Restricted Arithmetic Quantum Unique Ergodicity

Peter Humphries

May 15, 2024

The Eigenvalue Problem for the Laplacian

(M, g) compact n-dimensional Riemannian manifold; e.g. n-sphere

$$
S^{n}=\left\{\left(x_{1}, \ldots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+\cdots+x_{n+1}^{2}=n\right\} .
$$

We study Laplacian eigenfunctions:
L^{2}-normalised $\phi \in L^{2}(M)$ satisfying

$$
\begin{aligned}
\Delta \phi & =\lambda \phi, \\
\Delta & :=-\frac{1}{\sqrt{|\operatorname{det} g|}} \sum_{k, \ell=1}^{n} \frac{\partial}{\partial x_{k}} g^{k \ell} \sqrt{|\operatorname{det} g|} \frac{\partial}{\partial x_{\ell}} .
\end{aligned}
$$

The Laplacian eigenvalue of ϕ is $\lambda \in[0, \infty)$.
These functions form an orthonormal basis $\left\{\phi_{j}\right\}$ of $L^{2}(M)$ with $\lambda_{j} \rightarrow \infty$ as $j \rightarrow \infty$.

On \mathbb{R}^{n},

$$
\Delta=-\sum_{k=1}^{n} \frac{\partial^{2}}{\partial x_{k}^{2}} .
$$

Quantum Unique Ergodicity

Conjecture (Quantum Unique Ergodicity)

For all $\psi \in C_{b}(M)$,

$$
\lim _{j \rightarrow \infty} \int_{M}\left|\phi_{j}(x)\right|^{2} \psi(x) d \operatorname{vol}(x)=\frac{1}{\operatorname{vol}(M)} \int_{M} \psi(x) d \operatorname{vol}(x)
$$

Equivalently,

$$
\lim _{j \rightarrow \infty} \int_{B}\left|\phi_{j}(x)\right|^{2} d \operatorname{vol}(x)=\frac{\operatorname{vol}(B)}{\operatorname{vol}(M)}
$$

for every continuity set $B \subseteq M$.

This is QUE in physical space.
Baby version of a conjecture of Rudnick-Sarnak for phase space QUE involving microlocal lifts to $S^{*} M$.

Heuristic

L^{2}-masses of Laplacian eigenfunctions spread out randomly.

Quantum Unique Ergodicity

Known results on QUE:

- False without negative curvature of M, even if geodesic flow on M is ergodic (Hassell);
- True for almost all eigenfunctions (Shnirelman, Colin de Verdière, Zelditch);
- Any weak-* limit has positive entropy; cannot completely concentrate on a geodesic (Anantharaman);
- Any weak-* limit gives positive measure to nonempty open sets (Dyatlov-Jin).

Example: Modular Surface

Interesting setting for number theorists:
Riemannian locally symmetric spaces $M=\Gamma \backslash G / K$;

- G a Lie group,
- K a maximal compact subgroup of G,
- 「 a lattice in G.

Simplest interesting case: $G=\mathrm{SL}_{2}(\mathbb{R}), K=\mathrm{SO}(2), \Gamma=\mathrm{SL}_{2}(\mathbb{Z})$.

- $G / K \cong \mathbb{H}$, the upper half-plane

$$
\mathbb{H}=\{z=x+i y \in \mathbb{C}: y>0\}
$$

- $\Gamma \backslash G / K \cong \Gamma \backslash \mathbb{H}$, the modular surface

$$
\Gamma \backslash \mathbb{H}=\left\{z=x+i y \in \mathbb{H}:-\frac{1}{2}<x<\frac{1}{2}, x^{2}+y^{2}>1\right\}
$$

- Laplacian eigenfunctions are automorphic forms.

Example: Modular Surface

- \mathbb{H} is a negatively curved hyperbolic surface.
- $\Gamma \backslash \mathbb{H}$ inherits a hyperbolic metric from \mathbb{H}.
- The Laplacian is $\Delta=-y^{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$.
- The volume measure on $\Gamma \backslash \mathbb{H}$ is $d \mu(z)=\frac{d x d y}{y^{2}} ; \operatorname{vol}(\Gamma \backslash \mathbb{H})=\frac{\pi}{3}$.
- Nonconstant eigenfunctions of Δ on $\Gamma \backslash \mathbb{H}$ are $M a a ß$ forms ϕ_{j} with Laplacian eigenvalue $\lambda_{j}=1 / 4+t_{j}^{2}$.
- The space of Maaß forms has an orthonormal basis \mathcal{B}_{0} consisting of Hecke-Maaß cusp forms.

Example: Modular Surface

Quantum Unique Ergodicity for $\Gamma \backslash \mathbb{H}$

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

$$
\lim _{j \rightarrow \infty} \int_{\Gamma \backslash \mathbb{H}}\left|\phi_{j}(z)\right|^{2} \psi(z) d \mu(z)=\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\Gamma \backslash \mathbb{H}} \psi(z) d \mu(z)
$$

for all $\psi \in C_{b}(\Gamma \backslash \mathbb{H})$.

Quantum Unique Ergodicity for $\Gamma \backslash \mathbb{H}$

Theorem (Lindenstrauss (2006), Soundararajan (2010))
We have that

$$
\lim _{j \rightarrow \infty} \int_{B}\left|\phi_{j}(z)\right|^{2} d \mu(z)=\frac{\operatorname{vol}(B)}{\operatorname{vol}(\ulcorner\backslash \mathbb{H})}
$$

for every continuity set $B \subseteq \Gamma \backslash \mathbb{H}$.

Effective QUE

Conjecture (Luo-Sarnak (1995))

As $j \rightarrow \infty$, we have that

$$
\left.\left.\sup _{B_{R}(w) \subset\ulcorner\backslash \mathbb{H}}\left|\int_{B_{R}(w)}\right| \phi_{j}(z)\right|^{2} d \mu(z)-\frac{\operatorname{vol}\left(B_{R}(w)\right)}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \right\rvert\,<_{\varepsilon} t_{j}^{-\frac{1}{2}+\varepsilon} .
$$

Conjecture is an effective form of QUE: (essentially) optimal bounds for the discrepancy.

Theorem (Watson (2002), Young (2016))
Conjecture is true assuming GLH.

Heuristic

GLH \Longleftrightarrow central L-values $L\left(\frac{1}{2}, \Pi\right)$ are essentially bounded.

[^0]
Spectral Decomposition of $\Gamma \backslash \mathbb{H}$

L^{2}-spectral decomposition of $\psi \in L^{2}(\Gamma \backslash \mathbb{H})$ is

$$
\psi(z)=\frac{\langle\psi, 1\rangle}{\operatorname{vol}(\Gamma \backslash \mathbb{H})}+\sum_{f \in \mathcal{B}_{0}}\langle\psi, f\rangle f(z)
$$

- $\left\langle g_{1}, g_{2}\right\rangle:=\int_{\Gamma \backslash \mathbb{H}} g_{1}(z) \overline{g_{2}(z)} d \mu(z)$;
- \mathcal{B}_{0} orthonormal basis of Hecke-Maaß cusp forms f.

Remark

There is also a continuous spectrum involving Eisenstein series, which we ignore for ease of exposition.

Idea of Proof of Effective QUE

Take $\psi=1_{B_{R}(w)}$ in spectral expansion, multiply by $\left|\phi_{j}\right|^{2}$, and integrate over $\Gamma \backslash \mathbb{H}$:

$$
\begin{aligned}
& \left.\left.\sup _{B_{R}(w) \subset \Gamma \backslash \mathbb{H}}\left|\int_{B_{R}(w)}\right| \phi_{j}(z)\right|^{2} d \mu(z)-\frac{\operatorname{vol}\left(B_{R}(w)\right)}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \right\rvert\, \\
&\left.=\sup _{B_{R}(w) \subset\ulcorner\backslash \mathbb{H}}\left|\sum_{f \in \mathcal{B}_{0}}\langle | \phi_{j}\right|^{2}, f\right\rangle\left\langle f, 1_{B_{R}(w)}\right\rangle \mid .
\end{aligned}
$$

Need to bound RHS.
Strategy: take absolute values and bound each term.

- Good (averaged) bounds for $\left\langle f, 1_{B_{R}(w)}\right\rangle$ known via local Weyl law and properties of Selberg-Harish-Chandra transform;
- Can relate triple product $\left.\left.\langle | \phi_{j}\right|^{2}, f\right\rangle$ to L-functions.

Upshot

Problem reduces to knowing good bounds for L-functions.

Triple Product Formula

Proposition (Watson (2002), Ichino (2008))

We have that

$$
\begin{aligned}
&\left.\left|\langle | \phi_{j}\right|^{2}, f\right\rangle\left.\right|^{2} \approx \frac{L\left(\frac{1}{2}, \text { ad } \phi_{j} \otimes f\right) L\left(\frac{1}{2}, f\right)}{L\left(1, \operatorname{ad} \phi_{j}\right)^{2} L(1, \operatorname{ad} f)} \\
& \times \begin{cases}\text { mild polynomial decay } & \text { if } t_{f} \leq 2 t_{j}, \\
\text { exponential decay } & \text { if } t_{f}>2 t_{j}\end{cases}
\end{aligned}
$$

Remark

Gan-Gross-Prasad for (SO(4), $\mathrm{SO}(3)$): $\mathfrak{s o}_{4} \cong \mathfrak{s l}_{2} \oplus \mathfrak{s l}_{2}, \mathfrak{s o}_{3} \cong \mathfrak{s l}_{2}$.
Assuming GLH, ratio of L-functions is essentially bounded. Exponential decay means $\sum_{f \in \mathcal{B}_{0}}$ can be truncated to $t_{f} \leq 2 t_{j}$.

Upshot

Yields Luo-Sarnak conjecture assuming GLH: effective QUE with (essentially) optimal error term.

Refinements of QUE

Refinements of QUE beyond effective bounds for the discrepancy:

- Small-scale QUE: how fast can R shrink as t_{j} grows for QUE to hold on $B_{R}(w)$?
- Young (2016): $R \gg t_{j}^{-1 / 3}$ under GLH.
- H. (2018): $R \gg t_{j}^{-1}$ for a.e. $w \in \Gamma \backslash \mathbb{H}$ under GLH.
- Restricted QUE: does QUE hold when restricted to a submanifold?
- Toth-Zelditch (2013), Dyatlov-Zworski (2013): RQE holds for negatively curved M and generic hypersurface Σ for almost all eigenfunctions.
- Young (2016, 2018): RQUE holds for Eisenstein series restricted to vertical geodesics.
- Hu (2020): a version of RQUE holds in the level (depth) aspect for Hecke-Maaß cusp forms.

Restricted Arithmetic Quantum Unique Ergodicity for $\Gamma \backslash \mathbb{H}$

Theorem (H. (2024+))

Fix a closed geodesic $\mathcal{C} \subset \Gamma \backslash \mathbb{H}$. Assume GLH. For $\phi_{j} \in \mathcal{B}_{0}$,

$$
\lim _{j \rightarrow \infty} \int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi(z) d s=\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\mathcal{C}} \psi(z) d s
$$

for all $\psi \in C(\mathcal{C})$.

Proof is effective and gives bounds for the discrepancy:

$$
\left.\left.\sup _{I \subseteq \mathcal{C}}\left|\int_{I}\right| \phi_{j}(z)\right|^{2} d s-\frac{\ell(I)}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \right\rvert\, \ll t_{j}^{-\delta} .
$$

Maybe $\delta=1 / 4$ is plausible.
Optimal bound is $\delta=1 / 2$; currently seems out of reach.

Remarks on the Method

- Proof does not use ergodic theory; instead uses period integrals of automorphic forms.
- Need to assume Laplacian eigenfunctions are Hecke eigenfunctions.
- Requirement of GLH could be weakened;
- need strong bounds for certain fractional moments of L-functions that imply hybrid subconvexity.
- Method works for Hecke-Maaß cusp forms on other congruence subgroups, including compact quotients.
- Method works for vertical geodesics from a rational point $x \in \mathbb{Q}$ to $i \infty$
- conditional partial resolution of a conjecture of Young (2018).
- Method might (?) work for other arithmetic submanifolds:
- horocycles;
- geodesic circles centred at Heegner points.

Geodesics on $\Gamma \backslash \mathbb{H}$

Closed Geodesics on $\Gamma \backslash \mathbb{H}$

Closed Geodesics on $\Gamma \backslash \mathbb{H}$

Key properties of closed geodesics:

- Bijective correspondence with narrow ideal classes of real quadratic number fields $\mathbb{Q}(\sqrt{D})$ (arithmetic submanifold)
- Length is $2 \log \epsilon$, where ϵ is the fundamental unit of $\mathbb{Q}(\sqrt{D})$.
- Infinitely many closed geodesics.
- Union of all closed geodesics is dense in $\Gamma \backslash \mathbb{H}$.
- Topologically equivalent to a circle.
- Period integrals of automorphic forms on closed geodesics are related to L-functions (Waldspurger's formula).
For the proof, we assume for ease of exposition that $h_{D}^{+}=1$.

Reduction of RQUE

Closed geodesic \mathcal{C} is topologically a circle.
Weyl equidistribution criterion: suffices to show for each $m \in \mathbb{Z}$,

$$
\begin{aligned}
\lim _{j \rightarrow \infty} \int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s & =\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\mathcal{C}} \psi_{m}(z) d s \\
& = \begin{cases}\frac{\ell(\mathcal{C})}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} & \text { if } m=0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Here $\psi_{m}(\theta)=e^{2 \pi i m \theta}$.

Remark

For discrepancy bounds, additionally need explicit rate of decay for $\int_{\mathcal{C}}\left|\phi_{j}\right|^{2} \psi_{m} d s$ in both t_{j} and m.

First Approach to RQUE

Idea 1 of Proof.
Insert spectral expansion of $\left|\phi_{j}\right|^{2} \in L^{2}(\Gamma \backslash \mathbb{H})$:

$$
\begin{aligned}
\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s=\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} & \int_{\mathcal{C}} \psi_{m}(z) d s \\
& \left.+\left.\sum_{f \in \mathcal{B}_{0}}\langle | \phi_{j}\right|^{2}, f\right\rangle \int_{\mathcal{C}} f(z) \psi_{m}(z) d s
\end{aligned}
$$

First term is desired main term.
Need to show second term is small.
Watson-Ichino and GLH imply $\left.\left.\langle | \phi_{j}\right|^{2}, f\right\rangle$ has mild polynomial decay if $t_{f} \leq 2 t_{j}$ and exponential decay if $t_{f}>2 t_{j}$.

For $\int_{\mathcal{C}} f \psi_{m} d s$, apply Waldspurger's formula to relate to L-functions.

Waldspurger's Formula

Proposition (Waldspurger (1985))

We have that

$$
\begin{aligned}
\left|\int_{\mathcal{C}} f(z) \psi_{m}(z) d s\right|^{2} \approx & \frac{L\left(\frac{1}{2}, f \otimes \Theta_{\psi_{m}}\right)}{L(1, \operatorname{ad} f)} \\
& \times \begin{cases}\text { mild polynomial decay } & \text { if }|m| \leq t_{f}, \\
\text { exponential decay } & \text { if }|m|>t_{f} .\end{cases}
\end{aligned}
$$

Remark

Gan-Gross-Prasad for (SO(3), $\mathrm{SO}(2)$): $\mathfrak{s o}_{3} \cong \mathfrak{s l}_{2}$.
$\Theta_{\psi_{m}}$ is a dihedral Maaß form of spectral parameter $\frac{2 \pi|m|}{\ell(C)}$: automorphic induction of the Hecke character ψ_{m}.

Assuming GLH, ratio of L-functions on RHS is essentially bounded.

First Approach to RQUE

Idea 1 of Proof (cont'd).

Want to show that as $j \rightarrow \infty$,

$$
\left.\left.\sum_{f \in \mathcal{B}_{0}}\langle | \phi_{j}\right|^{2}, f\right\rangle \int_{\mathcal{C}} f(z) \psi_{m}(z) d s=o(1)
$$

- Take absolute values;
- Apply Watson-Ichino and Waldspurger;
- Truncate sum to $t_{f} \leq 2 t_{j}$, bound each term assuming GLH, and sum via Weyl law.
Eventually get the upper bound $O\left(t_{j}^{1 / 2}\right)$.
Much too big!
- Lossy since taking absolute values wastes oscillations of sign of $\left.\left.\langle | \phi_{j}\right|^{2}, f\right\rangle$ and $\int_{\mathcal{C}} f \psi_{m} d s$.
- After taking absolute values, spectral sum is too long; need to be able to truncate to $t_{f}=o\left(t_{j}^{1 / 2}\right)$.

Second Approach to RQUE

Idea 2 of Proof.

- Use Parseval for $L^{2}(\mathcal{C})$:
$\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s=\sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_{j}(z) \psi_{m+n}(z) d s \overline{\int_{\mathcal{C}} \phi_{j}(z) \psi_{n}(z) d s}$.
- Uses the fact that $\psi_{m}(z) \psi_{n}(z)=\psi_{m+n}(z)$ since

$$
e^{2 \pi i m \theta} e^{2 \pi i n \theta}=e^{2 \pi i(m+n) \theta} .
$$

- Take absolute values and apply Waldspurger.
- Truncate sum to $|n| \leq t_{j}$, bound each term assuming GLH, and sum.
Eventually get the upper bound $O(1)$.
Better, but still not quite good enough.
Method cannot even extract a main term when $m=0$!

Second Approach to RQUE

Second approach can be used to prove good bounds for L^{2}-restriction problem.

Theorem (Ali (2022))

Unconditionally,

$$
\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} d s \ll_{\varepsilon} t_{j}^{2 \vartheta+\varepsilon}
$$

where $\vartheta=\frac{7}{64}$ is the best known exponent towards the Ramanujan conjecture.

Remark

For arbitrary (nonarithmetic) compact manifolds, instead get $\ll t_{j}^{1 / 2}$ (Burq-Gérard-Tzvetkov).

Method below gives correct asymptotic $\int_{\mathcal{C}}\left|\phi_{j}\right|^{2} d s \sim \frac{\ell(\mathcal{C})}{\operatorname{vol}(\Gamma \backslash \mathbb{H})}$ under the assumption of GLH.

Proof of RQUE

Second approach barely fails:
$O(1)$ instead of $\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\mathcal{C}} \psi_{m} d s+o(1)$.
First key idea: determine how to extract a main term from

$$
\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s=\sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_{j}(z) \psi_{m+n}(z) d s \overline{\int_{\mathcal{C}} \phi_{j}(z) \psi_{n}(z) d s}
$$

Step 1 of proof.

Break up above sum into ranges.
By Waldspurger and GLH, bulk range is when $|n|$ is close to t_{j} (i.e. $t_{j}^{1-\delta} \leq|n| \leq t_{j}-t_{j}^{1-2 \delta}, \delta>0$ small).

Remaining terms contribute o(1).

Proof of RQUE

Second key idea: modify the Hecke-Maaß cusp form ϕ_{j} in this period integral of automorphic forms.

Step 2 of proof.

Construct an automorphic form $\widetilde{\phi}_{j}: \Gamma \backslash \mathrm{SL}_{2}(\mathbb{R}) \rightarrow \mathbb{C}$ that closely approximates ϕ_{j} along \mathcal{C} (but not necessarily elsewhere in $\Gamma \backslash \mathbb{H}$);

- $\widetilde{\phi}_{j}$ constructed such that for n in the bulk range,

$$
\int_{\mathcal{C}} \phi_{j}(z) \psi_{n}(z) d s \sim \int_{\mathcal{C}} \widetilde{\phi}_{j}(z) \psi_{n}(z) d s
$$

- For n outside the bulk range, $\int_{\mathcal{C}} \widetilde{\phi}_{j} \psi_{n} d s$ is exponentially small (whereas $\int_{\mathcal{C}} \phi_{j} \psi_{n} d s$ is only polynomially small).

Proof of RQUE

Step 3 of proof.

Use Parseval for $L^{2}(\mathcal{C})$ to write

$$
\begin{aligned}
\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s & =\sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_{j}(z) \psi_{m+n}(z) d s \overline{\int_{\mathcal{C}} \phi_{j}(z) \psi_{n}(z) d s}, \\
\int_{\mathcal{C}} \phi_{j}(z) \overline{\tilde{\phi}_{j}(z)} \psi_{m}(z) d s & =\sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_{j}(z) \psi_{m+n}(z) d s \overline{\int_{\mathcal{C}} \widetilde{\phi}_{j}(z) \psi_{n}(z) d s} .
\end{aligned}
$$

Expansions essentially equal for n in the bulk range.
Both expansions negligibly small for n outside the bulk range.

Upshot

$$
\int_{\mathcal{C}}\left|\phi_{j}(z)\right|^{2} \psi_{m}(z) d s=\int_{\mathcal{C}} \phi_{j}(z) \widetilde{\tilde{\phi}_{j}(z)} \psi_{m}(z) d s+o(1)
$$

Proof of RQUE

Step 4 of proof.

Return to first approach using new choice of automorphic form. Insert spectral expansion of $\phi_{j} \overline{\phi_{j}} \in L^{2}\left(\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})\right)$:

$$
\begin{aligned}
& \int_{\mathcal{C}} \phi_{j}(z) \overline{\widetilde{\phi}_{j}(z)} \psi_{m}(z) d s \\
& =\frac{1}{\operatorname{vol}(\Gamma \backslash \mathbb{H})} \int_{\Gamma \backslash \mathrm{SL}_{2}(\mathbb{R})} \phi_{j}(z) \overline{\widetilde{\phi}_{j}(z)} d \mu(z) \int_{\mathcal{C}} \psi_{m}(z) d s \\
& \\
& \quad+\sum_{f \in \mathcal{B}}\left\langle\phi_{j} \overline{\tilde{\phi}_{j}}, f\right\rangle \int_{\mathcal{C}} f(z) \psi_{m}(z) d s .
\end{aligned}
$$

Via construction of $\widetilde{\phi}_{j}, \int \phi_{j} \overline{\phi_{j}} d \mu \sim 1$; gives expected main term. Remains to show that

$$
\sum_{f \in \mathcal{B}}\left\langle\phi_{j} \widetilde{\phi}_{j}, f\right\rangle \int_{\mathcal{C}} f(z) \psi_{m}(z) d s=o(1)
$$

Proof of RQUE

Step 5 of proof.

Again take absolute values and apply period formulæ to relate to L-functions:

- Watson-Ichino for $\left\langle\phi_{j} \widetilde{\phi}_{j}, f\right\rangle$;
- Waldspurger for $\int_{\mathcal{C}} f \psi_{m} d s$.

Still lossy; wastes oscillations of sign of $\left.\left.\langle | \phi_{j}\right|^{2}, f\right\rangle$ and $\int_{\mathcal{C}} f \psi_{m} d s$. Key trick: replacing ϕ_{j} with $\widetilde{\phi}_{j}$ gives same L-functions but different archimedean weight. Delicate analysis shows that archimedean weight has much smaller support:

- essentially the same as previously for $t_{f}=o\left(t_{j}^{1 / 2}\right)$;
- exponentially small for $t_{f} \gg t_{j}^{1 / 2}$.

Eventually get the upper bound $o(1)$.

Upshot

We win since spectral sum is sufficiently short.

Period Integral Framework

Underlying strong Gelfand formation:

$\left(G, H_{1}\right),\left(G, H_{2}\right),\left(H_{1}, H_{0}\right),\left(H_{2}, H_{0}\right)$ are each strong Gelfand pairs.
(1) Take automorphic form Φ on G, restrict to H_{0}, and integrate against an automorphic form ϕ_{0} on H_{0};
(2) On the one hand, expand on H_{1} via Parseval, yielding $\sum_{\phi_{1}}\left\langle\Phi, \phi_{1}\right\rangle\left\langle\phi_{1}, \phi_{0}\right\rangle ;$
(3) On the other hand, expand on H_{2} via Parseval, yielding $\sum_{\phi_{2}}\left\langle\Phi, \phi_{2}\right\rangle\left\langle\phi_{2}, \phi_{0}\right\rangle$.

Period Integral Framework

Underlying strong Gelfand formation:

(1) Take automorphic forms φ_{1}, φ_{2} in an automorphic representation Π on $Z\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$, restrict to $\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \backslash \mathbb{A}_{E}^{\times}$, and integrate against a Hecke character Ω on $\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \backslash \mathbb{A}_{E}^{\times}$:

$$
\int_{\mathcal{C}} \phi_{j}(z) \overline{\widetilde{\phi}_{j}(z)} \psi_{m}(z) d s=\int_{\mathbb{A}_{\widehat{Q}}^{\times} E^{\times} \backslash \mathbb{A}_{E}^{\times}} \varphi_{1}(x) \overline{\varphi_{2}(x)} \Omega(x) d^{\times} x .
$$

Period Integral Framework

(2) On the one hand, expand on $\operatorname{Res}_{E / \mathbb{Q}} \mathrm{GL}_{1} \times \operatorname{Res}_{E / \mathbb{Q}} \mathrm{GL}_{1}$ via Parseval, yielding

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} \int_{\mathcal{C}} \phi_{j}(z) \psi_{m+n}(z) d s \overline{\int_{\mathcal{C}}} \widetilde{\phi}_{j}(z) \psi_{n}(z) d s \\
= & \sum_{\Omega^{\prime} \in \mathbb{A}_{\widehat{Q}}^{\times} \widehat{E^{\times} \backslash \mathbb{A}_{E}^{\times}}} \int_{\mathbb{A}_{Q}^{\times}} \varphi_{1}(x) \Omega \Omega^{\prime}(x) d^{\times} x \int_{\mathbb{A}_{E}^{\times}} \varphi_{\mathbb{A}_{\widehat{Q}}^{\times}} \varphi_{2}(x) \Omega^{\prime}(x) d^{\times} \times x \\
= & \sum_{\Omega^{\prime} \in \mathbb{A}_{\widehat{Q}}^{\times} \widehat{E^{\times} \backslash \mathbb{A}_{E}^{\times}}} \frac{L\left(\frac{1}{2}, \Pi \otimes \Omega \Omega^{\prime}\right)^{1 / 2} L\left(\frac{1}{2}, \widetilde{\Pi} \otimes \Omega^{\prime-1}\right)^{1 / 2}}{L(1, \operatorname{ad} \Pi)} \alpha\left(\Omega^{\prime}\right) .
\end{aligned}
$$

Weight function $\alpha\left(\Omega^{\prime}\right)$ explicitly determined in terms of choice of data of φ_{1}, φ_{2} (i.e. local Whittaker functions).

- Proof uses uniqueness of linear functionals:

$$
\operatorname{dim} \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}\left(\Pi, \Omega^{-1} \Omega^{\prime-1}\right)=1, \quad \operatorname{dim} \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}\left(\widetilde{\Pi}, \Omega^{\prime}\right)=1
$$

Period Integral Framework

(3) On the other hand, expand on GL_{2} via Parseval, yielding

$$
\begin{aligned}
& \sum_{f \in \mathcal{B}}\left\langle\phi_{j} \widetilde{\phi}_{j}, f\right\rangle \int_{\mathcal{C}} f(z) \psi_{m}(z) d s \\
&=\sum_{\pi} \sum_{\phi \in \mathcal{B}(\pi)} \int_{\mathrm{Z}\left(\mathbb{A}_{\mathbb{Q}}\right) \mathrm{GL}_{2}(\mathbb{Q}) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)} \varphi_{1}(h) \overline{\varphi_{2}(h) \phi(h)} d h \\
& \times \int_{\mathbb{A}_{\mathbb{Q}}^{\times} E^{\times} \backslash \mathbb{A}_{\mathbb{E}}^{\times}} \phi(x) \Omega(x) d^{\times} x \\
&= \sum_{\pi} \frac{L\left(\frac{1}{2}, \Pi \otimes \widetilde{\Pi} \otimes \widetilde{\pi}\right)^{1 / 2} L\left(\frac{1}{2}, \pi \otimes \Omega\right)^{1 / 2}}{L(1, \text { ad } \Pi)^{2} L(1, \text { ad } \pi)} \beta(\pi)
\end{aligned}
$$

Weight function $\beta(\pi)$ explicitly determined in terms of of choice of data of φ_{1}, φ_{2} (i.e. local Whittaker functions).

- Proof uses uniqueness of trilinear and linear functionals: $\operatorname{dim} \operatorname{Hom}_{\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)}(\Pi \otimes \widetilde{\Pi}, \pi)=1, \quad \operatorname{dim} \operatorname{Hom}_{\mathbb{A}_{E}^{\times}}\left(\pi, \Omega^{-1}\right)=1$.

Period Integral Framework

(9) To prove RQUE:
(i) Take φ_{1}, φ_{2} to be the adèlic lifts of $\phi_{j}, \widetilde{\phi}_{j}$, Ω to be the adèlic lift of ψ_{m};
(ii) Using expansion on $\operatorname{Res}_{E / \mathbb{Q}} \mathrm{GL}_{1} \times \operatorname{Res}_{E / \mathbb{Q}} \mathrm{GL}_{1}$, show that choice of φ_{2} ensures that $\alpha\left(\Omega^{\prime}\right)$ localises to bulk range, so that this expansion closely approximates that of $\int_{\mathcal{C}}\left|\phi_{j}\right|^{2} \psi_{m} d s$ (easy);
(iii) Using expansion on GL_{2}, show that $\beta(\pi)$ is small once archimedean data of π is $\gg t_{j}^{1 / 2}$, so that this expansion gives desired main term plus $o(1)$ error term (hard).

Thank you!

[^0]: Remark
 GRH \Longrightarrow GLH.

