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Moments of the Riemann zeta function ζ(s)
Let I2k(T ) = 1

T

∫ T
0

∣∣ζ (1
2 + it

)∣∣2k dt.
• k = 1 : I2(T ) ∼ logT . (Hardy and Littlewood, 1918)

• k = 2 : I4(T ) ∼ 2a2
(log T )4

4! . (Ingham, 1926)
• k ≥ 3 : Asymptotic formulae are not proven. However, we

have a good conjecture.

I2k(T ) ∼ gkak
(logT )k

2

k2!
.

• ak
(log T )k

2

k2!
is easy to understand from

∑
n≤T

d2
k (n)
n ,

but gk is some constant that remains unsolved.
• When k ≥ 3, the moments are harder since ”off-diagonal

terms” also contribute.
• Conjecture: (e.g. Keating and Snaith (2000), )

g3 = 42, g4 = 24024, gk = k2!
k−1∏
j=0

j!

(k + j)!
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Dirichlet L-functions
For Re(s) > 1,

L(s, χ) =
∑
n≥1

χ(n)

ns
=
∏
p

(
1− χ(p)

ps

)−1

,

where χ is a primitive Dirichlet character modulo q.
The moments of this family behave similarly to the moments of
the ζ(1/2 + it).

Notation
•
∑∗

is the sum over all primitive characters mod q.

• φ∗(q) is number of primitive characters mod q.

• Moments of L(s, χ) is defined to be

M2k(q) =
1

φ∗(q)

∑∗

χ (mod q)

|L(1/2, χ)|2k .
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Moments of L(s, χ)

k = 1: M2(q) ∼ log q.

k = 2: Heath-Brown (1981), Soundararjan (2007), Young (2010)
showed that

M4(q) ∼ 2b2
(log q)4

4!
.

k ≥ 3 : Unknown. It is conjectured that

M2k(q) ∼ gkbk
(log q)k

2

k2!
,

where gk = k2!
∏k−1

j=0
j!

(k+j)! (same as the constant in the

asymptotic formula of Riemann zeta function case).
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Upper bounds for moments of Dirichlet L-functions

•
∑∗

χ (mod q)
|L(1/2, χ)|2k � q(log q)k

2
under the

Generalized Riemann Hypothesis (GRH)
(Soundararajan, 2009 and Harper, 2013 ).

• For k = 1, 2, we had asymptotic formula without GRH.

• By using large sieve inequality, Huxley (1970) showed that for
k = 3, 4, ∑

q∼Q

∑∗

χ (mod q)

|L(1/2, χ)|2k � Q2(logQ)k
2
.

∑∗

χ (mod q)

∑
q∼Q

∑∗

χ (mod q)

conductor q q

family ∼ q ∼ Q2
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The sixth moment of Dirichlet L-functions

It is conjectured that

∑∗

χ (mod q)

|L(1/2, χ)|6 ∼ 42a3

∏
p|q

(
1− 1

p

)5(
1 + 4

p + 1
p2

)φ∗(q)
(log q)9

9!
.

Question: Is there an asymptotic formula of the sixth moment for
the larger family of Dirichlet L-functions, i.e.∑

q∼Q

∑∗

χ (mod q)

|L(1/2, χ)|6 ?
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Conrey, Iwaniec and Soundararajan’s work

∑
q∼Q

∑∗

χ (mod q)

∫ ∞
−∞

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣6 ∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣6 dt

∼ 42a3

∑
q∼Q

∏
p|q

(
1− 1

p

)5(
1 + 4

p + 1
p2

)φ∗(q)
(log q)9

9!

∫ ∞
−∞

∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣6 dt

∼ 42 ã3Q
2 (logQ)9

9!

∫ ∞
−∞

∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣6 dt.

• They also state a more precise technical result which gives the
asymptotic for the sixth moment including shifts with a power
saving error term of size Q2−1/10+ε.
• The average over t is introduced to get rid of ”unbalanced”

sums.
• C., Li, Matomäki, Radziwi l l (2023 +): Obtain an asymptotic

formula without the average over t.
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The eighth moment of Dirichlet L-functions
It is conjectured that

∑∗

χ (mod q)

|L(1/2, χ)|8 ∼ 24024a4

∏
p|q

(
1− 1

p

)7(
1 + 9

p + 9
p2 + 1

p3

)φ∗(q)
(log q)16

16!
.

Note that the constant 24024 appears in the leading term of the
eighth moment of ζ(s).

On GRH, C. and Li (2014) derived asymptotic formula for the
eighth moment of a large family of Dirichlet L-functions with extra
average over t, i.e.

M8(Q) =
∑
q∼Q

∑∗

χ (mod q)

∫ ∞
−∞

∣∣∣∣L(1

2
+ it, χ

)∣∣∣∣8 ∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣8 dt.
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Theorem (C., Li, Matomäki, and Radziwi l l (2023))

We haveM8(Q) is

∼ 24024 a4

∑
q∼Q

∏
p|q

(
1− 1

p

)7(
1 + 9

p + 9
p2 + 1

p3

)φ∗(q)
(log q)16

16!

×
∫ ∞
−∞

∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣8 dt

∼ 24024 ã4Q
2 (logQ)16

16!

∫ ∞
−∞

∣∣∣∣Γ(1/2 + it

2

)∣∣∣∣8 dt.

Note: We cannot get power saving error terms. Our error term is
of size Q2(logQ)15+ε.
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Holomorphic L-functions

Let q be a prime number. Let Sk(Γ0(q), χ) be the space of
cuspidal holomorphic forms of weight k with respect to the
congruence subgroup Γ0(q) and the character χ mod q.

Γ0(q) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod q

}
,

and we define Sk(Γ1(q)) be the space of cuspidal holomorphic
forms of weight k with respect to the congruence subgroup Γ1(q),
where

Γ1(q) =

{(
a b
c d

)
∈ SL2(Z)

∣∣∣∣ c ≡ 0 mod q, a ≡ d ≡ 1 mod q

}
.
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Let Hk(q, χ) ⊂ Sk(Γ0(q), χ) be the set of orthogonal basis of
Sk(Γ0(q), χ). Let f be a normalized cusp form in Hk(q, χ) has a
Fourier expansion of the form

f (z) =
∑
n≥1

λf (n)n(k−1)/2e(nz),

where λf (1) = 1.

An L-function L(f , s) associated to the normalized cusp form f is
defined for Re(s) > 1 as

L(f , s) =
∑
n≥1

λf (n)

ns
=
∏
p

(
1− λf (p)

ps
+
χ(p)

p2s

)−1

,

where λf (n) is the coefficient from the Fourier expansion of f .

Note: We consider q to be prime to eliminate old forms.
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The completed L-functions is

Λ
(
f , 1

2 + s
)

=
( q

4π

) s
2 Γ
(
s + k

2

)
L
(
f , 1

2 + s
)
.

It satisfies the following functional equations

Λ
(
f , 1

2 + s
)

= ikηf Λ
(
f̄ , 1

2 − s
)
,

where |ηf | = 1.

Harmonic average:∑h

f ∈Hk (q,χ)

αf :=
Γ(k − 1)

(4π)k−1

∑
f ∈Hk (q,χ)

αf

‖f ‖2
,

where < f , g > is the Petersson inner product on Γ0(q)\H.
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Some results on moments of automorphic L-functions

The second moment:
∑h

f ∈H2(q,χ0)
L(f , 1/2)2 ∼ log q is

obtained by Iwaniec and Sarnak

The fourth moment: Kowalski, Michel and Vanderkam (2000)

obtained the result for
∑h

f ∈H2(q,χ0)
L(f , 1/2)4 ∼ 1

60π2 (log q)6

Higher moment: Asymptotic formulae are unknown.

This family has orthogonal symmetry. Therefore the leading order
term is (log q)6 instead of (log q)4.
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• To obtain good upper bounds/asymptotic formulae for the
sixth and the eighth moment of Dirichlet L-functions, we need
to enlarge the size of the family we average on.

• In this case, we will also increase the size of family of
L-functions to get an asymptotic formula and good upper
bounds (without GRH) for the sixth and the eighth moment.

Sk(Γ0(q), χ) =⇒ Sk(Γ1(q)).∑h

f ∈Hk (q,χ)

=⇒
∑

χ mod q
χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

Note that the analytic conductor of L-functions in these
families ∼ k2q.
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The spaces Sk(Γ0(q)) vs Sk(Γ1(q))
Dimension of the spaces

dimSk(Γ0(q)) ∼ k − 1

12
q
∏
p|q

(1 + p−1),

and

dimSk(Γ1(q)) ∼ k − 1

24
q2
∏
p|q

(1− p−2).

They are connected by

Sk(Γ1(q)) =
⊕

χ mod q
χ(−1)=(−1)k

Sk(Γ0(q), χ).

Dirichlet Holomorphic
Dirichlet characters mod q (size q) Γ0(q) modular forms
All Dirichlet characters mod q ∼ Q (size Q2) Γ1(q) modular forms
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Upper bounds for the the moment
Recall that for Dirichlet L-functions case, unconditionally, we have
correct size of upper bounds for the sixth (` = 3) and the eighth
moments (` = 4).∑

q∼Q

∑∗

χ mod q

∣∣∣∣L(1

2
, χ

)∣∣∣∣2` � Q2(logQ)`
2
.

It is natural to ask if there is analogous upper bounds for the sixth
and the eighth moment of Γ1(q) L-functions.

M2`(q) =
2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

|L(f , 1/2)|2`

for ` = 3 and 4.

This family also admits the unitary symmetry, so it
has similar conjectures to the moment of ζ(s), i.e. we expect that

M2`(q)� (log q)`
2
.
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Upper bounds for the sixth and the eighth moment
• Djankovic ( 2011 ) showed that for k ≥ 3,

M6(q)� qε.

This bound is consistent with the Lindelöf hypothesis on
average.

• Stucky (2021) proved the correct size of upper bound

M6(q)� (log q)9.

• C. and Li (2018) showed that for k ≥ 5,

M8(q)� qε.

The correct size for the upper bound is (log q)16. This
problem remains open.
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Asymptotic large sieve

A main tool to prove upper bounds is an asymptotic large sieve for
the family of Γ1(q) developed by Iwaniec and Xiaoqing Li (2007):

2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

∣∣∣∣∣∣
∑
n≤N

anλf (n)

∣∣∣∣∣∣
2

.

Part of the difficulty in this family is from the fact that this
asymptotic large sieve is not perfectly orthogonal.
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Interesting feature of family

”Perfectly orthogonal” large sieve: Let X be a finite set of
”nice” sequences.

∑
x∈X

∣∣∣∣∣∣
∑
n≤N

anx(n)

∣∣∣∣∣∣
2

� (|X |+ N)
∑
n≤N
|an|2.

For example, the large sieve for primitive Dirichlet characters:

∑
q∼Q

∑∗

χ (mod q)

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

� (Q2 + N)
∑
n≤N
|an|2.

Iwaniec and Xiaoqing Li proved an asymptotic large sieve which is
of a different nature.
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More precisely they showed for any ε > 0,

2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hχ

∣∣∣∣∣∣
∑
n≥1

anλf (n)

∣∣∣∣∣∣
2

= Main term + O

(
Nε

(
N

q2
+

√
N

qH

))∑
n

|an|2

where

• α = (an), where N < n ≤ 2N, and 1 ≤ H ≤ N
q

• If the coefficients an are chosen to look like certain Bessel
functions twisted by Kloosterman sums, the main term can be

large of size �
√

N
qh0

∑
n |an|2

• The component
√

N
qH cannot be removed.
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Asymptotic formula
Similar to Dirichlet L-functions, we compute an asymptotic
formula with the average over the critical line. Let

I2k(q)

:=
2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

∫ ∞
−∞

∣∣∣∣L(f , 1

2
+ it

)∣∣∣∣2k ∣∣∣∣Γ(k

2
+ it

)∣∣∣∣2k dt.

Theorem (C. and Li, 2016)

For odd integer k ≥ 5, we have

I6(q) ∼ 42b3
(log q)9

9!

∫ ∞
−∞

∣∣∣∣Γ(k

2
+ it

)∣∣∣∣6 dt.

• We prove a more precise asymptotic formula including shifts
with a power saving error term of size q−1/4+ε.
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The eighth moment of Γ1(q) L-functions

Theorem (C., Dunn, Li and Stucky, 2024+)

For odd integer k ≥ 5, we have

I8(q) ∼ 24024b4
(log q)16

16!

∫ ∞
−∞

∣∣∣∣Γ(k

2
+ it

)∣∣∣∣8 dt.

We can obtain an asymptotic formula with the leading term and
having the error term of size O((log q)15+ε).
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Similar phenomenon

The eighth moments for the enlarged family of Dirichlet
L-functions and Γ1(q) L-functions require different techniques as
their structures are different. However, there are some similar
phenomenon appearing in the proof.

• Switching to smaller conductor.

• Truncation of the sum.
(This step is harder for Γ1(q) L-functions.)

• Understanding the sums in narrow regions.
(The appearance for narrow region in Γ1(q) L-functions is not
obvious!)
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The eighth moments of Dirichlet L-functions

After approximate functional equation, we consider∑
q

Ψ

(
q

Q

) ∑∗

χ (mod q)

∑
m,n≤Q2

d4(n)d4(m)√
mn

χ(m)χ(n)

where Ψ is a smooth function compactly supported in [1, 2].

Without the integration over t, the main contribution will comes
from mn� Q4. We need to consider unbalanced sums when one
variable is large and another one is small, e.g. m = Q3 and n = Q.
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After the orthogonality relation of Dirichlet characters, we roughly
need to understand the sum of the form∑

q

Ψ

(
q

Q

)
φ(q)

∑∑
m,n≤Q2

m≡n mod q

d4(n)d4(m)√
mn

• The diagonal term m = n is easy to understand.
• For the off-diagonal term, use complementary divisor trick to

switch to a smaller conductor.
Write m − n = hq, where h 6= 0. So h � |m−n|Q , and m ≡ n
mod h. [Goal: we want h to be smaller than q.] But

h� Q2

Q
= Q

This is not smaller! We need to truncate sums over m, n.
• Note: if we do not have integration over t, the size of h can

be much larger than Q.
(e.g. h can be Q4−1

Q � Q3 )

V. Chandee The 8th moment of Γ1(q) L-functions



After the orthogonality relation of Dirichlet characters, we roughly
need to understand the sum of the form∑

q

Ψ

(
q

Q

)
φ(q)

∑∑
m,n≤Q2

m≡n mod q

d4(n)d4(m)√
mn

• The diagonal term m = n is easy to understand.
• For the off-diagonal term, use complementary divisor trick to

switch to a smaller conductor.
Write m − n = hq, where h 6= 0. So h � |m−n|Q , and m ≡ n
mod h. [Goal: we want h to be smaller than q.] But

h� Q2

Q
= Q

This is not smaller! We need to truncate sums over m, n.

• Note: if we do not have integration over t, the size of h can
be much larger than Q.
(e.g. h can be Q4−1

Q � Q3 )

V. Chandee The 8th moment of Γ1(q) L-functions



After the orthogonality relation of Dirichlet characters, we roughly
need to understand the sum of the form∑

q

Ψ

(
q

Q

)
φ(q)

∑∑
m,n≤Q2

m≡n mod q

d4(n)d4(m)√
mn

• The diagonal term m = n is easy to understand.
• For the off-diagonal term, use complementary divisor trick to

switch to a smaller conductor.
Write m − n = hq, where h 6= 0. So h � |m−n|Q , and m ≡ n
mod h. [Goal: we want h to be smaller than q.] But

h� Q2

Q
= Q

This is not smaller! We need to truncate sums over m, n.
• Note: if we do not have integration over t, the size of h can

be much larger than Q.
(e.g. h can be Q4−1

Q � Q3 )

V. Chandee The 8th moment of Γ1(q) L-functions



We truncate the sums over m, n by the large sieve inequality

∑
q∼Q

∑∗

χ (mod q)

∣∣∣∣∣∣
∑
n≤N

anχ(n)

∣∣∣∣∣∣
2

� (Q2 + N)
∑
n≤N
|an|2.

Now m, n� Q2−ε

After the truncation, h� Q2−ε

Q = Q1−ε. [smaller conductor!]

The sum over a narrow region.

It comes from the condition |m − n| � hQ.

When h is small, |m − n| � hQ is also small. Hence, for fixed n,
the sums over m is restricted to an interval much shorter than Q2.
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The eighth moments of Γ1(q) L-functions

Recall that

I8(q)

:=
2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

∫ ∞
−∞

∣∣∣∣L(f , 1

2
+ it

)∣∣∣∣8 ∣∣∣∣Γ(k

2
+ it

)∣∣∣∣8 dt.

Roughly speaking, after the approximate functional equation, we
consider

2

φ(q)

∑
χ mod q
χ(−1)=−1

∑h

f ∈Hk (q,χ)

∑∑
m,n�q2

λf (n)d4(n)

n1/2

λf (m)d4(m)

m1/2
.

No unbalanced sums.
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We then apply Petersson’s formula∑h

f ∈Hk (q,χ)

λf (m)λf (n) = δ(m, n) + σχ(m, n),

where δ(m, n) = 1 if m = n and 0 otherwise, and

σχ(m, n) = 2πi−k
∞∑
c=1

1

cq
Sχ(m, n; cq)Jk−1

(
4π

cq

√
mn

)
where

Sχ(m, n; cq) =
∑∗

a mod cq

χ(a)e

(
am + ān

cq

)
.

• The diagonal terms from δ(m, n) (m = n) are easy (This
contributes to the main term.)

• The off-diagonal terms from σχ(m, n) will contain another
main term, and it is a lot harder.
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Next we apply orthogonality relation for Dirichlet characters

2

φ(q)

∑
χ mod q

χ(−1)=(−1)k

χ(m)χ(n) =


1 if m ≡ n mod q
(−1)k if m ≡ −n mod q
0 otherwise.

Essentially, we need to understand the sum of the form∑
c

1

cq

∑∗

a mod cq
a≡1 mod q

∑∑
n,m�q2

d4(m)

m1/2
e

(
am

cq

)
d4(n)

n1/2
e

(
an

cq

)
Jk−1

(
4π
√
mn

cq

)
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The Bessel function satisfies

Jk−1(x)� min{x−1/2, xk−1}.

So we need to consider two cases: x � 1 and x � 1.
- When x is small, the Bessel function can be treated as the
smooth function.
- When x is big, there is oscillation from the Bessel function.
- When x � 1, this is called the transition region.

The transition region for Jk−1

(
4π
cq

√
mn
)

is when

c �
√
mn

q
� q.

.
(Recall that here we consider only the case when m, n � q2.)
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∑
n�q2

d4(n)

n1/2
e

(
am

cq

)
.

Our next step is to apply Voronoi summation to the sum over m
and n. Now the conductor is of size cq � q2. If we applied Voronoi
summation, then

Orginal sum the dual sum

q2 → (cq)4

q2 � q6

The dual sum is longer than the original sum, and more difficult to
handle! We try to reduce the conductor in the exponential sum.
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Switching to a smaller conductor

Recall that in the case of Dirichlet L-functions, the complementary
divisor trick is used to reduce the conductor.

By Chinese Remainder Theorem and reciprocity, we may factor our
exponential sum as∑∗

a mod cq
a≡1 mod q

e

(
am

cq

)
=
∑∗

z mod c

∑∗

y mod q
y≡1 mod q

e

(
myc̄

q
+

mzq̄

c

)

=
∑∗

z mod c

e

(
mc̄

q
+

mzq̄

c

)
= e

(
m

cq

) ∑∗

z mod c

e

(
mq̄(z − 1)

c

)
The conductor is of the size c � q
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Smaller conductor

• Side note: for the sixth moment, the conductor c is q1/2.
After Voronoi, the dual sum is very short. So we can bound it
trivially.

Orginal sum the dual sum

q3/2 → c3

q3/2 � 1

• For the eighth moment, the conductor c is q.
The conductor is NOT reduced! If we apply Voronoi
summation, the length of the dual sum is around the size

c4

q2
� q2.

The dual is of the same length as the original sum.
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Question: What should we do?

Answer: Truncate the sums over m and n.

The large sieve of this family is NOT perfectly orthogonal. So
applying the large sieve would not yield the result right away!

[So, the truncation here is more difficult than the truncation in
Dirichlet L-functions.]

• After the truncation, The most important region is when
m, n � q2−ε. In a simple model, we will do analysis there.

• The transition region of the conductor c is around

c �
√
mn

q
� q1−ε.

• The conductor is now reduced!
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Truncation for the sums over m and n
We want to show that

2

φ(q)

∑
χ mod q
χ(−1)=−1

∑h

f ∈Hχ

∣∣∣∣∣∣
∑

q2−ε<n≤q2

d4(n)λf (n)√
n

∣∣∣∣∣∣
2

�
∑

q2−ε<n≤q2

d2
4 (n)

n

� ε(log q)16,

where ε� 1
(log q)1−ε1

. Dividing the sum over n into dyadic

intervals, it is enough to show that for q2−ε ≤ N ≤ q2,

2

φ(q)

∑
χ mod q
χ(−1)=−1

∑h

f ∈Hχ

∣∣∣∣∣∑
n�N

d4(n)λf (n)√
n

∣∣∣∣∣
2

�
∑
n�N

d2
4 (n)

n
.

Squaring it out and applying Petersson’s formula gives∑
n�N

d2
4 (n)

n
+ Off diagonal.
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The off-diagonal terms in the truncation and after the truncation
are of the same form. For N � q2, essentially we would like to
understand.

∑
c

1

cq

∑∗

z mod c

∑∑
m,n�N

d4(m)d4(n)√
mn

e

(
q̄(z − 1)m + q̄(z̄ − 1)n

c

)

× e

(
m + n

cq

)
Jk−1

(
4π
√
mn

cq

)
.

We will first consider a simple model to illustrate ideas.

∑
c≥1

1

cq

∑∗

amod c

∑∑
m,n�N

d4(m)d4(n)√
mn

e

(
am + ān

c

)
Jk−1

(
4π
√
mn

cq

)
.

The transition region is when
√
mn
cq ∼ 1→ c ∼ N

q , so we consider
two main cases:
c is large N

q � c , and c is small N
q � c
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Large c : N
q � c , so N

cq is small.
Here, since N

cq � 1, there is no oscillation from the Bessel function

Jk−1

(
4π
√
mn

cq

)
. For convenience, we consider c � N

q (transition

region). Roughly, we are left to understand∑
c�N

q

1

cq

∑∗

a mod c

∑
m,n�N

d4(m)d4(n)√
mn

e

(
am + ān

c

)

≤ 1

N

∑
c�N

q

∑∗

a mod c

∣∣∣∣∣∑
m�N

d4(m)√
m

e
(am

c

)∣∣∣∣∣
2

� 1

N

(
N2

q2
+ N

)∑
n�N

d2
4 (n)

n
(additive large sieve ineq)

�
(
N

q2
+ 1

)∑
n�N

d2
4 (n)

n
�
∑
n�N

d2
4 (n)

n

since N ≤ q2.
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Small c : N
q > c , so N

cq is large.

Jk−1(2πx) =
1√
πx

Re
[
W (2πx)e

(
x − k

4 + 1
8

)]
,

where W
(j)
k (x)�j ,k x−j .

• When x is large (c is small for our case), there is oscillation
from the exponent term.

• We then separate variables inside the exponent term e
(√

mn
cq

)
via Mellin inversion. We need to bound

1√
N
Cq

∫
t�T

1√
t

∑
c�C

1

cq

∑∗

a mod c

∣∣∣∣∣∑
m�N

d4(m)

m1/2+it
e
(am

c

)∣∣∣∣∣
2

dt

for C � N
q and T � N

Cq .
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Applying the hybrid large sieve gives

1√
NTCq

(
TC 2 + N

)∑
n�N

d2
4 (n)

n

�

(
1 +

√
N

Cq

1

T

)∑
n�N

d2
4 (n)

n
,

by using that C � N
q , T � N

Cq and N ≤ q2.

The term
√

N
qCT can be too large since C and T can be small.

Recall the asymptotic large sieve:

main term + O

(
Nε

(
N

q2
+

√
N

qH

))
‖α‖2.
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Question: What should we do?

Answer: Voronoi summation

This uses information about the coefficients d4(n). In particular,
d4(n) is not correlated to Bessel function twisted with Kloosterman
sums in certain ranges. Hence we break the non-orthogonal nature
of the family we saw in the large sieve of Iwaniec and Li.

• The hybrid conductor of Voronoi summation is CT .

• The dual sum is of length (CT )4

N .

After Voronoi summation, we need to bound

1√
NCqT

∫
t�T

∑
c�C

∑∗

a mod c

∣∣∣∣∣∣∣
∑

m� (CT )4

N

d4(m)

m1/2−it e

(
−am
c

)∣∣∣∣∣∣∣
2

dt

for C � N
q and T � N

Cq .
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Now we apply the hybrid large sieve and obtain that it is bounded
by

1√
NCqT

(
TC 2 +

(CT )4

N

) ∑
n� (CT )4

N

d2
4 (n)

n

�
∑
n�N

d2
4 (n)

n
.

Recall three common phenomenon with Dirichlet L-functions.

• Switching to smaller conductor.

• Truncation of the sum.

• Understanding the sums in narrow regions.
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d2
4 (n)

n
.

Recall three common phenomenon with Dirichlet L-functions.

• Switching to smaller conductor.

• Truncation of the sum.

• Understanding the sums in narrow regions.

V. Chandee The 8th moment of Γ1(q) L-functions



Recall the off-diagonal terms are∑
c

1

cq

∑∗

z mod c

∑∑
m,n�q2−ε

d4(m)d4(n)√
mn

e

(
q̄(z − 1)m + q̄(z̄ − 1)n

c

)

× e

(
m + n

cq

)
Jk−1

(
4π
√
mn

cq

)
.

• The harder case is when c is small, i.e., c � N
q . So we focus

only for this case.

• The phase functions in the exponential function and the
Bessel function are big.

• We will need Voronoi summation for the sums over m, n
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Add coprimality relation for m, n, z − 1 and c. Note that

(z − 1, c) = (z̄ − 1, c) = δ.

Essentially, we would like to understand

∑
c

1

cq

∑
β mod c

∑∗

j mod c
(j+β,c)=1

∑∑
m,n�q2−ε

d4(m)d4(n)√
mn

e

(
q̄jm − q̄(j + β)n

c

)

×
∑

δ≡β mod c

1

δ
e

(
m + n

cqδ

)
Jk−1

(
4π
√
mn

cqδ

)
.

• Use the method by Iwaniec and Li to deal with the sum over
δ. [Start from Poisson summation in δ.] This is to separate
variables in m and n.
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Let H = N
q = size of max{m, n}

q . This comes from the phase integral
(with respect to y) after Poisson summation in δ.∑

h

F1(h)

∫ ∞
0

g(y)e(f (y , h)) dy ,

where

f (y , h) =
hy

c
+

m + n

cqy
± 2
√
mn

cqy
.

If |h| � H, then we can integral by part many times and get small
contribution. So we consider only when |h| � H.

If there is no integration over critial line, we have unbalanced
sums, and H is large.
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Let Φ be a compactly supported smooth function. For simplicity,
we need to understand∑

1<c�q1−ε

H

c2q

∑
6̀=0

∑∗

j mod c
(j+`,c)=1

∫ ∞
0

Φ(y)e

(
`Hy

c

)

×
∑
m

d4(m)√
m

Φ
(m
N

)
e

(
q̄jm

c

)
Jk−1

(
4π

c

√
Hmy

q

)

×
∑
n

d4(n)√
n

Φ
( n

N

)
e

(
−q̄(j + `)n

c

)
Jk−1

(
4π

c

√
Hny

q

)
dy .

When c is small, it is advantageous to apply the voronoi
summation to the sums over m, n.
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Voronoi summation

For (c , d) = 1

∞∑
n=1

dk(n)e

(
dn

c

)
ψ
( n

N

)
= ress=1..+

∑
n� ck

N︸ ︷︷ ︸
dual sum

.

• The residues at s = 1 from both sums over m, n contribute to
the main terms.

• The rest gives error terms.
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After this process, the dual sums over m, n will be

∑
m,n

anam

∫ ∞
0

∫ ∞
0

∫ ∞
0

Φ(y)Φ(x1)Φ(x2) dy dx1 dx2

× e

`Hyc +
2

c

√
HNy

q
(
√
x1 −

√
x2)︸ ︷︷ ︸

J-Bessel functions

− αN
1
4

c
(m

1
4 x

1
4

1 − n
1
4 x

1
4

2 )︸ ︷︷ ︸
from voronoi


Recall that H = N

q .

• When considering the integration over y , we have saddle point
when x1 is close to x2

• From the integrals over x1 and x2, we have that m and n must
be close to each other. (the sum over narrow regions.)
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Higher moments

Question: How about a higher moment, e.g. the 10th moment?

It’s still unknown. One possibility is to enlarge the size of a family
of L-functions, so the size is Q3 while the conductor remains � Q.
In particular, we consider

∑
q∼Q

∑
χ mod q

χ(−1)=(−1)k

∑h

f ∈Hk (q,χ)

∫ ∞
−∞

∣∣∣∣L(f , 1

2
+ it

)∣∣∣∣2k ∣∣∣∣Γ(k

2
+ it

)∣∣∣∣2k dt

for k = 5 (the 10th moment) and k = 6 (the 12th moment).
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Thank you very much!
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