The eighth moment of $\Gamma_{1}(q) L$-functions

Vorrapan (Fai) Chandee
(Kansas State University)
joint work with
Alexander Dunn (Georgia Tech)
Xiannan Li (KSU)
Joshua Stucky (Univ. of Georgia/Georgia Tech)

Shanks Conference Series
International conference on L-functions and automorphic forms May 16, 2024

Moments of the Riemann zeta function $\zeta(s)$
Let $I_{2 k}(T)=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

- $k=1: I_{2}(T) \sim \log T$. (Hardy and Littlewood, 1918)
- $k=2: I_{4}(T) \sim 2 a_{2} \frac{(\log T)^{4}}{4!}$. (Ingham, 1926)
- $k \geq 3$: Asymptotic formulae are not proven. However, we have a good conjecture.

$$
I_{2 k}(T) \sim g_{k} a_{k} \frac{(\log T)^{k^{2}}}{k^{2}!}
$$

Moments of the Riemann zeta function $\zeta(s)$

Let $I_{2 k}(T)=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

- $k=1: I_{2}(T) \sim \log T$. (Hardy and Littlewood, 1918)
- $k=2: I_{4}(T) \sim 2 a_{2} \frac{(\log T)^{4}}{4!}$. (Ingham, 1926)
- $k \geq 3$: Asymptotic formulae are not proven. However, we have a good conjecture.

$$
I_{2 k}(T) \sim g_{k} a_{k} \frac{(\log T)^{k^{2}}}{k^{2}!}
$$

- $a_{k} \frac{(\log T)^{k^{2}}}{k^{2}!}$ is easy to understand from $\sum_{n \leq T} \frac{d_{k}^{2}(n)}{n}$, but g_{k} is some constant that remains unsolved.
- When $k \geq 3$, the moments are harder since "off-diagonal terms" also contribute.

Moments of the Riemann zeta function $\zeta(s)$

Let $I_{2 k}(T)=\frac{1}{T} \int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t$.

- $k=1: I_{2}(T) \sim \log T$. (Hardy and Littlewood, 1918)
- $k=2: I_{4}(T) \sim 2 a_{2} \frac{(\log T)^{4}}{4!}$. (Ingham, 1926)
- $k \geq 3$: Asymptotic formulae are not proven. However, we have a good conjecture.

$$
I_{2 k}(T) \sim g_{k} a_{k} \frac{(\log T)^{k^{2}}}{k^{2}!}
$$

- $a_{k} \frac{(\log T)^{k^{2}}}{k^{2}!}$ is easy to understand from $\sum_{n \leq T} \frac{d_{k}^{2}(n)}{n}$, but g_{k} is some constant that remains unsolved.
- When $k \geq 3$, the moments are harder since "off-diagonal terms" also contribute.
- Conjecture: (e.g. Keating and Snaith (2000),)

$$
g_{3}=42, \quad g_{4}=24024, \quad g_{k}=k^{2}!\prod_{j=0}^{k-1} \frac{j!}{(k+j)!}
$$

Dirichlet L-functions

For $\operatorname{Re}(s)>1$,

$$
L(s, \chi)=\sum_{n \geq 1} \frac{\chi(n)}{n^{s}}=\prod_{p}\left(1-\frac{\chi(p)}{p^{s}}\right)^{-1}
$$

where χ is a primitive Dirichlet character modulo q.
The moments of this family behave similarly to the moments of the $\zeta(1 / 2+i t)$.

Notation

- \sum^{*} is the sum over all primitive characters $\bmod q$.
- $\phi^{*}(q)$ is number of primitive characters $\bmod q$.
- Moments of $L(s, \chi)$ is defined to be

$$
M_{2 k}(q)=\frac{1}{\phi^{*}(q)} \sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{2 k}
$$

Moments of $L(s, \chi)$

$k=1: \quad M_{2}(q) \sim \log q$.
$k=2$: Heath-Brown (1981), Soundararjan (2007), Young (2010) showed that

$$
M_{4}(q) \sim 2 b_{2} \frac{(\log q)^{4}}{4!}
$$

$k \geq 3$: Unknown. It is conjectured that

$$
M_{2 k}(q) \sim g_{k} b_{k} \frac{(\log q)^{k^{2}}}{k^{2}!}
$$

where $g_{k}=k^{2}!\prod_{j=0}^{k-1} \frac{j!}{(k+j)!}$ (same as the constant in the asymptotic formula of Riemann zeta function case).

Upper bounds for moments of Dirichlet L-functions

- $\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{2 k} \ll q(\log q)^{k^{2}} \quad$ under the Generalized Riemann Hypothesis (GRH) (Soundararajan, 2009 and Harper, 2013).
- For $k=1,2$, we had asymptotic formula without GRH.

Upper bounds for moments of Dirichlet L-functions

- $\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{2 k} \ll q(\log q)^{k^{2}} \quad$ under the Generalized Riemann Hypothesis (GRH) (Soundararajan, 2009 and Harper, 2013).
- For $k=1,2$, we had asymptotic formula without GRH.
- By using large sieve inequality, Huxley (1970) showed that for $k=3,4$,

$$
\sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{2 k} \ll Q^{2}(\log Q)^{k^{2}}
$$

	$\sum_{\chi(\bmod q)}^{*}$	$\sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*}$
conductor	q	q
family	$\sim q$	$\sim Q^{2}$

The sixth moment of Dirichlet L-functions

It is conjectured that

$$
\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{6} \sim 42 a_{3} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{5}}{\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)} \phi^{*}(q) \frac{(\log q)^{9}}{9!}
$$

The sixth moment of Dirichlet L-functions

It is conjectured that

$$
\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{6} \sim 42 a_{3} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{5}}{\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)} \phi^{*}(q) \frac{(\log q)^{9}}{9!} .
$$

Question: Is there an asymptotic formula of the sixth moment for the larger family of Dirichlet L-functions, i.e.

$$
\sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{6} ?
$$

Conrey, Iwaniec and Soundararajan's work

$$
\begin{aligned}
& \sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*} \int_{-\infty}^{\infty}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{6}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 a_{3} \sum_{q \sim Q} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{5}}{\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)} \phi^{*}(q) \frac{(\log q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 \widetilde{a}_{3} Q^{2} \frac{(\log Q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t
\end{aligned}
$$

Conrey, Iwaniec and Soundararajan's work

$$
\begin{aligned}
& \sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*} \int_{-\infty}^{\infty}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{6}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 a_{3} \sum_{q \sim Q} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{5}}{\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)} \phi^{*}(q) \frac{(\log q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 \widetilde{\mathrm{a}}_{3} Q^{2} \frac{(\log Q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t .
\end{aligned}
$$

- They also state a more precise technical result which gives the asymptotic for the sixth moment including shifts with a power saving error term of size $Q^{2-1 / 10+\epsilon}$.
- The average over t is introduced to get rid of "unbalanced" sums.

Conrey, Iwaniec and Soundararajan's work

$$
\begin{aligned}
& \sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*} \int_{-\infty}^{\infty}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{6}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 a_{3} \sum_{q \sim Q} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{5}}{\left(1+\frac{4}{p}+\frac{1}{p^{2}}\right)} \phi^{*}(q) \frac{(\log q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t \\
& \sim 42 \widetilde{\mathrm{a}}_{3} Q^{2} \frac{(\log Q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{6} d t .
\end{aligned}
$$

- They also state a more precise technical result which gives the asymptotic for the sixth moment including shifts with a power saving error term of size $Q^{2-1 / 10+\epsilon}$.
- The average over t is introduced to get rid of "unbalanced" sums.
- C., Li, Matomäki, Radziwiłt (2023 +): Obtain an asymptotic formula without the average over t.

The eighth moment of Dirichlet L-functions

It is conjectured that
$\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{8} \sim 24024 a_{4} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{7}}{\left(1+\frac{9}{p}+\frac{9}{p^{2}}+\frac{1}{p^{3}}\right)} \phi^{*}(q) \frac{(\log q)^{16}}{16!}$.
Note that the constant 24024 appears in the leading term of the eighth moment of $\zeta(s)$.

The eighth moment of Dirichlet L-functions

It is conjectured that
$\sum_{\chi(\bmod q)}^{*}|L(1 / 2, \chi)|^{8} \sim 24024 a_{4} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{7}}{\left(1+\frac{9}{p}+\frac{9}{p^{2}}+\frac{1}{p^{3}}\right)} \phi^{*}(q) \frac{(\log q)^{16}}{16!}$.
Note that the constant 24024 appears in the leading term of the eighth moment of $\zeta(s)$.

On GRH, C. and Li (2014) derived asymptotic formula for the eighth moment of a large family of Dirichlet L-functions with extra average over t, i.e.

$$
\mathcal{M}_{8}(Q)=\sum_{q \sim Q} \sum_{\chi(\bmod q)}^{*} \int_{-\infty}^{\infty}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{8}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{8} d t
$$

Theorem (C., Li, Matomäki, and Radziwitł (2023))
We have $\mathcal{M}_{8}(Q)$ is

$$
\begin{aligned}
& \begin{aligned}
\sim 24024 a_{4} \sum_{q \sim Q} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{7}}{\left(1+\frac{9}{p}+\frac{9}{p^{2}}+\frac{1}{p^{3}}\right)} \phi^{*}(q) \frac{(\log q)^{16}}{16!} \\
\quad \times \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{8} d t
\end{aligned} \\
& \sim 24024 \widetilde{\mathrm{a}}_{4} Q^{2} \frac{(\log Q)^{16}}{16!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{1 / 2+i t}{2}\right)\right|^{8} d t .
\end{aligned}
$$

Note: We cannot get power saving error terms. Our error term is of size $Q^{2}(\log Q)^{15+\epsilon}$.

Holomorphic L-functions

Let q be a prime number. Let $S_{k}\left(\Gamma_{0}(q), \chi\right)$ be the space of cuspidal holomorphic forms of weight k with respect to the congruence subgroup $\Gamma_{0}(q)$ and the character $\chi \bmod q$.

$$
\Gamma_{0}(q)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \quad \bmod q\right\}
$$

and we define $S_{k}\left(\Gamma_{1}(q)\right)$ be the space of cuspidal holomorphic forms of weight k with respect to the congruence subgroup $\Gamma_{1}(q)$, where

$$
\Gamma_{1}(q)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \right\rvert\, c \equiv 0 \quad \bmod q, a \equiv d \equiv 1 \bmod q\right\}
$$

Let $\mathcal{H}_{k}(q, \chi) \subset S_{k}\left(\Gamma_{0}(q), \chi\right)$ be the set of orthogonal basis of $S_{k}\left(\Gamma_{0}(q), \chi\right)$. Let f be a normalized cusp form in $\mathcal{H}_{k}(q, \chi)$ has a Fourier expansion of the form

$$
f(z)=\sum_{n \geq 1} \lambda_{f}(n) n^{(k-1) / 2} e(n z)
$$

where $\lambda_{f}(1)=1$.
An L-function $L(f, s)$ associated to the normalized cusp form f is defined for $\operatorname{Re}(s)>1$ as

$$
L(f, s)=\sum_{n \geq 1} \frac{\lambda_{f}(n)}{n^{s}}=\prod_{p}\left(1-\frac{\lambda_{f}(p)}{p^{s}}+\frac{\chi(p)}{p^{2 s}}\right)^{-1}
$$

where $\lambda_{f}(n)$ is the coefficient from the Fourier expansion of f.
Note: We consider q to be prime to eliminate old forms.

The completed L-functions is

$$
\Lambda\left(f, \frac{1}{2}+s\right)=\left(\frac{q}{4 \pi}\right)^{\frac{5}{2}} \Gamma\left(s+\frac{k}{2}\right) L\left(f, \frac{1}{2}+s\right) .
$$

It satisfies the following functional equations

$$
\wedge\left(f, \frac{1}{2}+s\right)=i^{k} \bar{\eta}_{f} \Lambda\left(\bar{f}, \frac{1}{2}-s\right),
$$

where $\left|\eta_{f}\right|=1$.
Harmonic average:

$$
\sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} \alpha_{f}:=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}} \sum_{f \in \mathcal{H}_{k}(q, \chi)} \frac{\alpha_{f}}{\|f\|^{2}}
$$

where $<f, g>$ is the Petersson inner product on $\Gamma_{0}(q) \backslash \mathbb{H}$.

Some results on moments of automorphic L-functions

The second moment: $\sum_{f \in \mathcal{H}_{2}\left(q, \chi_{0}\right)}^{h} L(f, 1 / 2)^{2} \sim \log q$ is obtained by Iwaniec and Sarnak

The fourth moment: Kowalski, Michel and Vanderkam (2000) obtained the result for $\sum_{f \in \mathcal{H}_{2}\left(q, \chi_{0}\right)}^{h} L(f, 1 / 2)^{4} \sim \frac{1}{60 \pi^{2}}(\log q)^{6}$

Some results on moments of automorphic L-functions

The second moment: $\sum_{f \in \mathcal{H}_{2}\left(q, \chi_{0}\right)}^{h} L(f, 1 / 2)^{2} \sim \log q$ is obtained by Iwaniec and Sarnak

The fourth moment: Kowalski, Michel and Vanderkam (2000) obtained the result for $\sum_{f \in \mathcal{H}_{2}\left(q, \chi_{0}\right)}^{h} L(f, 1 / 2)^{4} \sim \frac{1}{60 \pi^{2}}(\log q)^{6}$

Higher moment: Asymptotic formulae are unknown.

This family has orthogonal symmetry. Therefore the leading order term is $(\log q)^{6}$ instead of $(\log q)^{4}$.

- To obtain good upper bounds/asymptotic formulae for the sixth and the eighth moment of Dirichlet L-functions, we need to enlarge the size of the family we average on.
- In this case, we will also increase the size of family of L-functions to get an asymptotic formula and good upper bounds (without GRH) for the sixth and the eighth moment.

$$
\begin{aligned}
S_{k}\left(\Gamma_{0}(q), \chi\right) & \Longrightarrow S_{k}\left(\Gamma_{1}(q)\right) . \\
\sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} & \Longrightarrow
\end{aligned} \sum_{\substack{\chi\left(\bmod q \\
\chi(-1)=(-1)^{k}\right.}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h}
$$

Note that the analytic conductor of L-functions in these families $\sim k^{2} q$.

The spaces $S_{k}\left(\Gamma_{0}(q)\right)$ vs $S_{k}\left(\Gamma_{1}(q)\right)$
Dimension of the spaces

$$
\operatorname{dim} S_{k}\left(\Gamma_{0}(q)\right) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+p^{-1}\right)
$$

and

$$
\operatorname{dim} S_{k}\left(\Gamma_{1}(q)\right) \sim \frac{k-1}{24} q^{2} \prod_{p \mid q}\left(1-p^{-2}\right)
$$

They are connected by

$$
S_{k}\left(\Gamma_{1}(q)\right)=\bigoplus_{\substack{\chi \\ \chi(-1)=(-1)^{k}}} S_{k}\left(\Gamma_{0}(q), \chi\right)
$$

The spaces $S_{k}\left(\Gamma_{0}(q)\right)$ vs $S_{k}\left(\Gamma_{1}(q)\right)$

Dimension of the spaces

$$
\operatorname{dim} S_{k}\left(\Gamma_{0}(q)\right) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+p^{-1}\right)
$$

and

$$
\operatorname{dim} S_{k}\left(\Gamma_{1}(q)\right) \sim \frac{k-1}{24} q^{2} \prod_{p \mid q}\left(1-p^{-2}\right)
$$

They are connected by

$$
S_{k}\left(\Gamma_{1}(q)\right)=\bigoplus_{\substack{\chi \\ \chi(-1)=(-1)^{k}}} S_{k}\left(\Gamma_{0}(q), \chi\right)
$$

Dirichlet	Holomorphic
Dirichlet characters mod $q($ size $q)$	$\Gamma_{0}(q)$ modular forms
All Dirichlet characters mod $q \sim Q\left(\right.$ size $\left.Q^{2}\right)$	$\Gamma_{1}(q)$ modular forms

Upper bounds for the the moment

Recall that for Dirichlet L-functions case, unconditionally, we have correct size of upper bounds for the sixth $(\ell=3)$ and the eighth moments $(\ell=4)$.

$$
\sum_{q \sim Q_{\chi} \bmod q} \sum_{q}^{*}\left|L\left(\frac{1}{2}, \chi\right)\right|^{2 \ell} \ll Q^{2}(\log Q)^{\ell^{2}}
$$

It is natural to ask if there is analogous upper bounds for the sixth and the eighth moment of $\Gamma_{1}(q)$ L-functions.

$$
M_{2 \ell}(q)=\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h}|L(f, 1 / 2)|^{2 \ell}
$$

for $\ell=3$ and 4 .

Upper bounds for the the moment

Recall that for Dirichlet L-functions case, unconditionally, we have correct size of upper bounds for the sixth $(\ell=3)$ and the eighth moments $(\ell=4)$.

$$
\sum_{q \sim Q \chi} \sum_{\bmod q}^{*}\left|L\left(\frac{1}{2}, \chi\right)\right|^{2 \ell} \ll Q^{2}(\log Q)^{\ell^{2}}
$$

It is natural to ask if there is analogous upper bounds for the sixth and the eighth moment of $\Gamma_{1}(q)$ L-functions.

$$
M_{2 \ell}(q)=\frac{2}{\phi(q)} \sum_{\substack{\chi \chi \bmod q \\ \chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h}|L(f, 1 / 2)|^{2 \ell}
$$

for $\ell=3$ and 4 . This family also admits the unitary symmetry, so it has similar conjectures to the moment of $\zeta(s)$, i.e. we expect that

$$
M_{2 \ell}(q) \ll(\log q)^{\ell^{2}} .
$$

Upper bounds for the sixth and the eighth moment

- Djankovic (2011) showed that for $k \geq 3$,

$$
M_{6}(q) \ll q^{\epsilon} .
$$

This bound is consistent with the Lindelöf hypothesis on average.

- Stucky (2021) proved the correct size of upper bound

$$
M_{6}(q) \ll(\log q)^{9} .
$$

Upper bounds for the sixth and the eighth moment

- Djankovic (2011) showed that for $k \geq 3$,

$$
M_{6}(q) \ll q^{\epsilon} .
$$

This bound is consistent with the Lindelöf hypothesis on average.

- Stucky (2021) proved the correct size of upper bound

$$
M_{6}(q) \ll(\log q)^{9}
$$

- C. and Li (2018) showed that for $k \geq 5$,

$$
M_{8}(q) \ll q^{\epsilon}
$$

The correct size for the upper bound is $(\log q)^{16}$. This problem remains open.

Asymptotic large sieve

A main tool to prove upper bounds is an asymptotic large sieve for the family of $\Gamma_{1}(q)$ developed by Iwaniec and Xiaoqing Li (2007):

$$
\frac{2}{\phi(q)} \sum_{\substack{\chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h}\left|\sum_{n \leq N} a_{n} \lambda_{f}(n)\right|^{2} .
$$

Part of the difficulty in this family is from the fact that this asymptotic large sieve is not perfectly orthogonal.

Interesting feature of family

"Perfectly orthogonal" large sieve: Let \mathcal{X} be a finite set of "nice" sequences.

$$
\sum_{x \in \mathcal{X}}\left|\sum_{n \leq N} a_{n} x(n)\right|^{2} \ll(|\mathcal{X}|+N) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

For example, the large sieve for primitive Dirichlet characters:

$$
\sum_{q \sim Q_{\chi}(\bmod q)} \sum_{n \leq N}^{*}\left|\sum_{n \leq N} a_{n} \chi(n)\right|^{2} \ll\left(Q^{2}+N\right) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

Iwaniec and Xiaoqing Li proved an asymptotic large sieve which is of a different nature.

More precisely they showed for any $\epsilon>0$,

$$
\begin{aligned}
& \frac{2}{\phi(q)} \sum_{\substack{\chi \\
\chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{\chi}}^{h}\left|\sum_{n \geq 1} a_{n} \lambda_{f}(n)\right|^{2} \\
& =\text { Main term }+O\left(N^{\epsilon}\left(\frac{N}{q^{2}}+\sqrt{\frac{N}{q H}}\right)\right) \sum_{n}\left|a_{n}\right|^{2}
\end{aligned}
$$

where

- $\alpha=\left(a_{n}\right)$, where $N<n \leq 2 N$, and $1 \leq H \leq \frac{N}{q}$
- If the coefficients a_{n} are chosen to look like certain Bessel functions twisted by Kloosterman sums, the main term can be large of size $\gg \sqrt{\frac{N}{q h_{0}}} \sum_{n}\left|a_{n}\right|^{2}$
- The component $\sqrt{\frac{N}{q H}}$ cannot be removed.

Asymptotic formula

Similar to Dirichlet L-functions, we compute an asymptotic formula with the average over the critical line. Let
$\mathcal{I}_{2 k}(q)$

$$
:=\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=(-1)^{k}}} \sum_{\substack{ \\\mathcal{H}_{k}(q, \chi)}}^{h} \int_{-\infty}^{\infty}\left|L\left(f, \frac{1}{2}+i t\right)\right|^{2 k}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{2 k} d t .
$$

Theorem (C. and Li, 2016)
For odd integer $k \geq 5$, we have

$$
\mathcal{I}_{6}(q) \sim 42 b_{3} \frac{(\log q)^{9}}{9!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{6} d t
$$

- We prove a more precise asymptotic formula including shifts with a power saving error term of size $q^{-1 / 4+\epsilon}$.

The eighth moment of $\Gamma_{1}(q) L$-functions

Theorem (C., Dunn, Li and Stucky, 2024+)
For odd integer $k \geq 5$, we have

$$
\mathcal{I}_{8}(q) \sim 24024 b_{4} \frac{(\log q)^{16}}{16!} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{8} d t .
$$

We can obtain an asymptotic formula with the leading term and having the error term of size $O\left((\log q)^{15+\epsilon}\right)$.

Similar phenomenon

The eighth moments for the enlarged family of Dirichlet L-functions and $\Gamma_{1}(q)$ L-functions require different techniques as their structures are different. However, there are some similar phenomenon appearing in the proof.

- Switching to smaller conductor.
- Truncation of the sum.
(This step is harder for $\Gamma_{1}(q) L$-functions.)
- Understanding the sums in narrow regions.
(The appearance for narrow region in $\Gamma_{1}(q)$ L-functions is not obvious!)

The eighth moments of Dirichlet L-functions

After approximate functional equation, we consider

$$
\sum_{q} \Psi\left(\frac{q}{Q}\right) \sum_{\chi(\bmod q)}^{*} \sum_{m, n \leq Q^{2}} \frac{d_{4}(n) d_{4}(m)}{\sqrt{m n}} \chi(m) \bar{\chi}(n)
$$

where Ψ is a smooth function compactly supported in $[1,2]$.
Without the integration over t, the main contribution will comes from $m n \ll Q^{4}$. We need to consider unbalanced sums when one variable is large and another one is small, e.g. $m=Q^{3}$ and $n=Q$.

After the orthogonality relation of Dirichlet characters, we roughly need to understand the sum of the form

$$
\sum_{q} \Psi\left(\frac{q}{Q}\right) \phi(q) \sum_{\substack{m, n \leq Q^{2} \\ m \equiv n}} \frac{d_{4}(n) d_{4}(m)}{\sqrt{m n}}
$$

After the orthogonality relation of Dirichlet characters, we roughly need to understand the sum of the form

$$
\sum_{q} \Psi\left(\frac{q}{Q}\right) \phi(q) \sum_{\substack{m, n \leq Q^{2} \\ m \equiv n}} \frac{d_{4}(n) d_{4}(m)}{\sqrt{m n}}
$$

- The diagonal term $m=n$ is easy to understand.
- For the off-diagonal term, use complementary divisor trick to switch to a smaller conductor.
Write $m-n=h q$, where $h \neq 0$. So $h \asymp \frac{|m-n|}{Q}$, and $m \equiv n$ $\bmod h$. [Goal: we want h to be smaller than q.] But

$$
h \ll \frac{Q^{2}}{Q}=Q
$$

This is not smaller! We need to truncate sums over m, n.

After the orthogonality relation of Dirichlet characters, we roughly need to understand the sum of the form

$$
\sum_{q} \Psi\left(\frac{q}{Q}\right) \phi(q) \sum_{\substack{m, n \leq Q^{2} \\ m \equiv n}} \frac{d_{4}(n) d_{4}(m)}{\sqrt{m n}}
$$

- The diagonal term $m=n$ is easy to understand.
- For the off-diagonal term, use complementary divisor trick to switch to a smaller conductor.
Write $m-n=h q$, where $h \neq 0$. So $h \asymp \frac{|m-n|}{Q}$, and $m \equiv n$ $\bmod h$. [Goal: we want h to be smaller than q.] But

$$
h \ll \frac{Q^{2}}{Q}=Q
$$

This is not smaller! We need to truncate sums over m, n.

- Note: if we do not have integration over t, the size of h can be much larger than Q.
(e.g. h can be $\frac{Q^{4}-1}{Q} \asymp Q^{3}$)

We truncate the sums over m, n by the large sieve inequality

$$
\sum_{q \sim Q_{\chi}} \sum_{(\bmod q)}^{*}\left|\sum_{n \leq N} a_{n} \chi(n)\right|^{2} \ll\left(Q^{2}+N\right) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

Now $m, n \ll Q^{2-\epsilon}$
After the truncation, $h \ll \frac{Q^{2-\epsilon}}{Q}=Q^{1-\epsilon}$. [smaller conductor!]

We truncate the sums over m, n by the large sieve inequality

$$
\sum_{q \sim Q_{\chi}} \sum_{(\bmod q)}^{*}\left|\sum_{n \leq N} a_{n} \chi(n)\right|^{2} \ll\left(Q^{2}+N\right) \sum_{n \leq N}\left|a_{n}\right|^{2}
$$

Now $m, n \ll Q^{2-\epsilon}$
After the truncation, $h \ll \frac{Q^{2-\epsilon}}{Q}=Q^{1-\epsilon}$. [smaller conductor!]
The sum over a narrow region.
It comes from the condition $|m-n| \asymp h Q$.
When h is small, $|m-n| \asymp h Q$ is also small. Hence, for fixed n, the sums over m is restricted to an interval much shorter than Q^{2}.

The eighth moments of $\Gamma_{1}(q)$ L-functions

Recall that
$\mathcal{I}_{8}(q)$

$$
:=\frac{2}{\phi(q)} \sum_{\substack{\chi \\ \chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} \int_{-\infty}^{\infty}\left|L\left(f, \frac{1}{2}+i t\right)\right|^{8}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{8} d t .
$$

Roughly speaking, after the approximate functional equation, we consider

$$
\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=-1}} \sum_{\substack{\mathcal{H}_{k}(q, \chi)}}^{h} \sum_{m, n \ll q^{2}} \sum_{n^{1 / 2}} \frac{\lambda_{f}(n) d_{4}(n)}{n^{1 / 2}} \frac{\overline{\lambda_{f}}(m) d_{4}(m)}{m^{1 / 2}} .
$$

No unbalanced sums.

We then apply Petersson's formula

$$
\sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} \lambda_{f}(m) \overline{\lambda_{f}(n)}=\delta(m, n)+\sigma_{\chi}(m, n)
$$

where $\delta(m, n)=1$ if $m=n$ and 0 otherwise, and

$$
\sigma_{\chi}(m, n)=2 \pi i^{-k} \sum_{c=1}^{\infty} \frac{1}{c q} S_{\chi}(m, n ; c q) J_{k-1}\left(\frac{4 \pi}{c q} \sqrt{m n}\right)
$$

where

$$
S_{\chi}(m, n ; c q)=\sum_{a}^{*} \overline{\chi(a)} e\left(\frac{a m+\bar{a} n}{c q}\right)
$$

We then apply Petersson's formula

$$
\sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} \lambda_{f}(m) \overline{\lambda_{f}(n)}=\delta(m, n)+\sigma_{\chi}(m, n)
$$

where $\delta(m, n)=1$ if $m=n$ and 0 otherwise, and

$$
\sigma_{\chi}(m, n)=2 \pi i^{-k} \sum_{c=1}^{\infty} \frac{1}{c q} S_{\chi}(m, n ; c q) J_{k-1}\left(\frac{4 \pi}{c q} \sqrt{m n}\right)
$$

where

$$
S_{\chi}(m, n ; c q)=\sum_{a}^{*} \overline{\chi \bmod c q} \overline{\chi(a)} e\left(\frac{a m+\bar{a} n}{c q}\right)
$$

- The diagonal terms from $\delta(m, n)(m=n)$ are easy (This contributes to the main term.)
- The off-diagonal terms from $\sigma_{\chi}(m, n)$ will contain another main term, and it is a lot harder.

Next we apply orthogonality relation for Dirichlet characters

$$
\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q^{x} \\ \chi(-1)=(-1)^{k}}} \chi(m) \bar{\chi}(n)= \begin{cases}1 & \text { if } m \equiv n \bmod q \\ (-1)^{k} & \text { if } m \equiv-n \bmod q \\ 0 & \text { otherwise }\end{cases}
$$

Essentially, we need to understand the sum of the form

$$
\sum_{c} \frac{1}{c q} \sum_{\substack{a=1 \\ a \equiv 1 \bmod c q \\ \bmod q}}^{*} \sum_{n, m \asymp q^{2}} \sum_{m^{1 / 2}} \frac{d_{4}(m)}{m^{1 / 2}} e\left(\frac{a m}{c q}\right) \frac{d_{4}(n)}{n^{1 / 2}} e\left(\frac{\bar{a} n}{c q}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)
$$

The Bessel function satisfies

$$
J_{k-1}(x) \ll \min \left\{x^{-1 / 2}, x^{k-1}\right\}
$$

So we need to consider two cases: $x \gg 1$ and $x \ll 1$.

- When x is small, the Bessel function can be treated as the smooth function.
- When x is big, there is oscillation from the Bessel function.
- When $x \asymp 1$, this is called the transition region.

The transition region for $J_{k-1}\left(\frac{4 \pi}{c q} \sqrt{m n}\right)$ is when

$$
c \asymp \frac{\sqrt{m n}}{q} \asymp q
$$

(Recall that here we consider only the case when $m, n \asymp q^{2}$.)

$$
\sum_{n \asymp q^{2}} \frac{d_{4}(n)}{n^{1 / 2}} e\left(\frac{a m}{c q}\right)
$$

Our next step is to apply Voronoi summation to the sum over m and n. Now the conductor is of size $c q \asymp q^{2}$. If we applied Voronoi summation, then

Orginal sum		the dual sum
q^{2}	\rightarrow	$\frac{(c q)^{4}}{q^{2}} \asymp q^{6}$

The dual sum is longer than the original sum, and more difficult to handle! We try to reduce the conductor in the exponential sum.

Switching to a smaller conductor

Recall that in the case of Dirichlet L-functions, the complementary divisor trick is used to reduce the conductor.

By Chinese Remainder Theorem and reciprocity, we may factor our exponential sum as

$$
\begin{aligned}
\sum_{\substack{a \bmod c q \\
a \equiv 1 \\
\bmod q}}^{*} e\left(\frac{a m}{c q}\right) & =\sum_{z \bmod c}^{*} \sum_{\substack{y \bmod q \\
y \equiv 1 \bmod q}}^{*} e\left(\frac{m y \bar{c}}{q}+\frac{m z \bar{q}}{c}\right) \\
& =\sum_{z \bmod c}^{*} e\left(\frac{m \bar{c}}{q}+\frac{m z \bar{q}}{c}\right) \\
& =e\left(\frac{m}{c q}\right) \sum_{z \bmod c}^{*} e\left(\frac{m \bar{q}(z-1)}{c}\right)
\end{aligned}
$$

The conductor is of the size $c \asymp q$

Smaller conductor

- Side note: for the sixth moment, the conductor c is $q^{1 / 2}$. After Voronoi, the dual sum is very short. So we can bound it trivially.

$$
\begin{array}{clc}
\text { Orginal sum } & & \text { the dual sum } \\
q^{3 / 2} & \rightarrow & \frac{c^{3}}{q^{3 / 2}} \asymp 1 \\
\hline
\end{array}
$$

Smaller conductor

- Side note: for the sixth moment, the conductor c is $q^{1 / 2}$. After Voronoi, the dual sum is very short. So we can bound it trivially.

$$
\begin{array}{clc}
\text { Orginal sum } & & \text { the dual sum } \\
q^{3 / 2} & \rightarrow \quad \frac{c^{3}}{q^{3 / 2}} \asymp 1 \\
\hline
\end{array}
$$

- For the eighth moment, the conductor c is q. The conductor is NOT reduced! If we apply Voronoi summation, the length of the dual sum is around the size

$$
\frac{c^{4}}{q^{2}} \asymp q^{2}
$$

The dual is of the same length as the original sum.

Question: What should we do?

Question: What should we do?

Answer: Truncate the sums over m and n.

Question: What should we do?
Answer: Truncate the sums over m and n.

The large sieve of this family is NOT perfectly orthogonal. So applying the large sieve would not yield the result right away!
[So, the truncation here is more difficult than the truncation in Dirichlet L-functions.]

Question: What should we do?
Answer: Truncate the sums over m and n.

The large sieve of this family is NOT perfectly orthogonal. So applying the large sieve would not yield the result right away!
[So, the truncation here is more difficult than the truncation in Dirichlet L-functions.]

- After the truncation, The most important region is when $m, n \asymp q^{2-\epsilon}$. In a simple model, we will do analysis there.
- The transition region of the conductor c is around

$$
c \asymp \frac{\sqrt{m n}}{q} \asymp q^{1-\epsilon} .
$$

- The conductor is now reduced!

Truncation for the sums over m and n

We want to show that

$$
\begin{aligned}
\frac{2}{\phi(q)} \sum_{\substack{\chi \\
\chi(-1)=-1}} \sum_{\substack{q\left(\mathcal{H}_{\chi}\right.}}^{h}\left|\sum_{q^{2-\epsilon}<n \leq q^{2}} \frac{d_{4}(n) \lambda_{f}(n)}{\sqrt{n}}\right|^{2} & \ll \sum_{q^{2-\epsilon}<n \leq q^{2}} \frac{d_{4}^{2}(n)}{n} \\
& \ll \epsilon(\log q)^{16}
\end{aligned}
$$

where $\epsilon \ll \frac{1}{(\log q)^{1-\epsilon_{1}}}$. Dividing the sum over n into dyadic intervals, it is enough to show that for $q^{2-\epsilon} \leq N \leq q^{2}$,

$$
\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=-1}} \sum_{f \in \mathcal{H}_{\chi}}\left|\sum_{n \asymp N} \frac{d_{4}(n) \lambda_{f}(n)}{\sqrt{n}}\right|^{2} \ll \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n}
$$

Truncation for the sums over m and n

We want to show that

$$
\begin{aligned}
\frac{2}{\phi(q)} \sum_{\substack{\chi \\
\chi(-1)=-1}} \sum_{\substack{\bmod \\
\chi}}^{h} \mathcal{H}_{\chi} & \left.\sum_{q^{2-\epsilon}<n \leq q^{2}} \frac{d_{4}(n) \lambda_{f}(n)}{\sqrt{n}}\right|^{2}
\end{aligned} \ll \sum_{q^{2-\epsilon<n \leq q^{2}}} \frac{d_{4}^{2}(n)}{n}
$$

where $\epsilon \ll \frac{1}{(\log q)^{1-\epsilon_{1}}}$. Dividing the sum over n into dyadic intervals, it is enough to show that for $q^{2-\epsilon} \leq N \leq q^{2}$,

$$
\frac{2}{\phi(q)} \sum_{\substack{\chi \bmod q \\ \chi(-1)=-1}} \sum_{f \in \mathcal{H}_{\chi}}\left|\sum_{n \asymp N} \frac{d_{4}(n) \lambda_{f}(n)}{\sqrt{n}}\right|^{2} \ll \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n}
$$

Squaring it out and applying Petersson's formula gives

$$
\sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n}+\text { Off diagonal. }
$$

The off-diagonal terms in the truncation and after the truncation are of the same form. For $N \ll q^{2}$, essentially we would like to understand.

$$
\begin{aligned}
\sum_{c} \frac{1}{c q} \sum_{z \bmod c}^{*} \sum_{m, n \asymp N} \sum_{N} & \frac{d_{4}(m) d_{4}(n)}{\sqrt{m n}} e\left(\frac{\bar{q}(z-1) m+\bar{q}(\bar{z}-1) n}{c}\right) \\
& \times e\left(\frac{m+n}{c q}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)
\end{aligned}
$$

We will first consider a simple model to illustrate ideas.
$\sum_{c \geq 1} \frac{1}{c q} \sum_{a \bmod c}^{*} \sum_{m, n \asymp N} \sum_{\sqrt{m}(m) d_{4}(n)}^{\sqrt{m n}} e\left(\frac{a m+\bar{a} n}{c}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)$.

The off-diagonal terms in the truncation and after the truncation are of the same form. For $N \ll q^{2}$, essentially we would like to understand.

$$
\begin{aligned}
& \sum_{c} \frac{1}{c q} \sum_{z \bmod c}^{*} \sum_{m, n \asymp N} \sum_{N} \frac{d_{4}(m) d_{4}(n)}{\sqrt{m n}} e\left(\frac{\bar{q}(z-1) m+\bar{q}(\bar{z}-1) n}{c}\right) \\
& \times e\left(\frac{m+n}{c q}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)
\end{aligned}
$$

We will first consider a simple model to illustrate ideas.

$$
\sum_{c \geq 1} \frac{1}{c q} \sum_{a \bmod c}^{*} \sum_{m, n \asymp N} \frac{d_{4}(m) d_{4}(n)}{\sqrt{m n}} e\left(\frac{a m+\bar{a} n}{c}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)
$$

The transition region is when $\frac{\sqrt{m n}}{c q} \sim 1 \rightarrow c \sim \frac{N}{q}$, so we consider two main cases:
c is large $\frac{N}{q} \ll c$, and c is small $\frac{N}{q} \gg c$

Large c: $\frac{N}{q} \ll c$, so $\frac{N}{c q}$ is small.
Here, since $\frac{N}{c q} \ll 1$, there is no oscillation from the Bessel function $J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)$. For convenience, we consider $c \asymp \frac{N}{q}$ (transition region). Roughly, we are left to understand

$$
\begin{aligned}
& \sum_{c \asymp \frac{N}{q}} \frac{1}{c q} \sum_{a \bmod c}^{*} \sum_{c m, n \asymp N} \frac{d_{4}(m) d_{4}(n)}{\sqrt{m n}} e\left(\frac{a m+\bar{a} n}{c}\right) \\
& \leq \frac{1}{N} \sum_{c \asymp \frac{N}{q}} \sum_{\bmod c}^{*}\left|\sum_{m \asymp N} \frac{d_{4}(m)}{\sqrt{m}} e\left(\frac{a m}{c}\right)\right|^{2} \\
& \ll \frac{1}{N}\left(\frac{N^{2}}{q^{2}}+N\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} \quad \text { (additive large sieve ineq) } \\
& \ll\left(\frac{N}{q^{2}}+1\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} \ll \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n}
\end{aligned}
$$

since $N \leq q^{2}$.

Small c: $\frac{N}{q}>c$, so $\frac{N}{c q}$ is large.

$$
J_{k-1}(2 \pi x)=\frac{1}{\sqrt{\pi x}} \operatorname{Re}\left[W(2 \pi x) e\left(x-\frac{k}{4}+\frac{1}{8}\right)\right]
$$

where $W_{k}^{(j)}(x) \ll_{j, k} x^{-j}$.

- When x is large (c is small for our case), there is oscillation from the exponent term.
- We then separate variables inside the exponent term e $\left(\frac{\sqrt{m n}}{c q}\right)$ via Mellin inversion. We need to bound

$$
\frac{1}{\sqrt{\frac{N}{C q}}} \int_{t \asymp T} \frac{1}{\sqrt{t}} \sum_{c \asymp C} \frac{1}{c q} \sum_{a \bmod c}^{*}\left|\sum_{m \asymp N} \frac{d_{4}(m)}{m^{1 / 2+i t}} e\left(\frac{a m}{c}\right)\right|^{2} d t
$$

for $C \ll \frac{N}{q}$ and $T \ll \frac{N}{C q}$.

Applying the hybrid large sieve gives

$$
\begin{aligned}
& \frac{1}{\sqrt{N T C q}}\left(T C^{2}+N\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} \\
& \ll\left(1+\sqrt{\frac{N}{C q}} \frac{1}{T}\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n},
\end{aligned}
$$

by using that $C \ll \frac{N}{q}, T \ll \frac{N}{C q}$ and $N \leq q^{2}$.
The term $\sqrt{\frac{N}{q C T}}$ can be too large since C and T can be small.

Applying the hybrid large sieve gives

$$
\begin{aligned}
& \frac{1}{\sqrt{N T C q}}\left(T C^{2}+N\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} \\
& \ll\left(1+\sqrt{\frac{N}{C q}} \frac{1}{T}\right) \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n},
\end{aligned}
$$

by using that $C \ll \frac{N}{q}, T \ll \frac{N}{C q}$ and $N \leq q^{2}$.
The term $\sqrt{\frac{N}{q C T}}$ can be too large since C and T can be small.
Recall the asymptotic large sieve:

$$
\text { main term }+O\left(N^{\epsilon}\left(\frac{N}{q^{2}}+\sqrt{\frac{N}{q H}}\right)\right)\|\alpha\|^{2}
$$

Question: What should we do?

Question: What should we do?

Answer: Voronoi summation

This uses information about the coefficients $d_{4}(n)$. In particular, $d_{4}(n)$ is not correlated to Bessel function twisted with Kloosterman sums in certain ranges. Hence we break the non-orthogonal nature of the family we saw in the large sieve of Iwaniec and Li .

Question: What should we do?

Answer: Voronoi summation

This uses information about the coefficients $d_{4}(n)$. In particular, $d_{4}(n)$ is not correlated to Bessel function twisted with Kloosterman sums in certain ranges. Hence we break the non-orthogonal nature of the family we saw in the large sieve of Iwaniec and Li.

- The hybrid conductor of Voronoi summation is $C T$.
- The dual sum is of length $\frac{(C T)^{4}}{N}$.

After Voronoi summation, we need to bound

$$
\frac{1}{\sqrt{N C q T}} \int_{t \asymp T} \sum_{c \asymp C} \sum_{a \bmod c}^{*}\left|\sum_{m \ll \frac{(C T)^{4}}{N}} \frac{d_{4}(m)}{m^{1 / 2-i t}} e\left(\frac{-a m}{c}\right)\right|^{2} d t
$$

for $C \ll \frac{N}{q}$ and $T \ll \frac{N}{C q}$.

Now we apply the hybrid large sieve and obtain that it is bounded by

$$
\begin{aligned}
& \frac{1}{\sqrt{N C q T}}\left(T C^{2}+\frac{(C T)^{4}}{N}\right) \sum_{n \asymp \frac{(C T)^{4}}{N}} \frac{d_{4}^{2}(n)}{n} \\
& \ll \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} .
\end{aligned}
$$

Now we apply the hybrid large sieve and obtain that it is bounded by

$$
\begin{aligned}
& \frac{1}{\sqrt{N C q T}}\left(T C^{2}+\frac{(C T)^{4}}{N}\right) \sum_{n \asymp \frac{(C T)^{4}}{N}} \frac{d_{4}^{2}(n)}{n} \\
& \ll \sum_{n \asymp N} \frac{d_{4}^{2}(n)}{n} .
\end{aligned}
$$

Recall three common phenomenon with Dirichlet L-functions.

- Switching to smaller conductor.
- Truncation of the sum.
- Understanding the sums in narrow regions.

Recall the off-diagonal terms are

$$
\begin{gathered}
\sum_{c} \frac{1}{c q} \sum_{z \bmod }^{*} \sum_{c} \sum_{m, n \asymp q^{2-\epsilon}} \frac{d_{4}(m) d_{4}(n)}{\sqrt{m n}} e\left(\frac{\bar{q}(z-1) m+\bar{q}(\bar{z}-1) n}{c}\right) \\
\times e\left(\frac{m+n}{c q}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q}\right)
\end{gathered}
$$

- The harder case is when c is small, i.e., $c \ll \frac{N}{q}$. So we focus only for this case.
- The phase functions in the exponential function and the Bessel function are big.
- We will need Voronoi summation for the sums over m, n

Add coprimality relation for $m, n, z-1$ and c. Note that

$$
(z-1, c)=(\bar{z}-1, c)=\delta
$$

Essentially, we would like to understand

$$
\begin{aligned}
& \sum_{c} \frac{1}{c q} \sum_{\beta \bmod c} \sum_{\substack{j \bmod c \\
(j+\beta, c)=1}}^{*} \sum_{m, n \asymp q^{2-\epsilon}} \sum_{\sqrt{m n}(m) d_{4}(n)}^{\sqrt{m n}} e\left(\frac{\bar{q} j m-\bar{q} \overline{(j+\beta)} n}{c}\right) \\
& \times \sum_{\delta \equiv \beta \bmod c} \frac{1}{\delta} e\left(\frac{m+n}{c q \delta}\right) J_{k-1}\left(\frac{4 \pi \sqrt{m n}}{c q \delta}\right) .
\end{aligned}
$$

- Use the method by Iwaniec and Li to deal with the sum over δ. [Start from Poisson summation in δ.] This is to separate variables in m and n.

Let $H=\frac{N}{q}=\frac{\text { size of } \max \{m, n\}}{q}$. This comes from the phase integral (with respect to y) after Poisson summation in δ.

$$
\sum_{h} F_{1}(h) \int_{0}^{\infty} g(y) e(f(y, h)) d y
$$

where

$$
f(y, h)=\frac{h y}{c}+\frac{m+n}{c q y} \pm \frac{2 \sqrt{m n}}{c q y} .
$$

If $|h| \gg H$, then we can integral by part many times and get small contribution. So we consider only when $|h| \ll H$.

Let $H=\frac{N}{q}=\frac{\text { size of } \max \{m, n\}}{q}$. This comes from the phase integral (with respect to y) after Poisson summation in δ.

$$
\sum_{h} F_{1}(h) \int_{0}^{\infty} g(y) e(f(y, h)) d y
$$

where

$$
f(y, h)=\frac{h y}{c}+\frac{m+n}{c q y} \pm \frac{2 \sqrt{m n}}{c q y} .
$$

If $|h| \gg H$, then we can integral by part many times and get small contribution. So we consider only when $|h| \ll H$.

If there is no integration over critial line, we have unbalanced sums, and H is large.

Let Φ be a compactly supported smooth function. For simplicity, we need to understand

$$
\begin{aligned}
& \sum_{1<c \ll q^{1-\epsilon}} \frac{H}{c^{2} q} \sum_{\ell \neq 0} \sum_{\substack{j \bmod c \\
(j+\ell, c)=1}}^{*} \int_{0}^{\infty} \Phi(y) e\left(\frac{\ell H y}{c}\right) \\
\times & \sum_{m} \frac{d_{4}(m)}{\sqrt{m}} \Phi\left(\frac{m}{N}\right) e\left(\frac{\bar{q} j m}{c}\right) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{\frac{H m y}{q}}\right) \\
\times & \sum_{n} \frac{d_{4}(n)}{\sqrt{n}} \Phi\left(\frac{n}{N}\right) e\left(\frac{-\bar{q}(\overline{(j+\ell)} n}{c}\right) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{\frac{H n y}{q}}\right) d y .
\end{aligned}
$$

Let Φ be a compactly supported smooth function. For simplicity, we need to understand

$$
\begin{aligned}
& \sum_{1<c \ll q^{1-\epsilon}} \frac{H}{c^{2} q} \sum_{\ell \neq 0} \sum_{\substack{j \bmod c \\
(j+\ell, c)=1}}^{*} \int_{0}^{\infty} \Phi(y) e\left(\frac{\ell H y}{c}\right) \\
\times & \sum_{m} \frac{d_{4}(m)}{\sqrt{m}} \Phi\left(\frac{m}{N}\right) e\left(\frac{\bar{q} j m}{c}\right) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{\frac{H m y}{q}}\right) \\
\times & \sum_{n} \frac{d_{4}(n)}{\sqrt{n}} \Phi\left(\frac{n}{N}\right) e\left(\frac{-\bar{q}(\overline{(j+\ell)} n}{c}\right) J_{k-1}\left(\frac{4 \pi}{c} \sqrt{\frac{H n y}{q}}\right) d y .
\end{aligned}
$$

When c is small, it is advantageous to apply the voronoi summation to the sums over m, n.

Voronoi summation

For $(c, d)=1$

$$
\sum_{n=1}^{\infty} d_{k}(n) e\left(\frac{d n}{c}\right) \psi\left(\frac{n}{N}\right)=\operatorname{res}_{s=1} . .+\underbrace{\sum_{n \ll \frac{c^{k}}{N}}}_{\text {dual sum }}
$$

- The residues at $s=1$ from both sums over m, n contribute to the main terms.
- The rest gives error terms.

After this process, the dual sums over m, n will be

$$
\begin{aligned}
& \sum_{m, n} a_{n} a_{m} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \Phi(y) \Phi\left(x_{1}\right) \Phi\left(x_{2}\right) d y d x_{1} d x_{2} \\
& \times e(\frac{\ell H y}{c}+\underbrace{\frac{2}{c} \sqrt{\frac{H N y}{q}}\left(\sqrt{x_{1}}-\sqrt{x_{2}}\right)}_{\text {J-Bessel functions }}-\underbrace{\frac{\alpha N^{\frac{1}{4}}}{c}\left(m^{\frac{1}{4}} x_{1}^{\frac{1}{4}}-n^{\frac{1}{4}} x_{2}^{\frac{1}{4}}\right)}_{\text {from voronoi }})
\end{aligned}
$$

Recall that $H=\frac{N}{q}$.

- When considering the integration over y, we have saddle point when x_{1} is close to x_{2}
- From the integrals over x_{1} and x_{2}, we have that m and n must be close to each other. (the sum over narrow regions.)

Higher moments

Question: How about a higher moment, e.g. the 10 th moment?

Higher moments

Question: How about a higher moment, e.g. the 10 th moment?
It's still unknown. One possibility is to enlarge the size of a family of L-functions, so the size is Q^{3} while the conductor remains $\asymp Q$. In particular, we consider
$\sum_{q \sim Q} \sum_{\substack{\chi \\ \chi(-1)=(-1)^{k}}} \sum_{f \in \mathcal{H}_{k}(q, \chi)}^{h} \int_{-\infty}^{\infty}\left|L\left(f, \frac{1}{2}+i t\right)\right|^{2 k}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{2 k} d t$
for $k=5$ (the 10th moment) and $k=6$ (the 12th moment).

Thank you very much!

