of (|¢;]2, f) and [. fipm ds.

o After taking absolute values, spectral sum is too long;
need to be able to truncate to tr = o(tl/z).
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Second Approach to RQUE

Idea 2 of Proof.
o Use Parseval for L?(C):

L@ ds = 3> [ 6@ 0men(z)ds [ ,(z00n(2) o

n=—0oo

o Uses the fact that ¢, (2)tn(2) = ¥Ymin(2) since
e27rim9e27rin9 — eZwi(m+n)9

@ Take absolute values and apply Waldspurger.

@ Truncate sum to |n| < t;, bound each term assuming GLH,
and sum.

Eventually get the upper bound O(1). O

Better, but still not quite good enough.

Method cannot even extract a main term when m = 0!
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Second Approach to RQUE

Second approach can be used to prove good bounds for
L2-restriction problem.

Theorem (Ali (2022))

Unconditionally,
2 29
L6 ds < 27+
where 9 = 67—4 is the best known exponent towards the Ramanujan
conjecture.
Remark

For arbitrary (nonarithmetic) compact manifolds, instead get
< tjl/z (Burg—Gérard—Tzvetkov).

Method below gives correct asymptotic |, ;]2 ds ~ % under
the assumption of GLH.
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Proof of RQUE

Second approach barely fails:
O(1) instead of m Jo¥mds + o(1).

First key idea: determine how to extract a main term from

[ 1) Ptz Z/¢, 2)imso(2) 05 | 04(2)0nlz

n=—0o0

Step 1 of proof.

Break up above sum into ranges.

By Waldspurger and GLH, bulk range is when |n| is close to t;
(i.e. t15<\n]<t 125(5>Osmall)

Remaining terms contribute o(1).
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Proof of RQUE

Second key idea: modify the Hecke-MaaB cusp form ¢; in this
period integral of automorphic forms.

Step 2 of proof.

Construct an automorphic form qgj : M\SLa(R) — C that closely
approximates ¢; along C (but not necessarily elsewhere in ['\H);

° ng constructed such that for n in the bulk range,
Lei@n(z)ds ~ [ 8(z00n(z) ds.

e For n outside the bulk range, |, @wn ds is exponentially small
(whereas [, ¢j1, ds is only polynomially small).
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Proof of RQUE

Step 3 of proof.

Use Parseval for L2(C) to write

/|¢J )P Ym(z Z /@(Z Yman(Z ds/ ¢j(2)Yn(2) ds,

| 6@z nz;/@ 2)imen(2) ds | 8(2)0z

Expansions essentially equal for n in the bulk range.
Both expansions negligibly small for n outside the bulk range.

Upshot
L161@P0m(z)ds = [ 63(2)62m(2) ds + o(1),
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Proof of RQUE

Step 4 of proof.
Return to first approach using new choice of automorphic form.

Insert spectral expansion of ¢j¢? € L2(T'\SLy(R)):

/gﬁl z)Ym(z) ds

1
= /r i G292 90(2) / () ds
+ 30650 0) [ (@onlz
feB

Via construction of <ZJ f¢j¢? du ~ 1; gives expected main term.

Remains to show that

S (¢, f) /C F(2)dm(z) ds = o(L).

feB
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Proof of RQUE

Step 5 of proof. |

Again take absolute values and apply period formula to relate to
L-functions:
e Watson-Ichino for (¢;¢;, f);

o Waldspurger for [, f1), ds.
Still lossy; wastes oscillations of sign of (|¢;|2, f) and [, fbm ds.

Key trick: replacing ¢; with ggj gives same L-functions but different
archimedean weight. Delicate analysis shows that archimedean
weight has much smaller support:

@ essentially the same as previously for tr = o(t-1/2);

J
@ exponentially small for tr > tjl/z.

OJ

Eventually get the upper bound o(1).

Upshot

We win since spectral sum is sufficiently short.
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Period Integral Framework

Underlying strong Gelfand formation:

/\
\/

(G, H1),(G, H), (H1, Ho), (H2, Ho) are each strong Gelfand pairs.
@ Take automorphic form ® on G, restrict to Hp, and integrate
against an automorphic form ¢g on Hp;
@ On the one hand, expand on Hj via Parseval, yielding

Do ( Py D1) (1, ¢o);
© On the other hand, expand on H, via Parseval, yielding

260 (®, 02) (92, o).
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Period Integral Framework

Underlying strong Gelfand formation:
GL2 X GL2

N

ResE/Q GLl X ResE/Q GL]_ GL2

N

RESE/Q GL]_

@ Take automorphic forms 1, w2 in an automorphic
representation 1 on Z(Ag)GL2(Q)\GL2(Ag), restrict to
A@EX\AX, and integrate against a Hecke character Q on

AZEX\AE:
Le@a@en@ds = [ ert0nt020) dx.

AZEX\AL
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Period Integral Framework

@ On the one hand, expand on Resg /g GL1 X Resg /g GLy via
Parseval, yielding

> [ @ min(2)ds [ 62)0(2) ds

— Z / 01(x)QQ (x) d*x / ©a(x)Q(x) d*x
Q’eAéEX\\AE AJEX\AL AJEX\AL

L(3ne QQ’)1/2 L(3Ne Q'—1)1/2
L(1,ad )

a().

Qerl EX\A]
Weight function «(") explicitly determined in terms of choice

of data of o1, @2 (i.e. local Whittaker functions).
e Proof uses uniqueness of linear functionals:

dimHom,(M,Q7'Q2 ") =1,  dimHom,«(N,Q) = 1.
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Period Integral Framework

© On the other hand, expand on GL; via Parseval, yielding

S (0565 ) [ F(2yim(z) ds

feB

=3 X / (W) 22(P)(H) b

T $EB(T) 7(4g)GLy(Q)\Cla(Ag)

<[ e

AZEX\AZ

L(anefes)” (L o)
[(T,ad M2L(1,ad )

™

Weight function () explicitly determined in terms of of
choice of data of ¢1, @2 (i.e. local Whittaker functions).
e Proof uses uniqueness of trilinear and linear functionals:

dim Homgr,(a0)(M® Nr)=1, dim HomA; (r, Q7Y = 1.
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Period Integral Framework

Q@ To prove RQUE:

(i) Take 1,5 to be the adglic lifts of ¢;, ¢;,
Q to be the adelic lift of ¥,;

(i) Using expansion on Resg,g GL1 x Resg g GL1, show that
choice of @, ensures that o) localises to bulk range, so that
this expansion closely approximates that of fc |6|%m ds
(easy);

(iii) Using expansion on GLo, show that S() is small once

1/2

archimedean data of 7 is > t;’", so that this expansion gives

desired main term plus o(1) error term (hard).
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Thank youl!
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