Non-escape of mass for automorphic forms in hyperbolic 4-manifolds

Alexandre de Faveri (joint work with Zvi Shem-Tov)

Stanford University

Shanks Conference Series

• X: compact manifold of negative sectional curvature

- X: compact manifold of negative sectional curvature
- $\{\phi_i\}$: orthonormal basis of eigenfunctions of Δ_X , eigenvalues λ_i

- X: compact manifold of negative sectional curvature
- $\{\phi_i\}$: orthonormal basis of eigenfunctions of Δ_X , eigenvalues λ_i
- ϕ_i quantize the billiard dynamics in X (chaotic due to curvature)

- X: compact manifold of negative sectional curvature
- $\{\phi_i\}$: orthonormal basis of eigenfunctions of Δ_X , eigenvalues λ_i
- ϕ_i quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_i are expected to behave like random waves in the high energy limit $\lambda_i \to \infty$.

- X: compact manifold of negative sectional curvature
- $\{\phi_i\}$: orthonormal basis of eigenfunctions of Δ_X , eigenvalues λ_i
- ϕ_i quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_i are expected to behave like random waves in the high energy limit $\lambda_i \to \infty$.
- This can for instance be interpreted on average via the norms $\|\phi_i\|_p$, or weakly in terms of distribution of L^2 mass.

- X: compact manifold of negative sectional curvature
- $\{\phi_i\}$: orthonormal basis of eigenfunctions of Δ_X , eigenvalues λ_i
- ϕ_i quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_i are expected to behave like random waves in the high energy limit $\lambda_i \to \infty$.
- This can for instance be interpreted on average via the norms $\|\phi_i\|_p$, or weakly in terms of distribution of L^2 mass.

QUE conjecture (Rudnick and Sarnak, 1994)

The probability measures $\mu_i = |\phi_i|^2 d \operatorname{vol}_X$ converge in the weak-* topology to $d \operatorname{vol}_X$.

• Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X = \Gamma \backslash G / K$, with Γ a congruence lattice.

 Conjecture remains wide open, but progress has been made for arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.

• Ex: $\Gamma = SL_2(\mathbb{Z}), X = \Gamma \setminus \mathbb{H}_2$ (we drop the compactness assumption).

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.
- Ex: $\Gamma = SL_2(\mathbb{Z})$, $X = \Gamma \setminus \mathbb{H}_2$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_p , which commute with Δ .

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.
- Ex: $\Gamma = SL_2(\mathbb{Z})$, $X = \Gamma \setminus \mathbb{H}_2$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_p , which commute with Δ .
- Extra arithmetic assumption: the ϕ_i are also Hecke eigenfunctions.

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.
- Ex: $\Gamma = SL_2(\mathbb{Z})$, $X = \Gamma \setminus \mathbb{H}_2$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_p , which commute with Δ .
- Extra arithmetic assumption: the ϕ_i are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence $\mu_i = |\phi_i|^2 d \operatorname{vol}_X$ is of the form $c \cdot d \operatorname{vol}_X$ for some $c \in [0, 1]$.

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.
- Ex: $\Gamma = SL_2(\mathbb{Z})$, $X = \Gamma \setminus \mathbb{H}_2$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_p , which commute with Δ .
- Extra arithmetic assumption: the ϕ_i are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence $\mu_i = |\phi_i|^2 d \operatorname{vol}_X$ is of the form $c \cdot d \operatorname{vol}_X$ for some $c \in [0, 1]$.

Theorem (Soundararajan, 2010)

We have c = 1, so AQUE holds for $\Gamma \setminus \mathbb{H}_2$.

• Using the upper half-space model, the isometry group of \mathbb{H}_n can be identified with a certain group $SV_{n-2}(\mathbb{R})$ of (2×2) -matrices.

- Using the upper half-space model, the isometry group of \mathbb{H}_n can be identified with a certain group $SV_{n-2}(\mathbb{R})$ of (2×2) -matrices.
- Consider AQUE on the arithmetic manifold X_n := SV_{n-2}(ℤ)\ℍ_n. We have SV₀(ℤ) = SL₂(ℤ) and SV₁(ℤ) = SL₂(ℤ[i]).

- Using the upper half-space model, the isometry group of \mathbb{H}_n can be identified with a certain group $SV_{n-2}(\mathbb{R})$ of (2×2) -matrices.
- Consider AQUE on the arithmetic manifold X_n := SV_{n-2}(ℤ)\ℍ_n. We have SV₀(ℤ) = SL₂(ℤ) and SV₁(ℤ) = SL₂(ℤ[i]).
- Non-escape of mass for X₃ ≃ SL₂(ℤ[i])\SL₂(ℂ)/SU(2) was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).

- Using the upper half-space model, the isometry group of \mathbb{H}_n can be identified with a certain group $SV_{n-2}(\mathbb{R})$ of (2×2) -matrices.
- Consider AQUE on the arithmetic manifold X_n := SV_{n-2}(ℤ)\ℍ_n. We have SV₀(ℤ) = SL₂(ℤ) and SV₁(ℤ) = SL₂(ℤ[i]).
- Non-escape of mass for X₃ ≃ SL₂(ℤ[i])\SL₂(ℂ)/SU(2) was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
- $\bullet~$ Let ${\bf H}$ denote the Hamilton quaternions. Then

$$SV_2(\mathbb{Z}) \simeq \left\{ g \in M_2(\mathbf{H}(\mathbb{Z})) : gJg^{*t} = J \right\}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Here $(a_0 + a_1i + a_2j + a_3k)^* = a_0 + a_1i + a_2j - a_3k$.

- Using the upper half-space model, the isometry group of \mathbb{H}_n can be identified with a certain group $SV_{n-2}(\mathbb{R})$ of (2×2) -matrices.
- Consider AQUE on the arithmetic manifold X_n := SV_{n-2}(ℤ)\ℍ_n. We have SV₀(ℤ) = SL₂(ℤ) and SV₁(ℤ) = SL₂(ℤ[i]).
- Non-escape of mass for X₃ ≃ SL₂(ℤ[i])\SL₂(ℂ)/SU(2) was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
- $\bullet~$ Let ${\bf H}$ denote the Hamilton quaternions. Then

$$SV_2(\mathbb{Z}) \simeq \left\{ g \in M_2(\mathbf{H}(\mathbb{Z})) : gJg^{*t} = J \right\}, \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Here $(a_0 + a_1i + a_2j + a_3k)^* = a_0 + a_1i + a_2j - a_3k$.

• On $X_4 = SV_2(\mathbb{Z}) \setminus \mathbb{H}_4$: no Watson-Ichino, violations to Ramanujan.

Theorem (F. and Shem-Tov, 2024)

Let $X_4 = SV_2(\mathbb{Z}) \setminus \mathbb{H}_4$ and $\phi_i \in L^2(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_i = |\phi_i|^2 d \operatorname{vol}_{X_4}$ converge in the weak-* topology. Then the limit is a probability measure.

Theorem (F. and Shem-Tov, 2024)

Let $X_4 = SV_2(\mathbb{Z}) \setminus \mathbb{H}_4$ and $\phi_i \in L^2(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_i = |\phi_i|^2 d \operatorname{vol}_{X_4}$ converge in the weak-* topology. Then the limit is a probability measure.

• It was recently shown by Shem-Tov and Silberman (2024) that any such limiting measure must be a countable linear combination of $d \operatorname{vol}_{X_4}$ and the Riemannian measures of totally geodesic hyperbolic submanifolds of codimension 1.

Theorem (F. and Shem-Tov, 2024)

Let $X_4 = SV_2(\mathbb{Z}) \setminus \mathbb{H}_4$ and $\phi_i \in L^2(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_i = |\phi_i|^2 d \operatorname{vol}_{X_4}$ converge in the weak-* topology. Then the limit is a probability measure.

- It was recently shown by Shem-Tov and Silberman (2024) that any such limiting measure must be a countable linear combination of $d \operatorname{vol}_{X_4}$ and the Riemannian measures of totally geodesic hyperbolic submanifolds of codimension 1.
- AQUE for X_4 essentially reduces to ruling out measure concentration on orbits of $SL_2(\mathbb{C})$ inside $SV_2(\mathbb{R})$.

Non-escape of mass for $SL_2(\mathbb{Z})$

• A Hecke-Maass cusp form ϕ on $SL_2(\mathbb{Z}) \setminus \mathbb{H}_2$ has a Fourier expansion

$$\phi(x+iy) = \sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{ir}(2\pi |n|y) e(nx).$$

Non-escape of mass for $SL_2(\mathbb{Z})$

• A Hecke-Maass cusp form ϕ on $\mathrm{SL}_2(\mathbb{Z}) ackslash \mathbb{H}_2$ has a Fourier expansion

$$\phi(x+iy) = \sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{ir}(2\pi |n|y) e(nx).$$

• Let $\lambda(m)$ denote the eigenvalue of ϕ for T_m . For each prime p,

$$\lambda(m)a(n) = \sum_{d|(m,n)} a\left(\frac{mn}{d^2}\right),$$
$$\lambda(p)a(n) = a(np) + a(n/p),$$
$$\lambda(p)^2 = \lambda(p^2) + 1.$$

Non-escape of mass for $SL_2(\mathbb{Z})$

• A Hecke-Maass cusp form ϕ on ${\rm SL}_2(\mathbb{Z}) \backslash \mathbb{H}_2$ has a Fourier expansion

$$\phi(x+iy) = \sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{ir}(2\pi |n|y) e(nx).$$

• Let $\lambda(m)$ denote the eigenvalue of ϕ for T_m . For each prime p,

$$\begin{split} \lambda(m)a(n) &= \sum_{d \mid (m,n)} a\left(\frac{mn}{d^2}\right), \\ \lambda(p)a(n) &= a(np) + a(n/p), \\ \lambda(p)^2 &= \lambda(p^2) + 1. \end{split}$$

Theorem (Soundararajan, 2010)

For any $1 \leq y \leq x$,

$$\sum_{n \le \frac{x}{y}} |a(n)|^2 \le 10^8 \left(\frac{1 + \log y}{\sqrt{y}}\right) \sum_{n \le x} |a(n)|^2.$$

Alex de Faveri

Shanks conference

Deduction of non-escape of mass for $SL_2(\mathbb{Z})$

Deduction of non-escape of mass for $SL_2(\mathbb{Z})$

• Normalize so that $\|\phi\|_2 = 1$. Fourier-expanding

$$I_T(\phi) := \int_T^\infty \int_0^1 |\phi(x+iy)|^2 \frac{dx\,dy}{y^2}$$

with $T \ge 1$,

$$I_T(\phi) = 2 \int_1^\infty \left(\sum_{n \le \frac{y}{T}} |a(n)|^2 \right) \cdot |K_{ir}(2\pi y)|^2 \frac{dy}{y}.$$

Deduction of non-escape of mass for $SL_2(\mathbb{Z})$

• Normalize so that $\|\phi\|_2 = 1$. Fourier-expanding

$$I_T(\phi) := \int_T^\infty \int_0^1 |\phi(x+iy)|^2 \frac{dx \, dy}{y^2}$$

with $T \ge 1$,

$$I_T(\phi) = 2 \int_1^\infty \left(\sum_{n \le \frac{y}{T}} |a(n)|^2 \right) \cdot |K_{ir}(2\pi y)|^2 \frac{dy}{y}.$$

Therefore

$$I_T(\phi) \le 10^8 \left(\frac{1 + \log T}{\sqrt{T}}\right) I_1(\phi) \le 10^8 \left(\frac{1 + \log T}{\sqrt{T}}\right).$$

• A Hecke-Maass cusp form ϕ on $SV_2(\mathbb{Z}) \backslash \mathbb{H}_4$ has a Fourier expansion

$$\phi(x_1, x_2, x_3, y) = y^{3/2} \sum_{0 \neq \beta \in \mathbb{Z}^3} A(\beta) K_{ir}(2\pi |\beta| y) e(\langle \beta, x \rangle).$$

• A Hecke-Maass cusp form ϕ on $SV_2(\mathbb{Z}) ackslash \mathbb{H}_4$ has a Fourier expansion

$$\phi(x_1, x_2, x_3, y) = y^{3/2} \sum_{0 \neq \beta \in \mathbb{Z}^3} A(\beta) K_{ir}(2\pi |\beta| y) e(\langle \beta, x \rangle).$$

Theorem (F. and Shem-Tov, 2024)

There exist absolute constants C and R such that for any $1 \le y \le x$,

$$\sum_{\beta|^2 \le \frac{x}{y}} |A(\beta)|^2 \le C \frac{(1 + \log y)^R}{y^{1/8}} \sum_{|\beta|^2 \le x} |A(\beta)|^2.$$

$$s(z):=\sum_{n\leq z}|a(n)|^2\qquad\text{and}\qquad\lambda(m)a(n)=\sum_{d\mid(m,n)}a\left(\frac{mn}{d^2}\right).$$

• Want to show (roughly) that $s(x/y) \ll \frac{s(x)}{\sqrt{y}}$.

$$s(z):=\sum_{n\leq z}|a(n)|^2\qquad\text{and}\qquad\lambda(m)a(n)=\sum_{d\mid(m,n)}a\left(\frac{mn}{d^2}\right).$$

• Want to show (roughly) that $s(x/y) \ll \frac{s(x)}{\sqrt{y}}$.

• Since $\lambda(p)^2 = \lambda(p^2) + 1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^2$ or $|\lambda(p^2)|^2$ localizes around some value $L \gg 1$.

$$s(z):=\sum_{n\leq z}|a(n)|^2\qquad\text{and}\qquad\lambda(m)a(n)=\sum_{d\mid(m,n)}a\left(\frac{mn}{d^2}\right).$$

- Want to show (roughly) that $s(x/y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^2 = \lambda(p^2) + 1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^2$ or $|\lambda(p^2)|^2$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^2 \asymp L$ for all $p \asymp \sqrt{y}$.

$$s(z):=\sum_{n\leq z}|a(n)|^2\qquad\text{and}\qquad\lambda(m)a(n)=\sum_{d\mid(m,n)}a\left(\frac{mn}{d^2}\right).$$

- Want to show (roughly) that $s(x/y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^2 = \lambda(p^2) + 1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^2$ or $|\lambda(p^2)|^2$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^2 \simeq L$ for all $p \simeq \sqrt{y}$.
- Let $\mathcal{M}(K) := \{ n \in \mathbb{N} : \text{there are} < K \text{ primes } p \in \mathcal{P} \text{ such that } p \mid n \}.$

$$s(z):=\sum_{n\leq z}|a(n)|^2\qquad\text{and}\qquad\lambda(m)a(n)=\sum_{d\mid(m,n)}a\left(\frac{mn}{d^2}\right).$$

- Want to show (roughly) that $s(x/y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^2 = \lambda(p^2) + 1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^2$ or $|\lambda(p^2)|^2$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^2 \asymp L$ for all $p \asymp \sqrt{y}$.
- Let $\mathcal{M}(K) := \{ n \in \mathbb{N} : \text{there are} < K \text{ primes } p \in \mathcal{P} \text{ such that } p \mid n \}.$
- Break the sum s(x/y) into two parts $s^{\leq K}(x/y)$ and $s^{\geq K}(x/y)$ depending on whether $n \in \mathcal{M}(K)$ or not.

• Let us start with $s^{\leq K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

• Let us start with $s^{\leq K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$\mathcal{E} := \sum_{\substack{n \leq z \\ \#\{p \asymp \sqrt{y} \ : \ p \mid n\} < K}} |a(n)|^2 \cdot \left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}} |\lambda(p)|^2\right).$$

• Let us start with $s^{< K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$\mathcal{E} := \sum_{\substack{n \leq z \\ \#\{p \asymp \sqrt{y} : p|n\} < K}} |a(n)|^2 \cdot \left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}} |\lambda(p)|^2\right).$$

$$\mathcal{E} \gg L \cdot \left(\#\{p \asymp \sqrt{y}\} - K \right) \cdot s^{$$

• Let us start with $s^{\leq K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$\mathcal{E} := \sum_{\substack{n \le z \\ \#\{p \asymp \sqrt{y} : p|n\} < K}} |a(n)|^2 \cdot \left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}} |\lambda(p)|^2\right).$$

$$\mathcal{E} \gg L \cdot \left(\#\{p \asymp \sqrt{y}\} - K \right) \cdot s^{$$

• Multiplying out, each term a(np) in \mathcal{E} has multiplicity at most K, and is contained in $s^{\leq K+1}\left(\frac{px}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{\leq K+1}\left(\frac{x}{\sqrt{y}}\right)$.

• Let us start with $s^{\leq K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$\mathcal{E} := \sum_{\substack{n \le z \\ \#\{p \asymp \sqrt{y} : p|n\} < K}} |a(n)|^2 \cdot \left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}} |\lambda(p)|^2\right).$$

$$\mathcal{E} \gg L \cdot \left(\#\{p \asymp \sqrt{y}\} - K \right) \cdot s^{$$

• Multiplying out, each term a(np) in \mathcal{E} has multiplicity at most K, and is contained in $s^{\leq K+1}\left(\frac{px}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{\leq K+1}\left(\frac{x}{\sqrt{y}}\right)$. Therefore,

$$s^{$$

• Let us start with $s^{\leq K}(x/y)$. Recall $|\lambda(p)|^2 \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$\mathcal{E} := \sum_{\substack{n \le z \\ \#\{p \asymp \sqrt{y} : p|n\} < K}} |a(n)|^2 \cdot \left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}} |\lambda(p)|^2\right).$$

$$\mathcal{E} \gg L \cdot \left(\#\{p \asymp \sqrt{y}\} - K \right) \cdot s^{$$

• Multiplying out, each term a(np) in \mathcal{E} has multiplicity at most K, and is contained in $s^{\leq K+1}\left(\frac{px}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{\leq K+1}\left(\frac{x}{\sqrt{y}}\right)$. Therefore,

$$s^{$$

• This succeeds if $K \ll Ly^{1/4}$.

• For the elements a(n) in $s^{\geq K}(x/y)$, n is a multiple of some product $d = p_1 \cdots p_K$ of K primes $p_i \asymp \sqrt{y}$. There are $\approx \binom{\sqrt{y}}{K}$ options for $d \approx (\sqrt{y})^K$, and each one contributes

$$\sum_{m \le \frac{x}{yd}} |a(dm)|^2 \approx |\lambda(d)|^2 \cdot s\left(\frac{x}{yd}\right) \approx L^K \cdot s\left(\frac{x}{y(\sqrt{y})^K}\right)$$

• For the elements a(n) in $s^{\geq K}(x/y)$, n is a multiple of some product $d = p_1 \cdots p_K$ of K primes $p_i \asymp \sqrt{y}$. There are $\approx \binom{\sqrt{y}}{K}$ options for $d \approx (\sqrt{y})^K$, and each one contributes

$$\sum_{m \le \frac{x}{yd}} |a(dm)|^2 \approx |\lambda(d)|^2 \cdot s\left(\frac{x}{yd}\right) \approx L^K \cdot s\left(\frac{x}{y(\sqrt{y})^K}\right)$$

• Fix x and use induction for the shorter sum $s(x/y(\sqrt{y})^K)$, leading to

$$s^{\geq K} \begin{pmatrix} x \\ y \end{pmatrix} \ll \begin{pmatrix} \sqrt{y} \\ K \end{pmatrix} L^K \cdot s \begin{pmatrix} x \\ y(\sqrt{y})^K \end{pmatrix} \ll \left(\frac{10\sqrt{y}L}{Ky^{1/4}}\right)^K \frac{s(x)}{\sqrt{y}}.$$

• For the elements a(n) in $s^{\geq K}(x/y)$, n is a multiple of some product $d = p_1 \cdots p_K$ of K primes $p_i \asymp \sqrt{y}$. There are $\approx \binom{\sqrt{y}}{K}$ options for $d \approx (\sqrt{y})^K$, and each one contributes

$$\sum_{m \le \frac{x}{yd}} |a(dm)|^2 \approx |\lambda(d)|^2 \cdot s\left(\frac{x}{yd}\right) \approx L^K \cdot s\left(\frac{x}{y(\sqrt{y})^K}\right)$$

• Fix x and use induction for the shorter sum $s(x/y(\sqrt{y})^K)$, leading to

$$s^{\geq K} \begin{pmatrix} \frac{x}{y} \end{pmatrix} \ll \begin{pmatrix} \sqrt{y} \\ K \end{pmatrix} L^K \cdot s \begin{pmatrix} \frac{x}{y(\sqrt{y})^K} \end{pmatrix} \ll \left(\frac{10\sqrt{y}L}{Ky^{1/4}}\right)^K \frac{s(x)}{\sqrt{y}}.$$

• This succeeds if $K \geq 20 Ly^{1/4},$ which is consistent with the previous restriction $K \ll Ly^{1/4}.$

• For the elements a(n) in $s^{\geq K}(x/y)$, n is a multiple of some product $d = p_1 \cdots p_K$ of K primes $p_i \asymp \sqrt{y}$. There are $\approx \binom{\sqrt{y}}{K}$ options for $d \approx (\sqrt{y})^K$, and each one contributes

$$\sum_{m \le \frac{x}{yd}} |a(dm)|^2 \approx |\lambda(d)|^2 \cdot s\left(\frac{x}{yd}\right) \approx L^K \cdot s\left(\frac{x}{y(\sqrt{y})^K}\right)$$

• Fix x and use induction for the shorter sum $s(x/y(\sqrt{y})^K),$ leading to

$$s^{\geq K} \left(\frac{x}{y}\right) \ll \left(\frac{\sqrt{y}}{K}\right) L^K \cdot s\left(\frac{x}{y(\sqrt{y})^K}\right) \ll \left(\frac{10\sqrt{y}L}{Ky^{1/4}}\right)^K \frac{s(x)}{\sqrt{y}}.$$

- This succeeds if $K \geq 20 Ly^{1/4},$ which is consistent with the previous restriction $K \ll Ly^{1/4}.$
- The case when one must use the $\lambda(p^2)$ is similar.

• For each prime p > 2, there are two (algebraically independent) Hecke operators $T_1(p)$ and $T_2(p)$, which commute with each other.

- For each prime p > 2, there are two (algebraically independent) Hecke operators $T_1(p)$ and $T_2(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_3(p)$, such that if $\lambda_\ell(p)$ denotes the eigenvalue of ϕ for $T_\ell(p)$, then we have a relation

$$\lambda_1(p)^2 - \lambda_2(p) - \lambda_3(p) \approx 1.$$

- For each prime p > 2, there are two (algebraically independent) Hecke operators $T_1(p)$ and $T_2(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_3(p)$, such that if $\lambda_\ell(p)$ denotes the eigenvalue of ϕ for $T_\ell(p)$, then we have a relation

$$\lambda_1(p)^2 - \lambda_2(p) - \lambda_3(p) \approx 1.$$

• $\max_{\ell} |\lambda_{\ell}(p)|^2 \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1/8}$ such that $|\lambda_{\ell}(p)|^2 \asymp L \gg 1$.

- For each prime p > 2, there are two (algebraically independent) Hecke operators $T_1(p)$ and $T_2(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_3(p)$, such that if $\lambda_\ell(p)$ denotes the eigenvalue of ϕ for $T_\ell(p)$, then we have a relation

$$\lambda_1(p)^2 - \lambda_2(p) - \lambda_3(p) \approx 1.$$

- $\max_{\ell} |\lambda_{\ell}(p)|^2 \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1/8}$ such that $|\lambda_{\ell}(p)|^2 \asymp L \gg 1$.
- $\mathcal{M}(K) := \{ \beta \in \mathbb{Z}^3 : \text{there are} < K \text{ primes } p \in \mathcal{P} \text{ such that } p \mid \beta \}.$

- For each prime p > 2, there are two (algebraically independent) Hecke operators $T_1(p)$ and $T_2(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_3(p)$, such that if $\lambda_\ell(p)$ denotes the eigenvalue of ϕ for $T_\ell(p)$, then we have a relation

$$\lambda_1(p)^2 - \lambda_2(p) - \lambda_3(p) \approx 1.$$

- $\max_{\ell} |\lambda_{\ell}(p)|^2 \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1/8}$ such that $|\lambda_{\ell}(p)|^2 \asymp L \gg 1$.
- $\mathcal{M}(K) := \{ \beta \in \mathbb{Z}^3 : \text{there are} < K \text{ primes } p \in \mathcal{P} \text{ such that } p \mid \beta \}.$
- Break the sum

$$S(x/y) := \sum_{|\beta|^2 \le \frac{x}{y}} |A(\beta)|^2$$

into two parts $S^{< K}(x/y)$ and $S^{\geq K}(x/y)$ depending on whether $n \in \mathcal{M}(K)$ or not.

• Let us assume $|\lambda_1(p)|^2 \asymp 1$ for all $p \asymp y^{1/8}$.

- Let us assume $|\lambda_1(p)|^2 \asymp 1$ for all $p \asymp y^{1/8}$.
- Identify $\beta \in \mathbb{Z}^3$ with $\beta = b_1 i + b_2 j + b_3 k$. We have the Hecke relation

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right).$$

- Let us assume $|\lambda_1(p)|^2 \asymp 1$ for all $p \asymp y^{1/8}$.
- Identify $\beta \in \mathbb{Z}^3$ with $\beta = b_1 i + b_2 j + b_3 k$. We have the Hecke relation

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}}\sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right).$$

 \bullet To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^2 \leq z} |A(p\beta)|^2 \ll S(z).$

- Let us assume $|\lambda_1(p)|^2 symp 1$ for all $p symp y^{1/8}$.
- Identify $\beta \in \mathbb{Z}^3$ with $\beta = b_1 i + b_2 j + b_3 k$. We have the Hecke relation

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}}\sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right).$$

To treat S^{≥K} we need bounds of the shape ∑_{|β|²≤z} |A(pβ)|² ≪ S(z).
Let I(β) = {α : |α|² = p and v_p(αβᾱ) > v_p(β)}. Then |I(β)| ≤ 16.

- Let us assume $|\lambda_1(p)|^2 symp 1$ for all $p symp y^{1/8}.$
- Identify $\beta \in \mathbb{Z}^3$ with $\beta = b_1 i + b_2 j + b_3 k$. We have the Hecke relation

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}}\sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right).$$

• To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^2 \leq z} |A(p\beta)|^2 \ll S(z)$. • Let $I(\beta) = \{\alpha : |\alpha|^2 = p \text{ and } v_p(\alpha\beta\overline{\alpha}) > v_p(\beta)\}$. Then $|I(\beta)| \leq 16$. • Using

$$\left|\sum_{|\alpha|^2=p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2 \ll \sum_{\alpha\in I(\beta)} \left|A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2 + p\sum_{\alpha\notin I(\beta)} \left|A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2,$$

• Let us assume $|\lambda_1(p)|^2 symp 1$ for all $p symp y^{1/8}.$

• Identify $\beta \in \mathbb{Z}^3$ with $\beta = b_1 i + b_2 j + b_3 k$. We have the Hecke relation

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right).$$

• To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^2 \leq z} |A(p\beta)|^2 \ll S(z)$. • Let $I(\beta) = \{\alpha : |\alpha|^2 = p \text{ and } v_p(\alpha\beta\overline{\alpha}) > v_p(\beta)\}$. Then $|I(\beta)| \leq 16$. • Using

$$\left|\sum_{|\alpha|^2=p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2 \ll \sum_{\alpha\in I(\beta)} \left|A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2 + p\sum_{\alpha\notin I(\beta)} \left|A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2,$$

$$\frac{1}{p}\sum_{|\beta|^2\leq z} \left|\sum_{|\alpha|^2=p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right)\right|^2 \ll \sum_{|\delta|^2\leq z} \left(\frac{m_1(\delta)}{p} + m_2(\delta)\right) |A(\delta)|^2 \ll S(z).$$

• Let us now assume $|\lambda_1(p)| \ll 1$ and $|\lambda_2(p)|^2 \asymp L \gg 1$ for all $p \asymp y^{1/8}$.

• Let us now assume $|\lambda_1(p)| \ll 1$ and $|\lambda_2(p)|^2 \asymp L \gg 1$ for all $p \asymp y^{1/8}$. The Hecke relations are

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right),$$
$$\lambda_2(p)A(\beta) \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} \left[A\left(\alpha\beta\overline{\alpha}\right) + A\left(\frac{\alpha\beta\overline{\alpha}}{p^2}\right)\right].$$

• Let us now assume $|\lambda_1(p)| \ll 1$ and $|\lambda_2(p)|^2 \asymp L \gg 1$ for all $p \asymp y^{1/8}$. The Hecke relations are

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right),$$
$$\lambda_2(p)A(\beta) \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} \left[A\left(\alpha\beta\overline{\alpha}\right) + A\left(\frac{\alpha\beta\overline{\alpha}}{p^2}\right)\right].$$

$$Ly^{1/8} \cdot S^{$$

• Let us now assume $|\lambda_1(p)| \ll 1$ and $|\lambda_2(p)|^2 \asymp L \gg 1$ for all $p \asymp y^{1/8}$. The Hecke relations are

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right),$$
$$\lambda_2(p)A(\beta) \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} \left[A\left(\alpha\beta\overline{\alpha}\right) + A\left(\frac{\alpha\beta\overline{\alpha}}{p^2}\right)\right].$$

$$Ly^{1/8} \cdot S^{$$

Cauchy-Schwarz is a bad move here due to the $A(\alpha\beta\overline{\alpha})$.

• Let us now assume $|\lambda_1(p)| \ll 1$ and $|\lambda_2(p)|^2 \asymp L \gg 1$ for all $p \asymp y^{1/8}$. The Hecke relations are

$$\lambda_1(p)A(\beta) \approx A(p\beta) + A\left(\frac{\beta}{p}\right) + \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} A\left(\frac{\alpha\beta\overline{\alpha}}{p}\right),$$
$$\lambda_2(p)A(\beta) \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^2 = p} \left[A\left(\alpha\beta\overline{\alpha}\right) + A\left(\frac{\alpha\beta\overline{\alpha}}{p^2}\right)\right].$$

$$Ly^{1/8} \cdot S^{$$

Cauchy-Schwarz is a bad move here due to the $A(\alpha\beta\overline{\alpha})$. Instead, observe

$$\lambda_2(p)A(\beta) \approx \lambda_1(p)A(p\beta) - A(p^2\beta) - A(\beta),$$

$$\lambda_2(p)A(\beta) \approx \lambda_2(p)A(p^2\beta) + \lambda_1(p)A(p^3\beta) - A(p^4\beta) - A(p^2\beta).$$

The proof for $SV_2(\mathbb{Z})$: endgame

• Denote
$$g(y) = \frac{S(x/y)}{S(x)}y^{1/8}$$
.

• Denote $g(y) = \frac{S(x/y)}{S(x)}y^{1/8}$. We end up showing a recursive inequality roughly of the shape

$$g(y) \ll \sum_{n=1}^{4} g\left(y^{1-\frac{n}{4}}\right) + e^{-b_n(y)} \cdot g\left(y^{1+b_n(y)}\right)$$

for some explicit $b_n(y) \to \infty$ as $y \to \infty$.

• Denote $g(y) = \frac{S(x/y)}{S(x)}y^{1/8}$. We end up showing a recursive inequality roughly of the shape

$$g(y) \ll \sum_{n=1}^{4} g\left(y^{1-\frac{n}{4}}\right) + e^{-b_n(y)} \cdot g\left(y^{1+b_n(y)}\right)$$

for some explicit $b_n(y) \to \infty$ as $y \to \infty$.

• One can check that this implies

$$g(y) \le C(1 + \log y)^R$$

for some absolute constants C, R (in general they would depend only on the functions b_n).

Thank you!