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Quantum unique ergodicity

X: compact manifold of negative sectional curvature
{ϕi}: orthonormal basis of eigenfunctions of ∆X , eigenvalues λi

ϕi quantize the billiard dynamics in X (chaotic due to curvature)
(Berry, 1977) The ϕi are expected to behave like random waves in the
high energy limit λi → ∞.
This can for instance be interpreted on average via the norms ∥ϕi∥p,
or weakly in terms of distribution of L2 mass.

QUE conjecture (Rudnick and Sarnak, 1994)

The probability measures µi = |ϕi|2d volX converge in the weak-∗ topology
to d volX .
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Arithmetic quantum unique ergodicity (AQUE)

Conjecture remains wide open, but progress has been made for
arithmetic manifolds: X = Γ\G/K, with Γ a congruence lattice.
Ex: Γ = SL2(Z), X = Γ\H2 (we drop the compactness assumption).
Here one can leverage the algebra of Hecke operators Tp, which
commute with ∆.
Extra arithmetic assumption: the ϕi are also Hecke eigenfunctions.

Theorem (Lindenstrauss, 2006)

Every weak-* limiting measure of the sequence µi = |ϕi|2d volX is of the
form c · d volX for some c ∈ [0, 1].

Theorem (Soundararajan, 2010)
We have c = 1, so AQUE holds for Γ\H2.
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Congruence quotients of Hn

Using the upper half-space model, the isometry group of Hn can be
identified with a certain group SVn−2(R) of (2× 2)-matrices.
Consider AQUE on the arithmetic manifold Xn := SVn−2(Z)\Hn. We
have SV0(Z) = SL2(Z) and SV1(Z) = SL2(Z[i]).
Non-escape of mass for X3 ≃ SL2(Z[i])\SL2(C)/SU(2) was proved
by Zaman (2012), and AQUE by Shem-Tov and Silberman (2022).
Let H denote the Hamilton quaternions. Then

SV2(Z) ≃
{
g ∈ M2(H(Z)) : gJg∗t = J

}
, J =

(
0 1
−1 0

)
.

Here (a0 + a1i+ a2j + a3k)
∗ = a0 + a1i+ a2j − a3k.

On X4 = SV2(Z)\H4: no Watson-Ichino, violations to Ramanujan.
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Main result

Theorem (F. and Shem-Tov, 2024)

Let X4 = SV2(Z)\H4 and ϕi ∈ L2(X) be a sequence of Hecke-Maass
forms with unit norm. Suppose the probability measures µi = |ϕi|2d volX4

converge in the weak-∗ topology. Then the limit is a probability measure.

It was recently shown by Shem-Tov and Silberman (2024) that any
such limiting measure must be a countable linear combination of
d volX4 and the Riemannian measures of totally geodesic hyperbolic
submanifolds of codimension 1.
AQUE for X4 essentially reduces to ruling out measure concentration
on orbits of SL2(C) inside SV2(R).
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Non-escape of mass for SL2(Z)

A Hecke-Maass cusp form ϕ on SL2(Z)\H2 has a Fourier expansion

ϕ(x+ iy) =
√
y
∑

0 ̸=n∈Z
a(n)Kir(2π|n|y)e(nx).

Let λ(m) denote the eigenvalue of ϕ for Tm. For each prime p,

λ(m)a(n) =
∑

d|(m,n)

a
(mn

d2

)
,

λ(p)a(n) = a(np) + a(n/p),

λ(p)2 = λ(p2) + 1.

Theorem (Soundararajan, 2010)
For any 1 ≤ y ≤ x,∑

n≤x
y

|a(n)|2 ≤ 108
(
1 + log y

√
y

)∑
n≤x

|a(n)|2.
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Deduction of non-escape of mass for SL2(Z)

Normalize so that ∥ϕ∥2 = 1. Fourier-expanding

IT (ϕ) :=

∫ ∞

T

∫ 1

0
|ϕ(x+ iy)|2 dx dy

y2

with T ≥ 1,

IT (ϕ) = 2

∫ ∞

1

( ∑
n≤ y

T

|a(n)|2
)
· |Kir(2πy)|2

dy

y
.

Therefore

IT (ϕ) ≤ 108
(
1 + log T√

T

)
I1(ϕ) ≤ 108

(
1 + log T√

T

)
.
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Non-escape of mass for SV2(Z)

A Hecke-Maass cusp form ϕ on SV2(Z)\H4 has a Fourier expansion

ϕ(x1, x2, x3, y) = y3/2
∑

0̸=β∈Z3

A(β)Kir(2π|β|y)e(⟨β, x⟩).

Theorem (F. and Shem-Tov, 2024)
There exist absolute constants C and R such that for any 1 ≤ y ≤ x,

∑
|β|2≤x

y

|A(β)|2 ≤ C
(1 + log y)R

y1/8

∑
|β|2≤x

|A(β)|2.
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The proof for SL2(Z): setup

s(z) :=
∑
n≤z

|a(n)|2 and λ(m)a(n) =
∑

d|(m,n)

a
(mn

d2

)
.

Want to show (roughly) that s(x/y) ≪ s(x)√
y .

Since λ(p)2 = λ(p2) + 1, can choose a large set P of primes p ≍ √
y

such that |λ(p)|2 or |λ(p2)|2 localizes around some value L ≫ 1.
For the simplest case, let us assume that |λ(p)|2 ≍ L for all p ≍ √

y.
Let M(K) := {n ∈ N : there are < K primes p ∈ P such that p | n}.
Break the sum s(x/y) into two parts s<K(x/y) and s≥K(x/y)
depending on whether n ∈ M(K) or not.
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The proof for SL2(Z): amplification

Let us start with s<K(x/y). Recall |λ(p)|2 ≍ L ≫ 1 for p ≍ √
y.

E :=
∑
n≤z

#{p≍√
y : p|n} < K

|a(n)|2 ·

( ∑
p≍√

y
p∤n

|λ(p)|2
)
.

E ≫ L ·
(
#{p ≍ √

y} −K
)
· s<K

(
x

y

)
≈ L

√
y · s<K

(
x

y

)
.

Multiplying out, each term a(np) in E has multiplicity at most K, and
is contained in s<K+1

(
px
y

)
, so E ≪ K · s<K+1

(
x√
y

)
. Therefore,

s<K

(
x

y

)
≪ K

L
√
y
· s<K+1

(
x
√
y

)
≪
(

K

L
√
y

)2

· s(x).

This succeeds if K ≪ Ly1/4.
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The proof for SL2(Z): highly divisible terms

For the elements a(n) in s≥K(x/y), n is a multiple of some product
d = p1 · · · pK of K primes pi ≍

√
y. There are ≈

(√y
K

)
options for

d ≈ (
√
y)K , and each one contributes

∑
m≤ x

yd

|a(dm)|2 ≈ |λ(d)|2 · s
(

x

yd

)
≈ LK · s

(
x

y(
√
y)K

)
.

Fix x and use induction for the shorter sum s(x/y(
√
y)K), leading to

s≥K

(
x

y

)
≪
(√

y

K

)
LK · s

(
x

y(
√
y)K

)
≪
(
10

√
yL

Ky1/4

)K s(x)
√
y
.

This succeeds if K ≥ 20Ly1/4, which is consistent with the previous
restriction K ≪ Ly1/4.
The case when one must use the λ(p2) is similar.
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The proof for SV2(Z): Hecke theory

For each prime p > 2, there are two (algebraically independent) Hecke
operators T1(p) and T2(p), which commute with each other.
We define a third (natural) Hecke operator T3(p), such that if λℓ(p)
denotes the eigenvalue of ϕ for Tℓ(p), then we have a relation

λ1(p)
2 − λ2(p)− λ3(p) ≈ 1.

maxℓ |λℓ(p)|2 ≫ 1, so there will be some ℓ and a large set P of primes
p ≍ y1/8 such that |λℓ(p)|2 ≍ L ≫ 1.
M(K) :=

{
β ∈ Z3 : there are < K primes p ∈ P such that p | β

}
.

Break the sum
S(x/y) :=

∑
|β|2≤x

y

|A(β)|2

into two parts S<K(x/y) and S≥K(x/y) depending on whether
n ∈ M(K) or not.
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The proof for SV2(Z): amplification with λ1(p)

Let us assume |λ1(p)|2 ≍ 1 for all p ≍ y1/8.
Identify β ∈ Z3 with β = b1i+ b2j + b3k. We have the Hecke relation

λ1(p)A(β) ≈ A(pβ) +A

(
β

p

)
+

1
√
p

∑
|α|2=p

A

(
αβα

p

)
.

To treat S≥K we need bounds of the shape
∑

|β|2≤z

|A(pβ)|2 ≪ S(z).

Let I(β) = {α : |α|2 = p and vp(αβα) > vp(β)}. Then |I(β)| ≤ 16.
Using∣∣∣∣∣∣
∑

|α|2=p

A

(
αβα

p

)∣∣∣∣∣∣
2

≪
∑

α∈I(β)

∣∣∣∣A(αβα

p

)∣∣∣∣2 + p
∑

α/∈I(β)

∣∣∣∣A(αβα

p

)∣∣∣∣2,
1

p

∑
|β|2≤z

∣∣∣∣∣∣
∑

|α|2=p

A

(
αβα

p

)∣∣∣∣∣∣
2

≪
∑

|δ|2≤z

(
m1(δ)

p
+m2(δ)

)
|A(δ)|2 ≪ S(z).
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The proof for SV2(Z): using λ2(p)

Let us now assume |λ1(p)| ≪ 1 and |λ2(p)|2 ≍ L ≫ 1 for all
p ≍ y1/8.

The Hecke relations are

λ1(p)A(β) ≈ A(pβ) +A

(
β

p

)
+

1
√
p

∑
|α|2=p

A

(
αβα

p

)
,

λ2(p)A(β) ≈
1
√
p

∑
|α|2=p

[
A (αβα) +A

(
αβα

p2

)]
.

Ly1/8 · S<K

(
x

y

)
≪

∑
|β|2≤x

y

β∈M(K)

|A(β)|2 ·

( ∑
p≍y1/8

p∤β

|λ2(p)|2
)

Cauchy-Schwarz is a bad move here due to the A(αβα). Instead, observe

λ2(p)A(β) ≈ λ1(p)A(pβ)−A(p2β)−A(β),

λ2(p)A(β) ≈ λ2(p)A(p2β) + λ1(p)A(p3β)−A(p4β)−A(p2β).
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The proof for SV2(Z): endgame

Denote g(y) = S(x/y)
S(x) y1/8.

We end up showing a recursive inequality
roughly of the shape

g(y) ≪
4∑

n=1

g
(
y1−

n
4

)
+ e−bn(y) · g

(
y1+bn(y)

)
for some explicit bn(y) → ∞ as y → ∞.
One can check that this implies

g(y) ≤ C(1 + log y)R

for some absolute constants C,R (in general they would depend only
on the functions bn).
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Thank you!

Alex de Faveri Shanks conference


