Non-escape of mass for automorphic forms in hyperbolic 4-manifolds

Alexandre de Faveri
(joint work with Zvi Shem-Tov)

Stanford University
Shanks Conference Series

Quantum unique ergodicity

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature
- $\left\{\phi_{i}\right\}$: orthonormal basis of eigenfunctions of Δ_{X}, eigenvalues λ_{i}

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature
- $\left\{\phi_{i}\right\}$: orthonormal basis of eigenfunctions of Δ_{X}, eigenvalues λ_{i}
- ϕ_{i} quantize the billiard dynamics in X (chaotic due to curvature)

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature
- $\left\{\phi_{i}\right\}$: orthonormal basis of eigenfunctions of Δ_{X}, eigenvalues λ_{i}
- ϕ_{i} quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_{i} are expected to behave like random waves in the high energy limit $\lambda_{i} \rightarrow \infty$.

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature
- $\left\{\phi_{i}\right\}$: orthonormal basis of eigenfunctions of Δ_{X}, eigenvalues λ_{i}
- ϕ_{i} quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_{i} are expected to behave like random waves in the high energy limit $\lambda_{i} \rightarrow \infty$.
- This can for instance be interpreted on average via the norms $\left\|\phi_{i}\right\|_{p}$, or weakly in terms of distribution of L^{2} mass.

Quantum unique ergodicity

- X : compact manifold of negative sectional curvature
- $\left\{\phi_{i}\right\}$: orthonormal basis of eigenfunctions of Δ_{X}, eigenvalues λ_{i}
- ϕ_{i} quantize the billiard dynamics in X (chaotic due to curvature)
- (Berry, 1977) The ϕ_{i} are expected to behave like random waves in the high energy limit $\lambda_{i} \rightarrow \infty$.
- This can for instance be interpreted on average via the norms $\left\|\phi_{i}\right\|_{p}$, or weakly in terms of distribution of L^{2} mass.

QUE conjecture (Rudnick and Sarnak, 1994)

The probability measures $\mu_{i}=\left|\phi_{i}\right|^{2} d \mathrm{vol}_{X}$ converge in the weak-* topology to $d \operatorname{vol}_{X}$.

Arithmetic quantum unique ergodicity (AQUE)

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.
- Ex: $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), X=\Gamma \backslash \mathbb{H}_{2}$ (we drop the compactness assumption).

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.
- Ex: $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), X=\Gamma \backslash \mathbb{H}_{2}$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_{p}, which commute with Δ.

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.
- Ex: $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), X=\Gamma \backslash \mathbb{H}_{2}$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_{p}, which commute with Δ.
- Extra arithmetic assumption: the ϕ_{i} are also Hecke eigenfunctions.

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.
- Ex: $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), X=\Gamma \backslash \mathbb{H}_{2}$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_{p}, which commute with Δ.
- Extra arithmetic assumption: the ϕ_{i} are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence $\mu_{i}=\left|\phi_{i}\right|^{2} d \mathrm{vol}_{X}$ is of the form $c \cdot d \operatorname{vol}_{X}$ for some $c \in[0,1]$.

Arithmetic quantum unique ergodicity (AQUE)

- Conjecture remains wide open, but progress has been made for arithmetic manifolds: $X=\Gamma \backslash G / K$, with Γ a congruence lattice.
- Ex: $\Gamma=\mathrm{SL}_{2}(\mathbb{Z}), X=\Gamma \backslash \mathbb{H}_{2}$ (we drop the compactness assumption).
- Here one can leverage the algebra of Hecke operators T_{p}, which commute with Δ.
- Extra arithmetic assumption: the ϕ_{i} are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence $\mu_{i}=\left|\phi_{i}\right|^{2} d \mathrm{vol}_{X}$ is of the form $c \cdot d \operatorname{vol}_{X}$ for some $c \in[0,1]$.

Theorem (Soundararajan, 2010)

We have $c=1$, so AQUE holds for $\Gamma \backslash \mathbb{H}_{2}$.

Congruence quotients of \mathbb{H}_{n}

Congruence quotients of \mathbb{H}_{n}

- Using the upper half-space model, the isometry group of \mathbb{H}_{n} can be identified with a certain group $S V_{n-2}(\mathbb{R})$ of (2×2)-matrices.

Congruence quotients of \mathbb{H}_{n}

- Using the upper half-space model, the isometry group of \mathbb{H}_{n} can be identified with a certain group $S V_{n-2}(\mathbb{R})$ of (2×2)-matrices.
- Consider AQUE on the arithmetic manifold $X_{n}:=S V_{n-2}(\mathbb{Z}) \backslash \mathbb{H}_{n}$. We have $S V_{0}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z})$ and $S V_{1}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}[i])$.

Congruence quotients of \mathbb{H}_{n}

- Using the upper half-space model, the isometry group of \mathbb{H}_{n} can be identified with a certain group $S V_{n-2}(\mathbb{R})$ of (2×2)-matrices.
- Consider AQUE on the arithmetic manifold $X_{n}:=S V_{n-2}(\mathbb{Z}) \backslash \mathbb{H}_{n}$. We have $S V_{0}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z})$ and $S V_{1}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}[i])$.
- Non-escape of mass for $X_{3} \simeq S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).

Congruence quotients of \mathbb{H}_{n}

- Using the upper half-space model, the isometry group of \mathbb{H}_{n} can be identified with a certain group $S V_{n-2}(\mathbb{R})$ of (2×2)-matrices.
- Consider AQUE on the arithmetic manifold $X_{n}:=S V_{n-2}(\mathbb{Z}) \backslash \mathbb{H}_{n}$. We have $S V_{0}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z})$ and $S V_{1}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}[i])$.
- Non-escape of mass for $X_{3} \simeq S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
- Let \mathbf{H} denote the Hamilton quaternions. Then

$$
S V_{2}(\mathbb{Z}) \simeq\left\{g \in M_{2}(\mathbf{H}(\mathbb{Z})): g J g^{* t}=J\right\}, \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Here $\left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)^{*}=a_{0}+a_{1} i+a_{2} j-a_{3} k$.

Congruence quotients of \mathbb{H}_{n}

- Using the upper half-space model, the isometry group of \mathbb{H}_{n} can be identified with a certain group $S V_{n-2}(\mathbb{R})$ of (2×2)-matrices.
- Consider AQUE on the arithmetic manifold $X_{n}:=S V_{n-2}(\mathbb{Z}) \backslash \mathbb{H}_{n}$. We have $S V_{0}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z})$ and $S V_{1}(\mathbb{Z})=\mathrm{SL}_{2}(\mathbb{Z}[i])$.
- Non-escape of mass for $X_{3} \simeq S L_{2}(\mathbb{Z}[i]) \backslash S L_{2}(\mathbb{C}) / S U(2)$ was proved by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
- Let \mathbf{H} denote the Hamilton quaternions. Then

$$
S V_{2}(\mathbb{Z}) \simeq\left\{g \in M_{2}(\mathbf{H}(\mathbb{Z})): g J g^{* t}=J\right\}, \quad J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Here $\left(a_{0}+a_{1} i+a_{2} j+a_{3} k\right)^{*}=a_{0}+a_{1} i+a_{2} j-a_{3} k$.

- On $X_{4}=S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$: no Watson-Ichino, violations to Ramanujan.

Main result

Main result

Theorem (F. and Shem-Tov, 2024)

Let $X_{4}=S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$ and $\phi_{i} \in L^{2}(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_{i}=\left|\phi_{i}\right|^{2} d$ vol $_{X_{4}}$ converge in the weak-* topology. Then the limit is a probability measure.

Main result

Theorem (F. and Shem-Tov, 2024)

Let $X_{4}=S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$ and $\phi_{i} \in L^{2}(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_{i}=\left|\phi_{i}\right|^{2} d$ vol $_{X_{4}}$ converge in the weak-* topology. Then the limit is a probability measure.

- It was recently shown by Shem-Tov and Silberman (2024) that any such limiting measure must be a countable linear combination of $d \mathrm{vol}_{X_{4}}$ and the Riemannian measures of totally geodesic hyperbolic submanifolds of codimension 1 .

Main result

Theorem (F. and Shem-Tov, 2024)

Let $X_{4}=S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$ and $\phi_{i} \in L^{2}(X)$ be a sequence of Hecke-Maass forms with unit norm. Suppose the probability measures $\mu_{i}=\left|\phi_{i}\right|^{2} d$ vol $_{X_{4}}$ converge in the weak-* topology. Then the limit is a probability measure.

- It was recently shown by Shem-Tov and Silberman (2024) that any such limiting measure must be a countable linear combination of $d \mathrm{vol}_{X_{4}}$ and the Riemannian measures of totally geodesic hyperbolic submanifolds of codimension 1.
- AQUE for X_{4} essentially reduces to ruling out measure concentration on orbits of $\mathrm{SL}_{2}(\mathbb{C})$ inside $S V_{2}(\mathbb{R})$.

Non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

Non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

- A Hecke-Maass cusp form ϕ on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{2}$ has a Fourier expansion

$$
\phi(x+i y)=\sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{i r}(2 \pi|n| y) e(n x) .
$$

Non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

- A Hecke-Maass cusp form ϕ on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{2}$ has a Fourier expansion

$$
\phi(x+i y)=\sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{i r}(2 \pi|n| y) e(n x) .
$$

- Let $\lambda(m)$ denote the eigenvalue of ϕ for T_{m}. For each prime p,

$$
\begin{aligned}
\lambda(m) a(n) & =\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right), \\
\lambda(p) a(n) & =a(n p)+a(n / p), \\
\lambda(p)^{2} & =\lambda\left(p^{2}\right)+1 .
\end{aligned}
$$

Non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

- A Hecke-Maass cusp form ϕ on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathbb{H}_{2}$ has a Fourier expansion

$$
\phi(x+i y)=\sqrt{y} \sum_{0 \neq n \in \mathbb{Z}} a(n) K_{i r}(2 \pi|n| y) e(n x) .
$$

- Let $\lambda(m)$ denote the eigenvalue of ϕ for T_{m}. For each prime p,

$$
\begin{aligned}
\lambda(m) a(n) & =\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right), \\
\lambda(p) a(n) & =a(n p)+a(n / p), \\
\lambda(p)^{2} & =\lambda\left(p^{2}\right)+1
\end{aligned}
$$

Theorem (Soundararajan, 2010)

For any $1 \leq y \leq x$,

$$
\sum_{n \leq \frac{x}{y}}|a(n)|^{2} \leq 10^{8}\left(\frac{1+\log y}{\sqrt{y}}\right) \sum_{n \leq x}|a(n)|^{2} .
$$

Deduction of non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

Deduction of non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

- Normalize so that $\|\phi\|_{2}=1$. Fourier-expanding

$$
I_{T}(\phi):=\int_{T}^{\infty} \int_{0}^{1}|\phi(x+i y)|^{2} \frac{d x d y}{y^{2}}
$$

with $T \geq 1$,

$$
I_{T}(\phi)=2 \int_{1}^{\infty}\left(\sum_{n \leq \frac{y}{T}}|a(n)|^{2}\right) \cdot\left|K_{i r}(2 \pi y)\right|^{2} \frac{d y}{y}
$$

Deduction of non-escape of mass for $\mathrm{SL}_{2}(\mathbb{Z})$

- Normalize so that $\|\phi\|_{2}=1$. Fourier-expanding

$$
I_{T}(\phi):=\int_{T}^{\infty} \int_{0}^{1}|\phi(x+i y)|^{2} \frac{d x d y}{y^{2}}
$$

with $T \geq 1$,

$$
I_{T}(\phi)=2 \int_{1}^{\infty}\left(\sum_{n \leq \frac{y}{T}}|a(n)|^{2}\right) \cdot\left|K_{i r}(2 \pi y)\right|^{2} \frac{d y}{y}
$$

Therefore

$$
I_{T}(\phi) \leq 10^{8}\left(\frac{1+\log T}{\sqrt{T}}\right) I_{1}(\phi) \leq 10^{8}\left(\frac{1+\log T}{\sqrt{T}}\right)
$$

Non-escape of mass for $S V_{2}(\mathbb{Z})$

Non-escape of mass for $S V_{2}(\mathbb{Z})$

- A Hecke-Maass cusp form ϕ on $S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$ has a Fourier expansion

$$
\phi\left(x_{1}, x_{2}, x_{3}, y\right)=y^{3 / 2} \sum_{0 \neq \beta \in \mathbb{Z}^{3}} A(\beta) K_{i r}(2 \pi|\beta| y) e(\langle\beta, x\rangle)
$$

Non-escape of mass for $S V_{2}(\mathbb{Z})$

- A Hecke-Maass cusp form ϕ on $S V_{2}(\mathbb{Z}) \backslash \mathbb{H}_{4}$ has a Fourier expansion

$$
\phi\left(x_{1}, x_{2}, x_{3}, y\right)=y^{3 / 2} \sum_{0 \neq \beta \in \mathbb{Z}^{3}} A(\beta) K_{i r}(2 \pi|\beta| y) e(\langle\beta, x\rangle)
$$

Theorem (F. and Shem-Tov, 2024)

There exist absolute constants C and R such that for any $1 \leq y \leq x$,

$$
\sum_{|\beta|^{2} \leq \frac{x}{y}}|A(\beta)|^{2} \leq C \frac{(1+\log y)^{R}}{y^{1 / 8}} \sum_{|\beta|^{2} \leq x}|A(\beta)|^{2}
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

- Want to show (roughly) that $s(x / y) \ll \frac{s(x)}{\sqrt{y}}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

- Want to show (roughly) that $s(x / y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^{2}=\lambda\left(p^{2}\right)+1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^{2}$ or $\left|\lambda\left(p^{2}\right)\right|^{2}$ localizes around some value $L \gg 1$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

- Want to show (roughly) that $s(x / y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^{2}=\lambda\left(p^{2}\right)+1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^{2}$ or $\left|\lambda\left(p^{2}\right)\right|^{2}$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^{2} \asymp L$ for all $p \asymp \sqrt{y}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

- Want to show (roughly) that $s(x / y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^{2}=\lambda\left(p^{2}\right)+1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^{2}$ or $\left|\lambda\left(p^{2}\right)\right|^{2}$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^{2} \asymp L$ for all $p \asymp \sqrt{y}$.
- Let $\mathcal{M}(K):=\{n \in \mathbb{N}$: there are $<K$ primes $p \in \mathcal{P}$ such that $p \mid n\}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: setup

$$
s(z):=\sum_{n \leq z}|a(n)|^{2} \quad \text { and } \quad \lambda(m) a(n)=\sum_{d \mid(m, n)} a\left(\frac{m n}{d^{2}}\right) .
$$

- Want to show (roughly) that $s(x / y) \ll \frac{s(x)}{\sqrt{y}}$.
- Since $\lambda(p)^{2}=\lambda\left(p^{2}\right)+1$, can choose a large set \mathcal{P} of primes $p \asymp \sqrt{y}$ such that $|\lambda(p)|^{2}$ or $\left|\lambda\left(p^{2}\right)\right|^{2}$ localizes around some value $L \gg 1$.
- For the simplest case, let us assume that $|\lambda(p)|^{2} \asymp L$ for all $p \asymp \sqrt{y}$.
- Let $\mathcal{M}(K):=\{n \in \mathbb{N}$: there are $<K$ primes $p \in \mathcal{P}$ such that $p \mid n\}$.
- Break the sum $s(x / y)$ into two parts $s^{<K}(x / y)$ and $s^{\geq K}(x / y)$ depending on whether $n \in \mathcal{M}(K)$ or not.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$
\mathcal{E}:=\sum_{\substack{n \leq z \\ \#\{p \asymp \sqrt{y}: p \mid n\}<K}}|a(n)|^{2} \cdot\left(\sum_{\substack{p \asymp \sqrt{y} \\ p \nmid n}}|\lambda(p)|^{2}\right) .
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$
\begin{gathered}
\mathcal{E}:=\sum_{\substack{n \leq z \\
\#\{p \asymp \sqrt{y}: p \mid n\}<K}}|a(n)|^{2} \cdot\left(\sum_{\substack{p \asymp \sqrt{y} \\
p \nmid n}}|\lambda(p)|^{2}\right) . \\
\mathcal{E} \gg L \cdot(\#\{p \asymp \sqrt{y}\}-K) \cdot s^{<K}\left(\frac{x}{y}\right) \approx L \sqrt{y} \cdot s^{<K}\left(\frac{x}{y}\right) .
\end{gathered}
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$
\begin{gathered}
\mathcal{E}:=\sum_{\substack{n \leq z \\
\#\{p \asymp \sqrt{y}: p \mid n\}<K}}|a(n)|^{2} \cdot\left(\sum_{\substack{p \asymp \sqrt{y} \\
p \nmid n}}|\lambda(p)|^{2}\right) . \\
\mathcal{E} \gg L \cdot(\#\{p \asymp \sqrt{y}\}-K) \cdot s^{<K}\left(\frac{x}{y}\right) \approx L \sqrt{y} \cdot s^{<K}\left(\frac{x}{y}\right) .
\end{gathered}
$$

- Multiplying out, each term $a(n p)$ in \mathcal{E} has multiplicity at most K, and is contained in $s^{<K+1}\left(\frac{p x}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{<K+1}\left(\frac{x}{\sqrt{y}}\right)$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$
\begin{gathered}
\mathcal{E}:=\sum_{\substack{n \leq z \\
\#\{p \asymp \sqrt{y}: p \mid n\}<K}}|a(n)|^{2} \cdot\left(\sum_{\substack{p \asymp \sqrt{y} \\
p \nmid n}}|\lambda(p)|^{2}\right) . \\
\mathcal{E} \gg L \cdot(\#\{p \asymp \sqrt{y}\}-K) \cdot s^{<K}\left(\frac{x}{y}\right) \approx L \sqrt{y} \cdot s^{<K}\left(\frac{x}{y}\right) .
\end{gathered}
$$

- Multiplying out, each term $a(n p)$ in \mathcal{E} has multiplicity at most K, and is contained in $s^{<K+1}\left(\frac{p x}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{<K+1}\left(\frac{x}{\sqrt{y}}\right)$. Therefore,

$$
s^{<K}\left(\frac{x}{y}\right) \ll \frac{K}{L \sqrt{y}} \cdot s^{<K+1}\left(\frac{x}{\sqrt{y}}\right) \ll\left(\frac{K}{L \sqrt{y}}\right)^{2} \cdot s(x) .
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: amplification

- Let us start with $s^{<K}(x / y)$. Recall $|\lambda(p)|^{2} \asymp L \gg 1$ for $p \asymp \sqrt{y}$.

$$
\begin{gathered}
\mathcal{E}:=\sum_{\substack{n \leq z \\
\#\{p \asymp \sqrt{y}: p \mid n\}<K}}|a(n)|^{2} \cdot\left(\sum_{\substack{p \asymp \sqrt{y} \\
p \nmid n}}|\lambda(p)|^{2}\right) . \\
\mathcal{E} \gg L \cdot(\#\{p \asymp \sqrt{y}\}-K) \cdot s^{<K}\left(\frac{x}{y}\right) \approx L \sqrt{y} \cdot s^{<K}\left(\frac{x}{y}\right) .
\end{gathered}
$$

- Multiplying out, each term $a(n p)$ in \mathcal{E} has multiplicity at most K, and is contained in $s^{<K+1}\left(\frac{p x}{y}\right)$, so $\mathcal{E} \ll K \cdot s^{<K+1}\left(\frac{x}{\sqrt{y}}\right)$. Therefore,

$$
s^{<K}\left(\frac{x}{y}\right) \ll \frac{K}{L \sqrt{y}} \cdot s^{<K+1}\left(\frac{x}{\sqrt{y}}\right) \ll\left(\frac{K}{L \sqrt{y}}\right)^{2} \cdot s(x) .
$$

- This succeeds if $K \ll L y^{1 / 4}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: highly divisible terms

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: highly divisible terms

- For the elements $a(n)$ in $s^{\geq K}(x / y), n$ is a multiple of some product $d=p_{1} \cdots p_{K}$ of K primes $p_{i} \asymp \sqrt{y}$. There are $\approx\binom{\sqrt{y}}{K}$ options for $d \approx(\sqrt{y})^{K}$, and each one contributes

$$
\sum_{m \leq \frac{x}{y d}}|a(d m)|^{2} \approx|\lambda(d)|^{2} \cdot s\left(\frac{x}{y d}\right) \approx L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) .
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: highly divisible terms

- For the elements $a(n)$ in $s^{\geq K}(x / y), n$ is a multiple of some product $d=p_{1} \cdots p_{K}$ of K primes $p_{i} \asymp \sqrt{y}$. There are $\approx\binom{\sqrt{y}}{K}$ options for $d \approx(\sqrt{y})^{K}$, and each one contributes

$$
\sum_{m \leq \frac{x}{y d}}|a(d m)|^{2} \approx|\lambda(d)|^{2} \cdot s\left(\frac{x}{y d}\right) \approx L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) .
$$

- Fix x and use induction for the shorter sum $s\left(x / y(\sqrt{y})^{K}\right)$, leading to

$$
s^{\geq K}\left(\frac{x}{y}\right) \ll\binom{\sqrt{y}}{K} L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) \ll\left(\frac{10 \sqrt{y} L}{K y^{1 / 4}}\right)^{K} \frac{s(x)}{\sqrt{y}} .
$$

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: highly divisible terms

- For the elements $a(n)$ in $s^{\geq K}(x / y), n$ is a multiple of some product $d=p_{1} \cdots p_{K}$ of K primes $p_{i} \asymp \sqrt{y}$. There are $\approx\binom{\sqrt{y}}{K}$ options for $d \approx(\sqrt{y})^{K}$, and each one contributes

$$
\sum_{m \leq \frac{x}{y d}}|a(d m)|^{2} \approx|\lambda(d)|^{2} \cdot s\left(\frac{x}{y d}\right) \approx L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right)
$$

- Fix x and use induction for the shorter sum $s\left(x / y(\sqrt{y})^{K}\right)$, leading to

$$
s^{\geq K}\binom{x}{y} \ll\binom{\sqrt{y}}{K} L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) \ll\left(\frac{10 \sqrt{y} L}{K y^{1 / 4}}\right)^{K} \frac{s(x)}{\sqrt{y}} .
$$

- This succeeds if $K \geq 20 L y^{1 / 4}$, which is consistent with the previous restriction $K \ll L y^{1 / 4}$.

The proof for $\mathrm{SL}_{2}(\mathbb{Z})$: highly divisible terms

- For the elements $a(n)$ in $s^{\geq K}(x / y), n$ is a multiple of some product $d=p_{1} \cdots p_{K}$ of K primes $p_{i} \asymp \sqrt{y}$. There are $\approx\binom{\sqrt{y}}{K}$ options for $d \approx(\sqrt{y})^{K}$, and each one contributes

$$
\sum_{m \leq \frac{x}{y d}}|a(d m)|^{2} \approx|\lambda(d)|^{2} \cdot s\left(\frac{x}{y d}\right) \approx L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) .
$$

- Fix x and use induction for the shorter sum $s\left(x / y(\sqrt{y})^{K}\right)$, leading to

$$
s^{\geq K}\binom{x}{y} \ll\binom{\sqrt{y}}{K} L^{K} \cdot s\left(\frac{x}{y(\sqrt{y})^{K}}\right) \ll\left(\frac{10 \sqrt{y} L}{K y^{1 / 4}}\right)^{K} \frac{s(x)}{\sqrt{y}} .
$$

- This succeeds if $K \geq 20 L y^{1 / 4}$, which is consistent with the previous restriction $K \ll L y^{1 / 4}$.
- The case when one must use the $\lambda\left(p^{2}\right)$ is similar.

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

- For each prime $p>2$, there are two (algebraically independent) Hecke operators $T_{1}(p)$ and $T_{2}(p)$, which commute with each other.

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

- For each prime $p>2$, there are two (algebraically independent) Hecke operators $T_{1}(p)$ and $T_{2}(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_{3}(p)$, such that if $\lambda_{\ell}(p)$ denotes the eigenvalue of ϕ for $T_{\ell}(p)$, then we have a relation

$$
\lambda_{1}(p)^{2}-\lambda_{2}(p)-\lambda_{3}(p) \approx 1
$$

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

- For each prime $p>2$, there are two (algebraically independent) Hecke operators $T_{1}(p)$ and $T_{2}(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_{3}(p)$, such that if $\lambda_{\ell}(p)$ denotes the eigenvalue of ϕ for $T_{\ell}(p)$, then we have a relation

$$
\lambda_{1}(p)^{2}-\lambda_{2}(p)-\lambda_{3}(p) \approx 1
$$

- $\max _{\ell}\left|\lambda_{\ell}(p)\right|^{2} \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1 / 8}$ such that $\left|\lambda_{\ell}(p)\right|^{2} \asymp L \gg 1$.

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

- For each prime $p>2$, there are two (algebraically independent) Hecke operators $T_{1}(p)$ and $T_{2}(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_{3}(p)$, such that if $\lambda_{\ell}(p)$ denotes the eigenvalue of ϕ for $T_{\ell}(p)$, then we have a relation

$$
\lambda_{1}(p)^{2}-\lambda_{2}(p)-\lambda_{3}(p) \approx 1
$$

- $\max _{\ell}\left|\lambda_{\ell}(p)\right|^{2} \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1 / 8}$ such that $\left|\lambda_{\ell}(p)\right|^{2} \asymp L \gg 1$.
- $\mathcal{M}(K):=\left\{\beta \in \mathbb{Z}^{3}\right.$: there are $<K$ primes $p \in \mathcal{P}$ such that $\left.p \mid \beta\right\}$.

The proof for $S V_{2}(\mathbb{Z})$: Hecke theory

- For each prime $p>2$, there are two (algebraically independent) Hecke operators $T_{1}(p)$ and $T_{2}(p)$, which commute with each other.
- We define a third (natural) Hecke operator $T_{3}(p)$, such that if $\lambda_{\ell}(p)$ denotes the eigenvalue of ϕ for $T_{\ell}(p)$, then we have a relation

$$
\lambda_{1}(p)^{2}-\lambda_{2}(p)-\lambda_{3}(p) \approx 1
$$

- $\max _{\ell}\left|\lambda_{\ell}(p)\right|^{2} \gg 1$, so there will be some ℓ and a large set \mathcal{P} of primes $p \asymp y^{1 / 8}$ such that $\left|\lambda_{\ell}(p)\right|^{2} \asymp L \gg 1$.
- $\mathcal{M}(K):=\left\{\beta \in \mathbb{Z}^{3}\right.$: there are $<K$ primes $p \in \mathcal{P}$ such that $\left.p \mid \beta\right\}$.
- Break the sum

$$
S(x / y):=\sum_{|\beta|^{2} \leq \frac{x}{y}}|A(\beta)|^{2}
$$

into two parts $S^{<K}(x / y)$ and $S^{\geq K}(x / y)$ depending on whether $n \in \mathcal{M}(K)$ or not.

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.
- Identify $\beta \in \mathbb{Z}^{3}$ with $\beta=b_{1} i+b_{2} j+b_{3} k$. We have the Hecke relation

$$
\lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right) .
$$

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.
- Identify $\beta \in \mathbb{Z}^{3}$ with $\beta=b_{1} i+b_{2} j+b_{3} k$. We have the Hecke relation

$$
\lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)
$$

- To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^{2} \leq z}|A(p \beta)|^{2} \ll S(z)$.

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.
- Identify $\beta \in \mathbb{Z}^{3}$ with $\beta=b_{1} i+b_{2} j+b_{3} k$. We have the Hecke relation

$$
\lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right) .
$$

- To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^{2} \leq z}|A(p \beta)|^{2} \ll S(z)$.
- Let $I(\beta)=\left\{\alpha:|\alpha|^{2}=p\right.$ and $\left.v_{p}(\alpha \beta \bar{\alpha})>v_{p}(\beta)\right\}$. Then $|I(\beta)| \leq 16$.

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.
- Identify $\beta \in \mathbb{Z}^{3}$ with $\beta=b_{1} i+b_{2} j+b_{3} k$. We have the Hecke relation

$$
\lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right) .
$$

- To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^{2} \leq z}|A(p \beta)|^{2} \ll S(z)$.
- Let $I(\beta)=\left\{\alpha:|\alpha|^{2}=p\right.$ and $\left.v_{p}(\alpha \beta \bar{\alpha})>v_{p}(\beta)\right\}$. Then $|I(\beta)| \leq 16$.
- Using

$$
\left|\sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2} \ll \sum_{\alpha \in I(\beta)}\left|A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2}+p \sum_{\alpha \notin I(\beta)}\left|A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2},
$$

The proof for $S V_{2}(\mathbb{Z})$: amplification with $\lambda_{1}(p)$

- Let us assume $\left|\lambda_{1}(p)\right|^{2} \asymp 1$ for all $p \asymp y^{1 / 8}$.
- Identify $\beta \in \mathbb{Z}^{3}$ with $\beta=b_{1} i+b_{2} j+b_{3} k$. We have the Hecke relation

$$
\lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right) .
$$

- To treat $S^{\geq K}$ we need bounds of the shape $\sum_{|\beta|^{2} \leq z}|A(p \beta)|^{2} \ll S(z)$.
- Let $I(\beta)=\left\{\alpha:|\alpha|^{2}=p\right.$ and $\left.v_{p}(\alpha \beta \bar{\alpha})>v_{p}(\beta)\right\}$. Then $|I(\beta)| \leq 16$.
- Using

$$
\left|\sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2} \ll \sum_{\alpha \in I(\beta)}\left|A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2}+p \sum_{\alpha \notin I(\beta)}\left|A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2},
$$

$\frac{1}{p} \sum_{|\beta|^{2} \leq z}\left|\sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right)\right|^{2} \ll \sum_{|\delta|^{2} \leq z}\left(\frac{m_{1}(\delta)}{p}+m_{2}(\delta)\right)|A(\delta)|^{2} \ll S(z)$.

The proof for $S V_{2}(\mathbb{Z})$: using $\lambda_{2}(p)$

- Let us now assume $\left|\lambda_{1}(p)\right| \lll 1$ and $\left|\lambda_{2}(p)\right|^{2} \asymp L \gg 1$ for all $p \asymp y^{1 / 8}$.

The proof for $S V_{2}(\mathbb{Z})$: using $\lambda_{2}(p)$

- Let us now assume $\left|\lambda_{1}(p)\right| \lll 1$ and $\left|\lambda_{2}(p)\right|^{2} \asymp L \gg 1$ for all $p \asymp y^{1 / 8}$. The Hecke relations are

$$
\begin{aligned}
& \lambda_{1}(p) A(\beta) \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right), \\
& \lambda_{2}(p) A(\beta) \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p}\left[A(\alpha \beta \bar{\alpha})+A\left(\frac{\alpha \beta \bar{\alpha}}{p^{2}}\right)\right] .
\end{aligned}
$$

The proof for $S V_{2}(\mathbb{Z})$: using $\lambda_{2}(p)$

- Let us now assume $\left|\lambda_{1}(p)\right| \lll 1$ and $\left|\lambda_{2}(p)\right|^{2} \asymp L \gg 1$ for all $p \asymp y^{1 / 8}$. The Hecke relations are

$$
\begin{aligned}
\lambda_{1}(p) A(\beta) & \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right), \\
\lambda_{2}(p) A(\beta) & \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p}\left[A(\alpha \beta \bar{\alpha})+A\left(\frac{\alpha \beta \bar{\alpha}}{p^{2}}\right)\right] . \\
L y^{1 / 8} \cdot S^{<K}\left(\frac{x}{y}\right) & \ll \sum_{\substack{|\beta|^{2} \leq \frac{x}{y} \\
\beta \in \mathcal{M}(K)}}|A(\beta)|^{2} \cdot\left(\sum_{\substack{p \asymp y^{1 / 8} \\
p \nmid \beta}}\left|\lambda_{2}(p)\right|^{2}\right)
\end{aligned}
$$

The proof for $S V_{2}(\mathbb{Z})$: using $\lambda_{2}(p)$

- Let us now assume $\left|\lambda_{1}(p)\right| \lll 1$ and $\left|\lambda_{2}(p)\right|^{2} \asymp L \gg 1$ for all $p \asymp y^{1 / 8}$. The Hecke relations are

$$
\begin{aligned}
\lambda_{1}(p) A(\beta) & \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right), \\
\lambda_{2}(p) A(\beta) & \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p}\left[A(\alpha \beta \bar{\alpha})+A\left(\frac{\alpha \beta \bar{\alpha}}{p^{2}}\right)\right] . \\
L y^{1 / 8} \cdot S^{<K}\left(\frac{x}{y}\right) & \ll \sum_{\substack{|\beta|^{2} \leq \frac{x}{y} \\
\beta \in \mathcal{M}(K)}}|A(\beta)|^{2} \cdot\left(\sum_{\substack{p \simeq y \neq 1 / 8 \\
p \nmid \beta}}\left|\lambda_{2}(p)\right|^{2}\right)
\end{aligned}
$$

Cauchy-Schwarz is a bad move here due to the $A(\alpha \beta \bar{\alpha})$.

The proof for $S V_{2}(\mathbb{Z})$: using $\lambda_{2}(p)$

- Let us now assume $\left|\lambda_{1}(p)\right| \lll 1$ and $\left|\lambda_{2}(p)\right|^{2} \asymp L \gg 1$ for all $p \asymp y^{1 / 8}$. The Hecke relations are

$$
\begin{aligned}
\lambda_{1}(p) A(\beta) & \approx A(p \beta)+A\left(\frac{\beta}{p}\right)+\frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p} A\left(\frac{\alpha \beta \bar{\alpha}}{p}\right), \\
\lambda_{2}(p) A(\beta) & \approx \frac{1}{\sqrt{p}} \sum_{|\alpha|^{2}=p}\left[A(\alpha \beta \bar{\alpha})+A\left(\frac{\alpha \beta \bar{\alpha}}{p^{2}}\right)\right] . \\
L y^{1 / 8} \cdot S^{<K}\left(\frac{x}{y}\right) & \ll \sum_{\substack{|\beta|^{2} \leq \frac{x}{y} \\
\beta \in \mathcal{M}(K)}}|A(\beta)|^{2} \cdot\left(\sum_{\substack{p \asymp y 1 / 8 \\
p \nmid \beta}}\left|\lambda_{2}(p)\right|^{2}\right)
\end{aligned}
$$

Cauchy-Schwarz is a bad move here due to the $A(\alpha \beta \bar{\alpha})$. Instead, observe

$$
\begin{aligned}
& \lambda_{2}(p) A(\beta) \approx \lambda_{1}(p) A(p \beta)-A\left(p^{2} \beta\right)-A(\beta) \\
& \lambda_{2}(p) A(\beta) \approx \lambda_{2}(p) A\left(p^{2} \beta\right)+\lambda_{1}(p) A\left(p^{3} \beta\right)-A\left(p^{4} \beta\right)-A\left(p^{2} \beta\right)
\end{aligned}
$$

The proof for $S V_{2}(\mathbb{Z})$: endgame

- Denote $g(y)=\frac{S(x / y)}{S(x)} y^{1 / 8}$.

The proof for $S V_{2}(\mathbb{Z})$: endgame

- Denote $g(y)=\frac{S(x / y)}{S(x)} y^{1 / 8}$. We end up showing a recursive inequality roughly of the shape

$$
g(y) \ll \sum_{n=1}^{4} g\left(y^{1-\frac{n}{4}}\right)+e^{-b_{n}(y)} \cdot g\left(y^{1+b_{n}(y)}\right)
$$

for some explicit $b_{n}(y) \rightarrow \infty$ as $y \rightarrow \infty$.

The proof for $S V_{2}(\mathbb{Z})$: endgame

- Denote $g(y)=\frac{S(x / y)}{S(x)} y^{1 / 8}$. We end up showing a recursive inequality roughly of the shape

$$
g(y) \ll \sum_{n=1}^{4} g\left(y^{1-\frac{n}{4}}\right)+e^{-b_{n}(y)} \cdot g\left(y^{1+b_{n}(y)}\right)
$$

for some explicit $b_{n}(y) \rightarrow \infty$ as $y \rightarrow \infty$.

- One can check that this implies

$$
g(y) \leq C(1+\log y)^{R}
$$

for some absolute constants C, R (in general they would depend only on the functions b_{n}).

Thank you!

