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Quantum unique ergodicity

X: compact manifold of negative sectional curvature
{¢i}: orthonormal basis of eigenfunctions of Ax, eigenvalues \;

¢; quantize the billiard dynamics in X (chaotic due to curvature)

(Berry, 1977) The ¢; are expected to behave like random waves in the
high energy limit A; — oc.
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{¢i}: orthonormal basis of eigenfunctions of Ax, eigenvalues \;

¢; quantize the billiard dynamics in X (chaotic due to curvature)

(Berry, 1977) The ¢; are expected to behave like random waves in the
high energy limit A; — oc.

This can for instance be interpreted on average via the norms ||¢;||,,,
or weakly in terms of distribution of L? mass.
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Quantum unique ergodicity

@ X: compact manifold of negative sectional curvature
e {¢;}: orthonormal basis of eigenfunctions of Ax, eigenvalues \;
@ ¢; quantize the billiard dynamics in X (chaotic due to curvature)

o (Berry, 1977) The ¢; are expected to behave like random waves in the
high energy limit \; — oo.

o This can for instance be interpreted on average via the norms |[¢; ||,
or weakly in terms of distribution of L? mass.

QUE conjecture (Rudnick and Sarnak, 1994)

The probability measures ji; = |¢;|?d volx converge in the weak-* topology
to dvolx.
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Arithmetic quantum unique ergodicity (AQUE)

@ Conjecture remains wide open, but progress has been made for
arithmetic manifolds: X = I'\G/K, with I a congruence lattice.

e Ex: I' = SLy(Z), X =T"\Hy (we drop the compactness assumption).

@ Here one can leverage the algebra of Hecke operators T}, which
commute with A.

o Extra arithmetic assumption: the ¢; are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence p; = |#;|2d volx is of the
form ¢ - dvolx for some ¢ € [0,1].
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Arithmetic quantum unique ergodicity (AQUE)

@ Conjecture remains wide open, but progress has been made for
arithmetic manifolds: X = I'\G/K, with I a congruence lattice.

e Ex: I' = SLy(Z), X =T"\Hy (we drop the compactness assumption).

@ Here one can leverage the algebra of Hecke operators T}, which
commute with A.

o Extra arithmetic assumption: the ¢; are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence p; = |#;|2d volx is of the
form ¢ - dvolx for some ¢ € [0,1].

Theorem (Soundararajan, 2010)
We have ¢ = 1, so AQUE holds for I'\ Hj.
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@ Using the upper half-space model, the isometry group of H, can be
identified with a certain group SV,,_2(R) of (2 x 2)-matrices.
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have SV(Z) = SL2(Z) and SVi(Z) = SLa(Z]i]).

@ Non-escape of mass for X3 ~ SLy(Z[i])\SL2(C)/SU(2) was proved
by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
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Congruence quotients of H,

@ Using the upper half-space model, the isometry group of H, can be
identified with a certain group SV,,_2(R) of (2 x 2)-matrices.

e Consider AQUE on the arithmetic manifold X,, := SV,,_o(Z)\H,,. We
have SV(Z) = SL2(Z) and SVi(Z) = SLa(Z]i]).

@ Non-escape of mass for X3 ~ SLy(Z[i])\SL2(C)/SU(2) was proved
by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).

o Let H denote the Hamilton quaternions. Then
0 1
SVo(Z) =~ {g € Ma(H(Z)) : gJ g™ = T}, J = <_1 ()) :

Here (ao + a1t + agj + agk‘)* = ag + a1t + azj — ask.
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Congruence quotients of H,

@ Using the upper half-space model, the isometry group of H, can be
identified with a certain group SV,,_2(R) of (2 x 2)-matrices.

e Consider AQUE on the arithmetic manifold X,, := SV,,_o(Z)\H,,. We
have SV(Z) = SL2(Z) and SVi(Z) = SLa(Z]i]).

@ Non-escape of mass for X3 ~ SLy(Z[i])\SL2(C)/SU(2) was proved
by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).

o Let H denote the Hamilton quaternions. Then
0 1
SVo(Z) =~ {g € Ma(H(Z)) : gJ g™ = T}, J = <_1 ()) :

Here (ao + a1t + agj + agk‘)* = ag + a1t + azj — ask.
e On X4 = SV5(Z)\Hy: no Watson-Ichino, violations to Ramanujan.
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Main result

Theorem (F. and Shem-Tov, 2024)

Let X4 = SV5(Z)\Hy4 and ¢; € L?(X) be a sequence of Hecke-Maass
forms with unit norm. Suppose the probability measures ji; = |¢;|?dvolx,
converge in the weak-x topology. Then the limit is a probability measure.
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forms with unit norm. Suppose the probability measures ji; = |¢;|?dvolx,
converge in the weak-x topology. Then the limit is a probability measure.

@ It was recently shown by Shem-Tov and Silberman (2024) that any
such limiting measure must be a countable linear combination of
dvolx, and the Riemannian measures of totally geodesic hyperbolic
submanifolds of codimension 1.
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Main result

Theorem (F. and Shem-Tov, 2024)

Let X4 = SV5(Z)\Hy4 and ¢; € L?(X) be a sequence of Hecke-Maass
forms with unit norm. Suppose the probability measures ji; = |¢;|?dvolx,
converge in the weak-x topology. Then the limit is a probability measure.

@ It was recently shown by Shem-Tov and Silberman (2024) that any
such limiting measure must be a countable linear combination of
dvolx, and the Riemannian measures of totally geodesic hyperbolic
submanifolds of codimension 1.

e AQUE for X, essentially reduces to ruling out measure concentration
on orbits of SLy(C) inside SV5(R).
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Non-escape of mass for SLy(Z)

@ A Hecke-Maass cusp form ¢ on SLy(Z)\Hs has a Fourier expansion

(SL‘—FZ:(/ \/> Z 7”L ir 27T|7”L|y) ( )

0#n€Z
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Non-escape of mass for SLy(Z)

@ A Hecke-Maass cusp form ¢ on SLy(Z)\Hs has a Fourier expansion
Sz +iy) =y Y a(n)Ki(2n|nly)e(nz).
0#n€Z

@ Let A\(m) denote the eigenvalue of ¢ for T),,. For each prime p,

Ama(n) = >~ a (),

dl(m.m)
A(p)a(n) = a(np) + a(n/p),
Ap)? = A(p°) + 1.
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Non-escape of mass for SLy(Z)

@ A Hecke-Maass cusp form ¢ on SLy(Z)\Hs has a Fourier expansion
Sz +iy) =y Y a(n)Ki(2n|nly)e(nz).
0#n€Z

@ Let A\(m) denote the eigenvalue of ¢ for T),,. For each prime p,

Ama(n) = >~ a (),

d|(m,n)
A(p)a(n) = a(np) + a(n/p),
Ap)? = A(p°) + 1.

Theorem (Soundararajan, 2010)

For any 1 <y <z,

S Ja(n)[? < 108 (1+1°gy) S lan
n<””

n<x
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Deduction of non-escape of mass for SLy(7Z)

e Normalize so that ||¢||, = 1. Fourier-expanding

') 1 d d
Ir(9) == /T /0 oo + )5

with 7' > 1,
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Deduction of non-escape of mass for SLy(7Z)

e Normalize so that ||¢||, = 1. Fourier-expanding

') 1 T
Ir() = /T /0 (a + iy 2L

y2
with T > 1,
() =2 (3 tator) (2P
Therefore
Ir(g) < 10° (Mﬁ:”) 1(6) < 10° (mﬁ)
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Non-escape of mass for SV5(Z)

@ A Hecke-Maass cusp form ¢ on SV2(Z)\H4 has a Fourier expansion

¢($1,$2,I3, _y3/2 Z A Ky 27r|/3|y) (< >)

0#£B€Z3
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Non-escape of mass for SV5(Z)

@ A Hecke-Maass cusp form ¢ on SV2(Z)\H4 has a Fourier expansion

¢($1,I2,I3, _y3/2 Z A Kiy 27T|,3|y) (< >)

0#£B€Z3

Theorem (F. and Shem-Tov, 2024)

There exist absolute constants C' and R such that for any 1 <y < z,

S 1A() |2<cl+11‘;§y 3 14(8)

1BIP<% 182 <z
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e Want to show (roughly) that s(z/y) < S\(/?.

@ Since A(p)? = A(p?) + 1, can choose a large set P of primes p = VY
such that |[A(p)[? or |[A\(p?)|? localizes around some value L > 1.
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The proof for SLy(Z): setup

s(z) = Z la(n)|? and A(m)a(n) = Z a <%> .

n<z d|(m,n)

e Want to show (roughly) that s(z/y) < S\(/ag.

@ Since A(p)? = A(p?) + 1, can choose a large set P of primes p = VY
such that [\(p)|? or |A(p?)|? localizes around some value L > 1.

o For the simplest case, let us assume that |A(p)|* < L for all p < \/y.
o Let M(K) :={n € N : there are < K primes p € P such that p | n}.
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The proof for SLy(Z): setup

s(z) = Z la(n)|? and A(m)a(n) = Z a <%> .

n<z d|(m,n)

e Want to show (roughly) that s(z/y) < S\(/ag.

@ Since A(p)? = A(p?) + 1, can choose a large set P of primes p = VY
such that [\(p)|? or |A(p?)|? localizes around some value L > 1.

o For the simplest case, let us assume that |A(p)|* < L for all p < \/y.
o Let M(K) :={n € N : there are < K primes p € P such that p | n}.

@ Break the sum s(z/y) into two parts s<¥(2/y) and s2X (x/y)
depending on whether n € M(K) or not.
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.

g= Y |a<n>|2-(2|x<p>|2>.
P=\y

n<z

#{p=\/y : pln} < K pin
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.

£ = > |a<n>|2-(vzf|x<p>|2>.

n<z

#{p=\/y : pln} < K pin

&> L (#p= v} — K) - s°K (z) ~ Lyy-s<K <§>
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.

E= > 'a(m'Q'(Z,'“p)'Q)'

n<z

#{p=\/y : pln} < K pin

&> L (#p= v} — K) - s°K (z) ~ Lyy-s<K <§>

e Multiplying out, each term a(np) in € has multiplicity at most K, and

: : i <K+l (pz Lg<KEAL ([ =z
is contained in s <y>,so€<<K s (\/g)
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.

E= > 'a(m'Q'(Z,'“p)'Q)'

n<z

#{p=\/y : pln} < K pin

&> L (#p= v} — K) - s°K (z) ~ Lyy-s<K <§>

e Multiplying out, each term a(np) in € has multiplicity at most K, and

is contained in s<X+1 <%> so0 & <« K - s<KHL (%) Therefore,

<K (y) - ij@ g <¢@7) - (;j@) s(a).
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The proof for SLy(Z): amplification

o Let us start with s<(z/y). Recall |A\(p)|? < L > 1 for p < /3.

E= > 'a(m'Q'(Z,'“p)'Q)'

n<z

#{p=y7 : pln} < K pin

&> L (#p= v} — K) - s°K (z) ~ Lyy-s<K <§>

e Multiplying out, each term a(np) in € has multiplicity at most K, and

is contained in s<X+1 <%) so0 & <« K - s<KHL (%) Therefore,

K x K \?
s<K (m) &« —— . g KHL <) < <> - s(x).
y) Ly VY Lvy )
o This succeeds if K < Ly'/*.
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The proof for SLy(Z): highly divisible terms

@ For the elements a(n) in s2%(2/y), n is a multiple of some product
d=p1--pr of K primes p; < ,/y. There are ~ (\I/(ﬂ) options for
d~ (/y)", and each one contributes

3 a0t (55) <1 ()
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The proof for SLy(Z): highly divisible terms

@ For the elements a(n) in s2%(2/y), n is a multiple of some product
d=p1--pr of K primes p; < ,/y. There are ~ (\I/(ﬂ) options for
d~ (/y)", and each one contributes

3 a0t (55) <1 ()

e Fix z and use induction for the shorter sum s(z/y(y/y)%), leading to

K ("’y“) < (}?)LK.S (y(\/xg)K> < <1I(;;/1§/4L>K S\(/?.
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The proof for SLy(Z): highly divisible terms

@ For the elements a(n) in s2%(2/y), n is a multiple of some product
d=p1--pr of K primes p; < ,/y. There are ~ (\I/(ﬂ) options for
d~ (/y)", and each one contributes

5 i (2) -2 ().

m<z

e Fix z and use induction for the shorter sum s(z/y(y/y)%), leading to

10,/yL\*
= (5) = () (Gm) = () 7
y K y(Vy) Kyl/ VY
o This succeeds if K > 20Ly'/4, which is consistent with the previous
restriction K < Ly'/4.
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The proof for SLy(Z): highly divisible terms

@ For the elements a(n) in s2%(2/y), n is a multiple of some product
d=p1--pr of K primes p; < ,/y. There are ~ (\I/(ﬂ) options for
d~ (/y)", and each one contributes

5 i (2) -2 ().

m<z

e Fix z and use induction for the shorter sum s(z/y(y/y)%), leading to

10,/yL\*
= (5) = () (Gm) = () 7
y K y(Vy) Kyl/ VY
o This succeeds if K > 20Ly'/4, which is consistent with the previous
restriction K < Ly'/4.

@ The case when one must use the \(p?) is similar.
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The proof for SV5(Z): Hecke theory

@ For each prime p > 2, there are two (algebraically independent) Hecke
operators 17 (p) and T(p), which commute with each other.
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The proof for SV5(Z): Hecke theory

@ For each prime p > 2, there are two (algebraically independent) Hecke
operators 17 (p) and T(p), which commute with each other.

@ We define a third (natural) Hecke operator T5(p), such that if Ay(p)
denotes the eigenvalue of ¢ for Ty(p), then we have a relation

Ai(p)® = Xa(p) — As(p) ~ 1.
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The proof for SV5(Z): Hecke theory

@ For each prime p > 2, there are two (algebraically independent) Hecke
operators 17 (p) and T(p), which commute with each other.

@ We define a third (natural) Hecke operator T5(p), such that if Ay(p)
denotes the eigenvalue of ¢ for Ty(p), then we have a relation

Ai(p)® = Xa(p) — As(p) ~ 1.

e max/ |\¢(p)|? > 1, so there will be some ¢ and a large set P of primes
p = y"/8 such that |\o(p)|? < L > 1.

Alex de Faveri Shanks conference



The proof for SV5(Z): Hecke theory

@ For each prime p > 2, there are two (algebraically independent) Hecke
operators 17 (p) and T(p), which commute with each other.

@ We define a third (natural) Hecke operator T5(p), such that if Ay(p)
denotes the eigenvalue of ¢ for Ty(p), then we have a relation

Ai(p)® = Xa(p) — As(p) ~ 1.

e max/ |\¢(p)|? > 1, so there will be some ¢ and a large set P of primes
p = y"/8 such that |\o(p)|? < L > 1.
o M(K) := {ﬁ € 73 : there are < K primes p € P such that p | ﬁ}.
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The proof for SV5(Z): Hecke theory

@ For each prime p > 2, there are two (algebraically independent) Hecke
operators 17 (p) and T(p), which commute with each other.

@ We define a third (natural) Hecke operator T5(p), such that if Ay(p)
denotes the eigenvalue of ¢ for Ty(p), then we have a relation

A1(p)? — Xa(p) — As(p) =~

e max/ |\¢(p)|? > 1, so there will be some ¢ and a large set P of primes
p = y"/8 such that |\o(p)|? < L > 1.

o M(K) := {ﬁ € 73 : there are < K primes p € P such that p | ﬂ}.
@ Break the sum
S(z/y) = > |A(B
1B2<%

into two parts S<X(x/y) and S=X(x/y) depending on whether
n € M(K) or not.
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The proof for SV5(Z): amplification with A;(p)
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The proof for SV5(Z): amplification with A;(p)

o Let us assume |A1(p)|? < 1 for all p < y!/8.
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The proof for SV5(Z): amplification with A;(p)

o Let us assume |A1(p)|? < 1 for all p < y!/8.

o Identify 8 € Z3 with B = byi + boj + bgk. We have the Hecke relation

MAG) = Aps) + A (2) + 2 57 4(20),

|o2=p
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The proof for SV5(7Z): amplification with A;(p)

’ 2

o Let us assume |A1(p)|? < 1 for all p < y!/8.
o Identify 8 € Z3 with B = byi + boj + bgk. We have the Hecke relation

M@AE) ~ A + 4 (2) 4+ 50 a (0.

VP |a[2=p p
o To treat SZX we need bounds of the shape Z IA(pB)*> < S(2).
18I?<z
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The proof for SV5(7Z): amplification with A;(p)

o Let us assume |A1(p)|? < 1 for all p < y!/8.

o Identify 8 € Z3 with B = byi + boj + bgk. We have the Hecke relation
1 afa
M@AE) ~ A + 4 (2) 4+ 50 a (0.

VP |a[2=p p
o To treat SZX we need bounds of the shape Z IA(pB)*> < S(2).
18I?<z

o Let I(B) = {a: |a|?> = p and v,(aBa) > v,(B)}. Then |I(B)| < 16.
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The proof for SV5(7Z): amplification with A;(p)

o Let us assume |A1(p)|? < 1 for all p < y!/8.

o Identify 8 € Z3 with B = byi + boj + bgk. We have the Hecke relation

A(p)A(B) = A(pB) + A <§) + \;ﬁ 2 A (O‘?)‘> .

o To treat SZX we need bounds of the shape Z IA(pB)*> < S(2).
18I?<z
o Let I(B) = {a: |a|?> = p and v,(aBa) > v,(B)}. Then |I(B)| < 16.

o Using ,
< Z ‘A (aﬂa)‘ Z (aﬁa)
a€cl(B) p p

> (%) |

|af?>=p
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The proof for SV5(7Z): amplification with A;(p)

o Let us assume |A1(p)|? < 1 for all p < y!/8.

o Identify 8 € Z3 with B = byi + boj + bgk. We have the Hecke relation
1 afa
M@AE) ~ A + 4 (2) 4+ 50 a (0.

VP |a[2=p p
o To treat SZX we need bounds of the shape Z IA(pB)*> < S(2).
18I2<=
o Let I(B) = {a: |a|?> = p and v,(aBa) > v,(B)}. Then |I(B)| < 16.
o Using
2
ba afa afa 2
S =<3 ) 2 b))
af=p P aci(p) N P P
Ly s (‘W‘) < 3 (MO 4 o) 142 < s
2 Z).
|6|2<z la|2=p [6]2<= p
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The proof for SV4(Z): using A2(p)

@ Let us now assume |1 (p)| << 1 and |A2(p)|> < L > 1 for all
- ,,1/8
p=yr.
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The proof for SV4(Z): using A2(p)

@ Let us now assume |1 (p)| << 1 and |A2(p)|> < L > 1 for all
p = y1/8. The Hecke relations are

M@AE) ~ A5+ 4 (2) 4+ 2 50 (0.

VPRl NP
MlpAG) ~ > Atasm)+a (7).

al?=p
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The proof for SV4(Z): using A2(p)

@ Let us now assume |1 (p)| << 1 and |A2(p)|> < L > 1 for all
p = y1/8. The Hecke relations are

M@AE) ~ A5 + 4 () + 4 (“2%).

Na(p)A(B) ~ \}ﬁ 3 [A (afia) + A (Off)} -

|2=p

|o|2=p

IA(B)|2-< > IAz(p)|2>

1B2<% p=y'/®
BEM(K) piB
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The proof for SV4(Z): using A2(p)

@ Let us now assume |1 (p)| << 1 and |A2(p)|> < L > 1 for all
p = y1/8. The Hecke relations are

M@AE) ~ A5 + 4 () + 4 (“2%).

Na(p)A(B) ~ \}ﬁ 3 [A (afia) + A (Off)} -

|2=p

|o|2=p

IA(B)|2-< > IAz(p)|2>

182 <% p=y'/®
BEM(K) B

Cauchy-Schwarz is a bad move here due to the A(afa).
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The proof for SV4(Z): using A2(p)

@ Let us now assume |1 (p)| << 1 and |A2(p)|> < L > 1 for all
p = y1/8. The Hecke relations are

M@AE) ~ A5 + 4 () + v > 4 (“2%).

Xa(p)A(B) = jﬁ | |§; { (afa) + 4 <afa)} |

Ly'/8 . §<K (x) < Z < Z |A2(p )
Y pP<z J/s

BEM(K) pfﬁ

Cauchy-Schwarz is a bad move here due to the A(af@). Instead, observe

A2(p)A(B) =~ A1 (p)A(pB) — A(p*B) — A(B),
A2(P)A(B) = Aa(p)A(P*B) + M (p)A(P*B) — A(p*B) — A(p*B).




The proof for SV5(Z): endgame

@ Denote g(y) = % 1/8
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The proof for SV5(Z): endgame

@ Denote g(y) = %yl/& We end up showing a recursive inequality

roughly of the shape

9(y) < ig (yl_%) +e ). g <y1+bn(y))
n=1

for some explicit b, (y) — oo as y — oc.
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The proof for SV5(Z): endgame

@ Denote g(y) = %yl/& We end up showing a recursive inequality

roughly of the shape

9(y) < ig (yl_%) +e . g <y1+bn(y))
n=1

for some explicit b, (y) — oo as y — oc.

@ One can check that this implies

g9(y) < C(1+1logy)"

for some absolute constants C, R (in general they would depend only
on the functions by,).
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Thank you!
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