# Moments of Rankin-Selberg $L$-functions in the prime-power level aspect 

Alia Hamieh<br>(Joint work with Fatma Çiçek)

University of Northern British Columbia
International Conference on $L$-functions and Automorphic Forms, Vanderbilt University, Nashville

May 16, 2024

## Moments of $\zeta\left(\frac{1}{2}+i t\right)$

We set

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t
$$

Lindelöf Hypothesis


$$
\text { for any } \epsilon>0, I_{k}(T)=O\left(T^{1+\epsilon}\right) \forall k \in \mathbb{N} \text {. }
$$

## A Folklore Conjecture

It is believed that
Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

## A Folklore Conjecture

It is believed that

## Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

- Hardy-Littlewood (1918): $I_{1}(T) \sim T \log T$.
- Ingham (1926): $I_{1}(T)=T P_{1}(\log T)+O\left(T^{\frac{1}{2}+\epsilon}\right)$.


## A Folklore Conjecture

It is believed that

## Conjecture

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim c_{k} T(\log T)^{k^{2}}
$$

for some unspecified constant $c_{k}$.
What is known?

- Hardy-Littlewood (1918): $I_{1}(T) \sim T \log T$.
- Ingham (1926): $I_{1}(T)=T P_{1}(\log T)+O\left(T^{\frac{1}{2}+\epsilon}\right)$.
- Ingham (1926): $I_{2}(T) \sim \frac{1}{2 \pi^{2}} T(\log T)^{4}$.
- Heath-Brown (1979): $I_{2}(T)=T P_{4}(\log T)+O\left(T^{\frac{7}{8}+\epsilon}\right)$.


## Asymptotic Bounds

We have the lower bound

- Radziwitt-Soundararajan (2013):

For all $k>0$, we have $I_{k}(T) \gg T(\log T)^{k^{2}}$.

## Asymptotic Bounds

We have the lower bound

- Radziwitt-Soundararajan (2013):

For all $k>0$, we have $I_{k}(T) \gg T(\log T)^{k^{2}}$.
and the upper bounds

- Soundararajan (2008):

Under RH, for any $\epsilon>0$ we have $I_{k}(T) \ll T(\log T)^{k^{2}+\epsilon}$.

- Harper (2013):

Under $R H$, we have $I_{k}(T) \ll T(\log T)^{k^{2}}$.

## Conjectural Asymptotic Formulae

## Conjecture (Conrey-Ghosh, 1998)

$$
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9},
$$

where $g_{3}=42$ and $a_{3}=\prod_{p}\left(1-p^{-1}\right)^{4}\left(1+4 p^{-1}+p^{-2}\right)$.

## Conjectural Asymptotic Formulae

Conjecture (Conrey-Ghosh, 1998)

$$
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9},
$$

where $g_{3}=42$ and $a_{3}=\prod_{p}\left(1-p^{-1}\right)^{4}\left(1+4 p^{-1}+p^{-2}\right)$.
Conjecture (Conrey-Gonek, 2001)

$$
I_{4}(T) \sim \frac{g_{4}}{16!} a_{4} \cdot T(\log T)^{16},
$$

where $g_{4}=24024$ and
$a_{4}=\prod_{p}\left(1-p^{-1}\right)^{9}\left(1+9 p^{-1}+9 p^{-2}+p^{-3}\right)$.

## Asymptotic Formulae for Higher Moments?

Conjecture (Keating and Snaith, 2000)

$$
I_{k}(T)=\int_{0}^{T}\left|\zeta\left(\frac{1}{2}+i t\right)\right|^{2 k} d t \sim \frac{g_{k}}{\left(k^{2}\right)!} \cdot a_{k} \cdot T(\log T)^{k^{2}}
$$

where

$$
g_{k}=\left(k^{2}\right)!\prod_{j=0}^{k-1} \frac{j!}{(j+k)!}
$$

and

$$
a_{k}=\prod_{p}\left(1-\frac{1}{p}\right)^{(k-1)^{2}} \sum_{j=0}^{k-1}\binom{k-1}{j}^{2} p^{-j}
$$

## Conditional Results

- Ng (2021): Under a ternary additive divisor conjecture

$$
I_{3}(T) \sim \frac{g_{3}}{9!} a_{3} \cdot T(\log T)^{9}
$$

- Ng-Shen-Wong (2022+): Under the Riemann Hypothesis and a quaternary additive divisor conjecture

$$
I_{4}(T) \sim \frac{g_{4}}{16!} a_{4} \cdot T(\log T)^{16}
$$

## Moments of $L\left(\frac{1}{2}, \chi\right)$

Questions regarding the asymptotic behavior of $\zeta\left(\frac{1}{2}+i t\right)$ have $q$-aspect analogues concerning $L\left(\frac{1}{2}, \chi\right)$ as $\chi$ varies over primitive characters modulo $q$ and $q \rightarrow \infty$.

## Moments of $L\left(\frac{1}{2}, \chi\right)$

Questions regarding the asymptotic behavior of $\zeta\left(\frac{1}{2}+i t\right)$ have $q$-aspect analogues concerning $L\left(\frac{1}{2}, \chi\right)$ as $\chi$ varies over primitive characters modulo $q$ and $q \rightarrow \infty$.
Let

$$
M_{k}(q)=\frac{1}{\phi^{*}(q)} \sum_{\chi(\bmod q)}^{*}\left|L\left(\frac{1}{2}, \chi\right)\right|^{2 k} .
$$

## Conjecture (Conrey-Farmer-Keating-Rubinstein-Snaith, 2005)

$$
M_{k}(q) \sim \frac{g_{k}}{\left(k^{2}\right)!} b_{k}(\log q)^{k^{2}}, \quad \text { for any } k \in \mathbb{N}^{*} .
$$

## What is known?

- Paley (1931): $M_{1}(q) \sim \log q$.


## What is known?

- Paley (1931): $M_{1}(q) \sim \log q$.
- Heath-Brown (1981):

$$
M_{2}(q)=\frac{2}{4!} b_{2}(q)(\log q)^{4}+O\left(2^{\omega(q)} \frac{q}{\phi^{*}(q)}(\log q)^{3}\right)
$$

where $b_{2}(q)=\frac{4!}{2} \frac{1}{2 \pi^{2}} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{3}}{\left(1+\frac{1}{p}\right)}$.

## What is known?

- Paley (1931): $M_{1}(q) \sim \log q$.
- Heath-Brown (1981):

$$
M_{2}(q)=\frac{2}{4!} b_{2}(q)(\log q)^{4}+O\left(2^{\omega(q)} \frac{q}{\phi^{*}(q)}(\log q)^{3}\right)
$$

where $b_{2}(q)=\frac{4!}{2} \frac{1}{2 \pi^{2}} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{3}}{\left(1+\frac{1}{p}\right)}$.

- Soundararajan (2007):

$$
\begin{aligned}
M_{2}(q) & =\frac{2}{4!} b_{2}(q)(\log q)^{4}\left(1+O\left(\sqrt{\frac{q}{\phi(q)}} \frac{\omega(q)}{\log q}\right)\right) \\
& +O\left(\frac{q}{\phi^{*}(q)}(\log q)^{\frac{\tau}{2}}\right) .
\end{aligned}
$$

## What is known?

- Paley (1931): $M_{1}(q) \sim \log q$.
- Heath-Brown (1981):

$$
M_{2}(q)=\frac{2}{4!} b_{2}(q)(\log q)^{4}+O\left(2^{\omega(q)} \frac{q}{\phi^{*}(q)}(\log q)^{3}\right)
$$

where $b_{2}(q)=\frac{4!}{2} \frac{1}{2 \pi^{2}} \prod_{p \mid q} \frac{\left(1-\frac{1}{p}\right)^{3}}{\left(1+\frac{1}{p}\right)}$.

- Soundararajan (2007):

$$
\begin{aligned}
M_{2}(q) & =\frac{2}{4!} b_{2}(q)(\log q)^{4}\left(1+O\left(\sqrt{\frac{q}{\phi(q)}} \frac{\omega(q)}{\log q}\right)\right) \\
& +O\left(\frac{q}{\phi^{*}(q)}(\log q)^{\frac{7}{2}}\right) .
\end{aligned}
$$

- Young (2011): $M_{2}(q)=P_{4}(\log q)+O\left(q^{-\frac{1}{80}+\frac{\theta}{40}+\epsilon}\right)$, as $q \rightarrow \infty$ in the primes.

Chandee-Li-Matomaki-Radziwill (2023+): Asymptotic formula for

$$
\sum_{q \leq Q} \sum_{(\bmod q)}^{*} \int_{\mathbb{R}}\left|\Gamma\left(\frac{1}{4}+\frac{i t}{2}\right) L\left(\frac{1}{2}+i t, \chi\right)\right|^{8} d t
$$

and

$$
\sum_{q \leq Q} \sum_{\chi(\bmod q)}^{*}\left|L\left(\frac{1}{2}, \chi\right)\right|^{6}
$$

Khan-Milićević-Ngo (2016): Suppose $q=p^{\nu}$ for some fixed odd prime $p$. Let $d \mid p-1$, and let $\mathcal{O}$ be the set of primitive characters $\bmod q$ of order $p^{\nu-1} d$. We have

$$
\begin{aligned}
\frac{1}{\mathcal{O}} \sum_{\chi \in \mathcal{O}}\left|L\left(\frac{1}{2}, \chi\right)\right|^{2} & =\frac{p-1}{p}\left(\log \left(\frac{q}{\pi}\right)+\frac{\Gamma^{\prime}}{\Gamma}\left(\frac{1+2 \iota}{4}\right)+2 \gamma+2 \frac{\log p}{p-1}\right) \\
& +O\left(q^{-\frac{1}{4}+\epsilon}\right)
\end{aligned}
$$

## Space of Cusp Forms

- The space of cusp forms of weight $k$ for $\Gamma_{0}(q)$ and $\chi(\bmod q)$ is denoted by $S_{k}\left(\Gamma_{0}(q), \chi\right)$.
If $\chi_{0}$ is the principal character, we set $S_{k}(q)=S_{k}\left(\Gamma_{0}(q), \chi_{0}\right)$, and we have

$$
\operatorname{dim}_{\mathbb{C}} S_{k}(q) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+\frac{1}{p}\right) .
$$

## Space of Cusp Forms

- The space of cusp forms of weight $k$ for $\Gamma_{0}(q)$ and $\chi(\bmod q)$ is denoted by $S_{k}\left(\Gamma_{0}(q), \chi\right)$.
If $\chi_{0}$ is the principal character, we set $S_{k}(q)=S_{k}\left(\Gamma_{0}(q), \chi_{0}\right)$, and we have

$$
\operatorname{dim}_{\mathbb{C}} S_{k}(q) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+\frac{1}{p}\right) .
$$

- A cusp form $f$ has a Fourier series expansion

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{\frac{k-1}{2}} q^{n}, \quad \text { where } q=e^{2 \pi i z}
$$

It is called normalized if $\lambda_{f}(1)=1$.

## Space of Cusp Forms

- The space of cusp forms of weight $k$ for $\Gamma_{0}(q)$ and $\chi(\bmod q)$ is denoted by $S_{k}\left(\Gamma_{0}(q), \chi\right)$.
If $\chi_{0}$ is the principal character, we set $S_{k}(q)=S_{k}\left(\Gamma_{0}(q), \chi_{0}\right)$, and we have

$$
\operatorname{dim}_{\mathbb{C}} S_{k}(q) \sim \frac{k-1}{12} q \prod_{p \mid q}\left(1+\frac{1}{p}\right) .
$$

- A cusp form $f$ has a Fourier series expansion

$$
f(z)=\sum_{n=1}^{\infty} \lambda_{f}(n) n^{\frac{k-1}{2}} q^{n}, \quad \text { where } q=e^{2 \pi i z}
$$

It is called normalized if $\lambda_{f}(1)=1$.

- $S_{k}\left(\Gamma_{0}(q), \chi\right)$ is equipped with Petersson's inner product

$$
\langle f, g\rangle_{k}=\iint_{\Gamma_{0}(q) \backslash \mathbb{H}} f(z) \overline{g(z)} y^{k-2} d x d y
$$

- The Hecke operators $\left\{T_{n}\right\}_{(n, q)=1}$ are normal with respect to the inner product; more precisely, $T^{*}=\chi(n) T_{n}$ for $(n, q)=1$
- One can find an orthogonal basis $H_{k}\left(\Gamma_{0}(q), \chi\right)$ of $S_{k}\left(\Gamma_{0}(q), \chi\right)$, formed of eigenvectors of all $\left\{T_{n}\right\}_{(n, q)=1}$.
- The Hecke operators $\left\{T_{n}\right\}_{(n, q)=1}$ are normal with respect to the inner product; more precisely, $T^{*}=\chi(n) T_{n}$ for $(n, q)=1$
- One can find an orthogonal basis $H_{k}\left(\Gamma_{0}(q), \chi\right)$ of $S_{k}\left(\Gamma_{0}(q), \chi\right)$, formed of eigenvectors of all $\left\{T_{n}\right\}_{(n, q)=1}$.
- We have

$$
S_{k}\left(\Gamma_{0}(q), \chi\right)=S_{k}^{\text {new }}\left(\Gamma_{0}(q), \chi\right) \oplus S_{k}^{\text {old }}\left(\Gamma_{0}(q), \chi\right)
$$

where $S_{k}^{\text {old }}\left(\Gamma_{0}(q), \chi\right)$ is generated by the forms $f(d z)$ with $f \in S_{k}\left(q^{\prime}, \chi^{\prime}\right), d q^{\prime} \mid q, q^{\prime} \neq q$, and $\chi^{\prime}$ inducing $\chi$.

- A cusp form in $S_{k}\left(\Gamma_{0}(q), \chi\right)$ is said to be primitive if it is a normalized Hecke eigenform in the new space.
- Let $H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)$ be the set of primitive forms in $S_{k}\left(\Gamma_{0}(q), \chi\right)$


## Modular L-functions

For $f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)$, the $L$-function attached to $f$ is defined as:

$$
L(s, f)=\sum_{n=1}^{\infty} \frac{\lambda_{f}(n)}{n^{s}}=\prod_{p}\left(1-\frac{\lambda_{f}(p)}{p^{s}}+\frac{\chi(p)}{p^{2 s}}\right)^{-1} .
$$

- $L(s, f)$ converges absolutely for $\Re(s)>1$,
- admits an analytic continuation to $\mathbb{C}$ and
- satisfies a functional equation: $\Lambda(s, f)=\epsilon_{f} \Lambda(1-s, \bar{f})$ with $\left|\epsilon_{f}\right|=1$.


## Moments of $L\left(\frac{1}{2}, f\right)$

We consider harmonic averages of the form

$$
\sum_{f}^{h} \alpha_{f}=\frac{\Gamma(k-1)}{(4 \pi)^{k-1}} \sum_{f} \frac{\alpha_{f}}{\langle f, f\rangle}
$$

We define the $2 \ell$-th moment

$$
M_{\ell}^{h}(q, \chi)=\sum_{f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{2 \ell}
$$

## Second Moments in the Level Aspect

## Theorem (Duke, 1995)

For $k=2$ and $q$ prime, we have

$$
M_{1}^{h}(q)=\sum_{f \in H_{2}^{*}(q)}^{h} L\left(\frac{1}{2}, f\right)^{2}=\log q+O\left(q^{-\frac{1}{2}} \log q\right)
$$

## Second Moments in the Level Aspect

## Theorem (Duke, 1995)

For $k=2$ and $q$ prime, we have

$$
M_{1}^{h}(q)=\sum_{f \in H_{2}^{*}(q)}^{h} L\left(\frac{1}{2}, f\right)^{2}=\log q+O\left(q^{-\frac{1}{2}} \log q\right)
$$

For any fixed even $k$ and $q$ squarefree

- Iwaniec-Sarnak (2000): $M_{1}^{h}(q) \sim \log q$.


## 4th Moments in the Level Aspect

Theorem (Kowalski-Michel-Vanderkam, 2000)
For $k=2$, as $q \rightarrow \infty$ through prime numbers

$$
M_{2}^{h}(q)=P(\log q)+O_{\epsilon}\left(q^{-\frac{1}{12}+\epsilon}\right)
$$

where $P$ is a degree 6 polynomial with leading coefficient $\frac{1}{60 \pi^{2}}$.

## 4th Moments in the Level Aspect

Theorem (Kowalski-Michel-Vanderkam, 2000)
For $k=2$, as $q \rightarrow \infty$ through prime numbers

$$
M_{2}^{h}(q)=P(\log q)+O_{\epsilon}\left(q^{-\frac{1}{12}+\epsilon}\right),
$$

where $P$ is a degree 6 polynomial with leading coefficient $\frac{1}{60 \pi^{2}}$.

- Balkanova-Frolenkov (2017): improved error term for $M_{2}^{h}(q)$ of size $O_{\epsilon}\left(q^{-\frac{25}{228}+\epsilon}\right)$.


## 4th Moments in the Level Aspect

## Theorem (Kowalski-Michel-Vanderkam, 2000)

For $k=2$, as $q \rightarrow \infty$ through prime numbers

$$
M_{2}^{h}(q)=P(\log q)+O_{\epsilon}\left(q^{-\frac{1}{12}+\epsilon}\right)
$$

where $P$ is a degree 6 polynomial with leading coefficient $\frac{1}{60 \pi^{2}}$.

- Balkanova-Frolenkov (2017): improved error term for $M_{2}^{h}(q)$ of size $O_{\epsilon}\left(q^{-\frac{25}{228}+\epsilon}\right)$.
- Balkanova (2016): $k$ is a fixed even integer and $q=p^{v}$ for a fixed prime $p$ as $v \geq 3$. We have

$$
M_{2}^{h}(q)=R(\log q)+O_{\epsilon, k, p}\left(q^{-\frac{1}{4}+\epsilon}+q^{-\frac{k-1-2 \theta}{8-8 \theta}+\epsilon}\right)
$$

where $R$ is a degree 6 polynomial .

## Higher Moments

$$
\mathcal{M}_{\ell}^{h}(q)=\frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \sum_{f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{2 \ell}
$$

## Higher Moments

$$
\mathcal{M}_{\ell}^{h}(q)=\frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \sum_{f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{2 \ell} .
$$

For fixed odd integer $k \geq 5$, as $q \rightarrow \infty$ through the primes

- Djanković (2011): $\mathcal{M}_{3}^{h}(q) \ll q^{\epsilon}$.
- Stucky (2021): $\mathcal{M}_{3}^{h}(q) \ll(\log q)^{9}$.
- Chandee-Li (2017):

$$
\begin{align*}
& \frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \sum_{f \in H_{k}^{*}(\Gamma(\overline{ }(q), \chi)}^{h} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right) L\left(\frac{1}{2}+i t, f\right)\right|^{6} d t \\
& \sim \frac{42}{9!} b_{3}(\log q)^{9} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{6} d t . \tag{1}
\end{align*}
$$

## Higher Moments

$$
\mathcal{M}_{\ell}^{h}(q)=\frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \sum_{f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)}^{h}\left|L\left(\frac{1}{2}, f\right)\right|^{2 \ell}
$$

For fixed odd integer $k \geq 5$, as $q \rightarrow \infty$ through the primes

- Djanković (2011): $\mathcal{M}_{3}^{h}(q) \ll q^{\epsilon}$.
- Stucky (2021): $\mathcal{M}_{3}^{h}(q) \ll(\log q)^{9}$.
- Chandee-Li (2017):

$$
\begin{align*}
& \frac{2}{\phi(q)} \sum_{\chi(\bmod q)} \sum_{f \in H_{k}^{*}\left(\Gamma_{0}(q), \chi\right)}^{h} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right) L\left(\frac{1}{2}+i t, f\right)\right|^{6} d t \\
& \sim \frac{42}{9!} b_{3}(\log q)^{9} \int_{-\infty}^{\infty}\left|\Gamma\left(\frac{k}{2}+i t\right)\right|^{6} d t . \tag{1}
\end{align*}
$$

- Chandee-Li (2020): $\mathcal{M}_{4}^{h}(q) \ll q^{\epsilon}$.
- Chandee-Dunn-Li-Stucky (2024+): analogue of (1) for the 8 -th moment.


## Rankin-Selberg Convolutions of Modular Forms

Assume $(q, N)=1$, and let $f \in H_{k}^{*}(q)$ and $g \in H_{r}^{*}(N)$ be primitive forms. We set

$$
L(s, f \otimes g)=\zeta^{q N}(2 s) \sum_{m \geq 1} \frac{a_{f}(m) a_{g}(m)}{m^{s}}, \quad \text { for } \Re(s)>1
$$

- analytic continuation to $\mathbb{C}$ unless $f=g$.
- functional equation $\Lambda(s, f \otimes g)=\Lambda(1-s, f \otimes g)$, where

$$
\Lambda(s, f \otimes g)=\left(\frac{q N}{4 \pi^{2}}\right)^{s} \underbrace{\Gamma\left(s+\frac{|k-r|}{2}\right) \Gamma\left(s+\frac{k+r}{2}-1\right)}_{\Gamma_{g}(s)} L(s, f \otimes g) .
$$

## Moments in the Prime Level Aspect

Let $g \in H_{r}^{*}(N)$. For a fixed even $k<12$, consider

$$
M_{\ell}^{h}(q ; g)=\sum_{f \in H_{k}^{*}(q)}^{h}\left(L\left(\frac{1}{2}, f \otimes g\right)\right)^{\ell}
$$

## Moments in the Prime Level Aspect

Let $g \in H_{r}^{*}(N)$. For a fixed even $k<12$, consider

$$
M_{\ell}^{h}(q ; g)=\sum_{f \in H_{k}^{*}(q)}^{h}\left(L\left(\frac{1}{2}, f \otimes g\right)\right)^{\ell}
$$

As $q \rightarrow \infty$ through primes

- Luo (1999): $M_{1}^{h}(q ; g)=\prod_{p \mid N}\left(1-p^{-1}\right) \log q+O_{g}(1)$.


## Moments in the Prime Level Aspect

Let $g \in H_{r}^{*}(N)$. For a fixed even $k<12$, consider

$$
M_{\ell}^{h}(q ; g)=\sum_{f \in H_{k}^{*}(q)}^{h}\left(L\left(\frac{1}{2}, f \otimes g\right)\right)^{\ell}
$$

As $q \rightarrow \infty$ through primes

- Luo (1999): $M_{1}^{h}(q ; g)=\prod_{p \mid N}\left(1-p^{-1}\right) \log q+O_{g}(1)$.
- Kowalski-Michel-Vanderkam (2002):

$$
M_{2}^{h}(q ; g)=P(\log q)+O_{g, \epsilon}\left(q^{-\frac{1}{12}+\epsilon}\right), \quad \operatorname{deg}(P)=3
$$

## Twists of Modular $L$-functions

- Luo-Ramakrishnan (1997): for $g \in H_{r}^{*}(N)$, $p$ odd prime , $m$ such that $p \nmid m$, and $\alpha \geq 0$, we have

$$
\frac{1}{p^{\nu}} \sum_{\chi}^{*} \chi(m) L\left(\frac{1}{2}+\alpha, g \otimes \chi\right) \sim \frac{1}{p}\left(1-\frac{1}{p}\right) \frac{\lambda_{g}(m)}{m^{\frac{1}{2}+\alpha}}, \quad \text { as } \nu \rightarrow \infty .
$$

## Twists of Modular L-functions

- Luo-Ramakrishnan (1997): for $g \in H_{r}^{*}(N)$, $p$ odd prime , $m$ such that $p \nmid m$, and $\alpha \geq 0$, we have

$$
\frac{1}{p^{\nu}} \sum_{\chi}^{*} \chi(m) L\left(\frac{1}{2}+\alpha, g \otimes \chi\right) \sim \frac{1}{p}\left(1-\frac{1}{p}\right) \frac{\lambda_{g}(m)}{m^{\frac{1}{2}+\alpha}}, \quad \text { as } \nu \rightarrow \infty .
$$

- Bettin (2017): for $q=p^{\nu}$ with $\nu \geq 3, \chi(\bmod N)$ primitive and $\alpha \in \mathbb{C}$ with $\Re(\alpha) \ll \frac{1}{\log q}$, we have

$$
\sum_{f \in H_{2}^{*}(q)}^{h} \lambda_{f}(m) L\left(\frac{1}{2}+\alpha, f \otimes \chi\right)=\left(1-\frac{1}{p}\right) \frac{\chi(m)}{m^{\frac{1}{2}+\alpha}}+O\left(\frac{(N m(1+|\Im(\alpha)|))^{\frac{1}{2}}}{q^{1-\epsilon}}\right),
$$

provided $p \nmid m M$.

## 1st Moment of $L\left(\frac{1}{2}, f \otimes g\right)$ as $f$ varies over $H_{k}^{*}\left(p^{\nu}\right)$

## Theorem

Let $k, r \in 2 \mathbb{N}$ be such that $k>2 r-2$. Let $A>0$ be such that $1<A \leq \frac{k}{2}-1-\epsilon$ with $\epsilon>0$. Then for $g \in H_{r}^{*}(D)$ with $D$ being an odd prime and $(m D, p)=1$, we have

$$
\begin{aligned}
& \sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}(m) L\left(\frac{1}{2}, f \otimes g\right) \\
= & 2\left(1-\frac{1}{p}\right)^{2}\left(1-\frac{1}{D}\right) \frac{\lambda_{g}(m)}{\sqrt{m}} \\
\times & \left\{\gamma_{0}-\log (4 \pi)-\frac{1}{2} \log m+\nu \log p+\log D+\frac{1}{2} \log \left(k^{2}-r^{2}\right)\right. \\
& \left.\quad+O\left(\frac{\log p}{p}\right)+O\left(\frac{\log D}{D}\right)+O\left(\frac{k}{k^{2}-r^{2}}\right)\right\} \\
+ & O\left(\sqrt[4]{m}\left(p^{\nu} D\right)^{\left(-\frac{5}{32}+\epsilon\right)}\right)+O\left(D^{\frac{\epsilon+1}{2}} m^{\frac{2 A+\epsilon+1}{2}} p^{-2 A(\nu-1)}\right) .
\end{aligned}
$$

Twisted 2nd Moment of $L\left(\frac{1}{2}+\omega, f \otimes g\right)$ as $f$ varies over $H_{k}^{*}\left(p^{\nu}\right)$

## Theorem

Let $k, r \in 2 \mathbb{N}$ such that $k+r \geq 8$. For $g \in H_{r}^{*}(1), p$ odd prime, and $(m, p)=1$ we have

$$
\begin{aligned}
& \sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}(m) L\left(\frac{1}{2}+\omega_{1}, f \otimes g\right) L\left(\frac{1}{2}+\omega_{2}, f \otimes g\right) \\
& \sim\left(\frac{4 \pi^{2}}{p^{\nu}}\right)^{\omega_{1}+\omega_{2}} \frac{\Gamma_{g}\left(\frac{1}{2}-\omega_{1}\right)}{\Gamma_{g}\left(\frac{1}{2}+\omega_{2}\right)}\left(T_{1, \omega_{1}, \omega_{2}}+T_{1, \omega_{1},-\omega_{2}}+T_{1,-\omega_{1}, \omega_{2}}+T_{1,-\omega_{1},-\omega_{2}}\right) \\
&+\left(\frac{4 \pi^{2}}{p^{\nu}}\right)^{2 \omega_{1}} \frac{\Gamma_{g}\left(\frac{1}{2}-\omega_{1}\right)}{\Gamma_{g}\left(\frac{1}{2}+\omega_{2}\right)}\left(T_{2, \omega_{1}, \omega_{2}}+\left(\frac{4 \pi^{2}}{p^{\nu}}\right)^{2 \omega_{2}} T_{2, \omega_{1},-\omega_{2}}\right) \\
&+ \frac{\Gamma_{g}\left(\frac{1}{2}-\omega_{1}\right)}{\Gamma_{g}\left(\frac{1}{2}+\omega_{2}\right)}\left(T_{2,-\omega_{1}, \omega_{2}}+\left(\frac{4 \pi^{2}}{p^{\nu}}\right)^{2 \omega_{2}} T_{2,-\omega_{1},-\omega_{2}}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
T_{1, \omega_{1}, \omega_{2}} & =\frac{L\left(1, \mathrm{sym}^{2} g\right)}{\omega_{1}-\omega_{2}}\left(1-\frac{1}{p}\right) \frac{\xi\left(1 / 2+\omega_{1}-\omega_{2}\right)^{5} P_{g}\left(\omega_{1}\right)}{\zeta(2) \xi(1 / 2)^{5} P_{g}\left(\omega_{2}\right)} \\
& \times \frac{\Gamma_{g}\left(1 / 2-\omega_{1}\right)}{\Gamma_{g}\left(1 / 2+\omega_{2}\right)} \zeta_{p^{\nu}}\left(1-2 \omega_{1}\right) \zeta_{p^{\nu}}\left(1+2 \omega_{1}\right) \\
& \times \sum_{d e=m} \frac{(e / d)^{\omega_{1}}}{\sqrt{m}} \sum_{a b=d} \frac{\mu(a) \lambda_{g}(b)}{a} \Upsilon(p, a e, 1)
\end{aligned}
$$

and

$$
\begin{aligned}
T_{2, \omega_{1}, \omega_{2}} & =\left(1-\frac{1}{p}\right) \frac{L\left(1-\omega_{1}+\omega_{2}, g \otimes g\right)}{\zeta\left(2-2 \omega_{1}+2 \omega_{2}\right)} \\
& \times \frac{\Gamma_{g}\left(1 / 2+\omega_{2}\right)}{\Gamma_{g}\left(1 / 2+\omega_{1}\right)} \zeta_{p^{\nu}}\left(1-2 \omega_{1}\right) \zeta_{p^{\nu}}\left(1+2 \omega_{2}\right) \\
& \times \sum_{d e=m} \frac{e^{\omega_{1}} d^{-\omega_{2}}}{\sqrt{m}} \sum_{a b=d} \frac{\mu(a) \lambda_{g}(b)}{a^{1-\omega_{1}+\omega_{2}}} \Upsilon\left(p, a e, 1-\omega_{1}+\omega_{2}\right)
\end{aligned}
$$

## 2nd Moment of $L\left(\frac{1}{2}, f \otimes g\right)$ as $f$ varies over $H_{k}^{*}\left(p^{\nu}\right)$

## Corollary

Let $k, r \in 2 \mathbb{N}$ such that $k+r \geq 8$. For $g \in H_{r}^{*}(1)$, we have

$$
\sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} L\left(\frac{1}{2}, f \otimes g\right)^{2} \sim R_{g}(\nu)
$$

for a polynomial $R_{g}(\nu)$ of degree 3 with leading coefficient $\frac{2}{\pi^{2}} \frac{(p-1)^{2}}{p^{2}}(\log p)^{3} L\left(\operatorname{sym}^{2} g, 1\right)$. All the other coefficients of $R_{g}$ have been explicitly computed.

## Approximate Functional Equation (AFE)

$$
\begin{aligned}
L\left(\frac{1}{2}+\omega_{j}, f \otimes g\right) & =p^{-\nu \omega_{j}} \sum_{n \geq 1} \frac{\lambda_{f}(n) \lambda_{g}(n)}{\sqrt{n}} V_{g, \omega_{j}}\left(\frac{n}{p^{\nu}}\right) \\
& +p^{-\nu \omega_{j}} \varepsilon_{\omega_{j}}(f \otimes g) \sum_{n \geq 1} \frac{\lambda_{f}(n) \lambda_{g}(n)}{\sqrt{n}} V_{g,-\omega_{j}}\left(\frac{n}{p^{\nu}}\right) .
\end{aligned}
$$

## Approximate Functional Equation (AFE)

$$
\begin{aligned}
L\left(\frac{1}{2}+\omega_{j}, f \otimes g\right) & =p^{-\nu \omega_{j}} \sum_{n \geq 1} \frac{\lambda_{f}(n) \lambda_{g}(n)}{\sqrt{n}} V_{g, \omega_{j}}\left(\frac{n}{p^{\nu}}\right) \\
& +p^{-\nu \omega_{j}} \varepsilon_{\omega_{j}}(f \otimes g) \sum_{n \geq 1} \frac{\lambda_{f}(n) \lambda_{g}(n)}{\sqrt{n}} V_{g,-\omega_{j}}\left(\frac{n}{p^{\nu}}\right) .
\end{aligned}
$$

Here

$$
\begin{aligned}
V_{g, \omega_{j}}(y)= & \frac{1}{2 \pi i} \int_{(3)}\left(4 \pi^{2}\right)^{-s+\omega_{j}} \frac{\Gamma_{g}\left(\frac{1}{2}+s\right)}{\Gamma_{g}\left(\frac{1}{2}+\omega_{j}\right)}\left(\frac{\xi\left(\frac{1}{2}+s-\omega_{j}\right)}{\xi\left(\frac{1}{2}\right)}\right)^{5} \frac{P_{g}(s)}{P_{g}\left(\omega_{j}\right)} \\
& \times \zeta_{p^{\nu}}(1+2 s) y^{-s} \frac{d s}{s-\omega_{j}}
\end{aligned}
$$

and

$$
\varepsilon_{\omega_{j}}(f \otimes g)=\frac{\left(4 \pi^{2}\right)^{2 \omega_{j}} \Gamma_{g}\left(\frac{1}{2}-\omega_{j}\right)}{\Gamma_{g}\left(\frac{1}{2}+\omega_{j}\right)} .
$$

## Applying AFE gives

$$
\begin{aligned}
& \sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}(m) L\left(\frac{1}{2}+\omega_{1}, f \otimes g\right) L\left(\frac{1}{2}+\omega_{2}, f \otimes g\right) \\
& =M_{1}+\varepsilon_{\omega_{1}}(f \otimes g) M_{2}+\varepsilon_{\omega_{2}}(f \otimes g) M_{3}+\varepsilon_{\omega_{1}}(f \otimes g) \varepsilon_{\omega_{2}}(f \otimes g) M_{4} .
\end{aligned}
$$

Applying AFE gives

$$
\begin{aligned}
& \sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}(m) L\left(\frac{1}{2}+\omega_{1}, f \otimes g\right) L\left(\frac{1}{2}+\omega_{2}, f \otimes g\right) \\
= & M_{1}+\varepsilon_{\omega_{1}}(f \otimes g) M_{2}+\varepsilon_{\omega_{2}}(f \otimes g) M_{3}+\varepsilon_{\omega_{1}}(f \otimes g) \varepsilon_{\omega_{2}}(f \otimes g) M_{4} .
\end{aligned}
$$

We shall focus on

$$
\begin{aligned}
M_{1}=p^{-\nu\left(\omega_{1}+\omega_{2}\right)} & \sum_{d \mid m} \sum_{n_{1}, n_{2} \geq 1} \frac{\lambda_{g}\left(n_{1}\right) \lambda_{g}\left(n_{2} d\right)}{\sqrt{n_{1} n_{2} d}} V_{g, \omega_{1}}\left(\frac{n_{1}}{p^{\nu}}\right) V_{g, \omega_{2}}\left(\frac{n_{2} d}{p^{\nu}}\right) \\
& \times \sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}\left(n_{1}\right) \lambda_{f}\left(\frac{n_{2} m}{d}\right) .
\end{aligned}
$$

## Petersson's Trace Formula and Rouymi's Observation

Petersson's Trace Formula states

$$
\begin{aligned}
\Delta_{p^{\nu}}(a, b) & =\sum_{f \in H_{k}\left(p^{\nu}\right)}^{h} \lambda_{f}(a) \lambda_{f}(b) \\
& =\delta_{a, b}+2 \pi i^{-k} \sum_{p^{\nu} \mid c} \frac{S(a, b ; c)}{c} J_{k-1}\left(\frac{4 \pi \sqrt{a b}}{c}\right) .
\end{aligned}
$$

We also use the following observation by Rouymi's (2011). For $\nu \geq 3$, we have

$$
\begin{aligned}
\Delta_{p^{\nu}}^{*}(a, b) & =\sum_{f \in H_{k}^{*}\left(p^{\nu}\right)}^{h} \lambda_{f}(a) \lambda_{f}(b) \\
& = \begin{cases}\Delta_{p^{\nu}}(a, b)-\frac{\Delta_{p^{\nu-1}}(a, b)}{p} & \text { if } p \nmid a b, \\
0 & \text { else. }\end{cases}
\end{aligned}
$$

Applying Petersson's trace formula and Rouymi's observation yields

$$
M_{1}=M_{1}^{D}+M_{1,1}^{N D}+M_{1,2}^{N D},
$$

with

$$
\begin{aligned}
M_{1}^{D}=(1 & \left.-\frac{1}{p}\right) \frac{p^{-\nu\left(\omega_{1}+\omega_{2}\right)}}{\sqrt{m}} \sum_{d e=m} \sum_{a b=d} \frac{\mu(a) \lambda_{g}(b)}{a} \\
& \times \sum_{\substack{n \geq 1,(n, p)=1}} \frac{\lambda_{g}(n a e) \lambda_{g}(n)}{n} V_{g, \omega_{1}}\left(\frac{n a e}{p^{\nu}}\right) V_{g, \omega_{2}}\left(\frac{n a d}{p^{\nu}}\right)
\end{aligned}
$$

After introducing dyadic partitions of unity in the $n_{1}$ and $n_{2}$ variables and manipulating the non-diagonal terms, we get

$$
M_{1,1}^{N D}=2 \pi i^{-k} p^{-\nu\left(\omega_{1}+\omega_{2}\right)} \sum_{d e=m} \frac{1}{\sqrt{d}} \sum_{a b=d} \frac{\mu(a) \lambda_{g}(b)}{\sqrt{a}} \sum_{p^{\nu} \mid c} \frac{1}{c^{2}} T(c)
$$

and

$$
M_{1,2}^{N D}=-\frac{2 \pi i^{-k}}{p} p^{-\nu\left(\omega_{1}+\omega_{2}\right)} \sum_{d e=m} \frac{1}{\sqrt{d}} \sum_{a b=d} \frac{\mu(a) \lambda_{g}(b)}{\sqrt{a}} \sum_{p^{\nu-1} \mid c} \frac{1}{c^{2}} T(c)
$$

where

$$
\begin{aligned}
T(c)= & \sum_{M, N \geq 1} c \sum_{\substack{n_{1}, n_{2} \geq 1 \\
\left(n_{1} n_{2}, p\right)=1}} \lambda_{g}\left(n_{1}\right) \lambda_{g}\left(n_{2}\right) F_{M, N}\left(n_{1}, n_{2}\right) J_{k-1}\left(\frac{4 \pi \sqrt{n_{1} a e n_{2}}}{c}\right) \\
& \times \sum_{M, N \geq 1} T_{M, N}(c) .
\end{aligned}
$$

## Large Sieve Inequality

Deshouillers-Iwaniec (1983), Matomaki (2009):
Let $r, s$ and $d$ be pairwise coprime positive integers, with $r, s$ squarefree. Let $M, N, C$ be positive real numbers and $g$ be a smooth function supported on $[M, 2 M] \times[N, 2 N] \times[C, 2 C]$ with

$$
\left|\frac{\partial^{j+k+\ell}}{\partial m^{j} \partial n^{k} \partial c^{\ell}} g(m, n, c)\right| \leq M^{-j} N^{-k} C^{-\ell} \quad \text { for } 0 \leq j, k, \ell \leq 2
$$

Let $X_{d}=\frac{\sqrt{d M N}}{s C \sqrt{r}}$. Then

$$
\sum_{m} a_{m} \sum_{n} b_{n} \sum_{(c, r)=1} g(m, n, c) S(d m \bar{r}, \pm n, s c)
$$

$\ll{ }_{\epsilon} C^{\epsilon} d^{\theta} s C \sqrt{r} \frac{\left(1+X_{d}^{-1}\right)^{2 \theta}}{1+X_{d}}\left(1+X_{d}+\sqrt{\frac{M}{r s}}\right)\left(1+X_{d}+\sqrt{\frac{N}{r s}}\right)\|\mathbf{a}\|_{2}\|\mathbf{b}\|_{\mathbf{2}}$.

Remove the co-primality condition in $T_{M, N}(c)$ to write it as

$$
T_{M, N}(c)=T S^{-}(c, 0)-\lambda_{g}(p) T S^{-}(c, 1)+T S^{-}(c, 2)
$$

For example,
$T S^{-}(c, 0)$

$$
=\sum_{n_{2} \geq 1} \lambda_{g}\left(n_{2}\right) \sum_{\substack{f(\bmod c),(f, c)=1}} e\left(\frac{a e n_{2} f}{c}\right) c \sum_{n_{1} \geq 1} \lambda_{g}\left(n_{1}\right) e\left(\frac{n_{1} \bar{f}}{c}\right) \tilde{F}_{M, N}\left(n_{1}, n_{2}\right),
$$

where we set

$$
\tilde{F}_{M, N}\left(n_{1}, n_{2}\right)=F_{M, N}\left(n_{1}, n_{2}\right) J_{k-1}\left(\frac{4 \pi \sqrt{a e n_{1} n_{2}}}{c}\right) .
$$

## Voronoi Summation

By Voronoï summation formula, we have
$c \sum_{n_{1} \geq 1} \lambda_{g}\left(n_{1}\right) e\left(\frac{n_{1} \bar{f}}{c}\right) \tilde{F}_{M, N}\left(n_{1}, n_{2}\right)$
$=2 \pi i^{-r} \sum_{n_{1} \geq 1} \lambda_{g}\left(n_{1}\right) e\left(-\frac{n_{1} f}{c}\right) \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n_{2}\right) J_{r-1}\left(\frac{4 \pi \sqrt{n_{1} x}}{c}\right) d x$.

## Voronoi Summation

By Voronoï summation formula, we have

$$
\begin{aligned}
& c \sum_{n_{1} \geq 1} \lambda_{g}\left(n_{1}\right) e\left(\frac{n_{1} \bar{f}}{c}\right) \tilde{F}_{M, N}\left(n_{1}, n_{2}\right) \\
& \quad=2 \pi i^{-r} \sum_{n_{1} \geq 1} \lambda_{g}\left(n_{1}\right) e\left(-\frac{n_{1} f}{c}\right) \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n_{2}\right) J_{r-1}\left(\frac{4 \pi \sqrt{n_{1} x}}{c}\right) d x
\end{aligned}
$$

Using this in $T S^{-}(c, 0)$, we get
$T S^{-}(c, 0)$
$=2 \pi i^{-r} \phi(c) \sum_{n \geq 1} \lambda_{g}(n) \lambda_{g}(a e n) \int_{0}^{\infty} \tilde{F}_{M, N}(x, n) J_{r-1}\left(\frac{4 \pi \sqrt{a e n x}}{c}\right) d x$
$+2 \pi i^{-r} \sum_{h \neq 0} \sum_{n \geq 1} \lambda_{g}(n) \lambda_{g}(a e n-h)$
$\times \sum_{\substack{f(\bmod c),(f, c)=1}} e\left(\frac{f h}{c}\right) \int_{0}^{\infty} \tilde{F}_{M, N}(x, n) J_{r-1}\left(\frac{4 \pi \sqrt{(a e n-h) x}}{c}\right) d x$.

For $B=0,1,2$ we get
$T S^{-}(c, B)$

$$
=\underbrace{2 \pi i^{-r} \phi(c) \sum_{n \geq 1} \lambda_{g}(n) \lambda_{g}\left(a e n p^{B}\right) \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n p^{B}\right) J_{r-1}\left(\frac{4 \pi \sqrt{a e n p^{B} x}}{c}\right) d x}_{\text {main term contribution }}
$$

$$
+\underbrace{2 \pi i^{-r} \sum_{h \neq 0} S(0, h ; c) T_{h}^{-}(c, B)}_{\text {error contribution }}
$$

with

$$
\begin{aligned}
& T_{h}^{-}(c, B)= \sum_{n \geq 1} \lambda_{g}(n) \\
& \lambda_{g}\left(a e n p^{B}-h\right) \\
& \times \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n p^{B}\right) J_{r-1}\left(\frac{4 \pi \sqrt{\left(\text { aenp } p^{B}-h\right) x}}{c}\right) d x
\end{aligned}
$$

For $B=0,1,2$ we get
$T S^{-}(c, B)$

$$
=\underbrace{2 \pi i^{-r} \phi(c) \sum_{n \geq 1} \lambda_{g}(n) \lambda_{g}\left(a e n p^{B}\right) \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n p^{B}\right) J_{r-1}\left(\frac{4 \pi \sqrt{a e n p^{B} x}}{c}\right) d x}_{\text {main term contribution }}
$$

$$
+\underbrace{2 \pi i^{-r} \sum_{h \neq 0} S(0, h ; c) T_{h}^{-}(c, B)}_{\text {error contribution }}
$$

with

$$
\begin{aligned}
T_{h}^{-}(c, B)=\sum_{n \geq 1} \lambda_{g}(n) & \lambda_{g}\left(a e n p^{B}-h\right) \\
& \times \int_{0}^{\infty} \tilde{F}_{M, N}\left(x, n p^{B}\right) J_{r-1}\left(\frac{4 \pi \sqrt{\left(a e n p^{B}-h\right) x}}{c}\right) d x
\end{aligned}
$$

Estimate contribution of $T_{h}{ }^{-}(c, B)$ using estimates on shifted convolution sums.

## DFI type Shifted Convolution Sums

Kowalski-Michel-Vanderkam (2002):
Suppose that $f(x, y)$ is a smooth test function on $\mathbb{R}^{+} \times \mathbb{R}^{+}$that satisfies the condition

$$
x^{j} y^{k} f^{(j k)}(x, y)<_{j, k}\left(1+\frac{x}{X}\right)\left(1+\frac{y}{Y}\right) P^{j+k} \quad \text { for all } j, k \geq 0
$$

for some $X, Y, P \geq 1$. Let $(\alpha, \beta)=1$ and $h \neq 0$. We have

$$
D_{f}^{ \pm}(\alpha, \beta ; h):=\sum_{\alpha m \pm \beta n=h} \lambda_{g}(m) \lambda_{g}(n) f(\alpha m, \beta n)<_{g, \epsilon} P^{\frac{5}{4}}(X+Y)^{\frac{1}{4}}(X Y)^{\frac{1}{4}+\epsilon} .
$$

## Thank you for listening!

