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Conjugacy classes of S1.,(Z)

How to count the conjugacy classes of I = SLy(Z)?

I acts on the Riemann sphere by Mobius transformations:

a b az+b a b
(C d)Z:Cz—_i_d, (C d) er, ZGCU{OO}.
For ¢ # 0, the fixed point equation cz? +(d —a)z— b =0is

quadratic with discriminant (d — a)? + 4bc = (a + d)? — 4, hence
the type of the transformation is governed by the trace t = a + d. )

For |t| < 2 the transformation is elliptic with one fixed point in H
and another one in H. For |t| = 2 the transformation is either the
identity or it is parabolic with a single fixed point in Q U {oc}. For
|t| > 2 the transformation is hyperbolic with two fixed points in R.



Elliptic and parabolic conjugacy classes of SL,(Z)

We shall count the conjugacy classes of I = SLy(Z) according to
their traces t. Without loss of generality, t > 0.

Consider an elliptic conjugacy class of I of trace t =0 or t = 1.
The corresponding fixed points in H form the -orbit of =4 ”;274,
and the conjugacy class is represented by

fo) = ()

Consider a parabolic conjugacy class of trace t = 2.
The corresponding fixed points form the -orbit of oo,
and the conjugacy class is represented by

1 n .
(O 1) for a unique neZ.



Hyperbolic conjugacy classes of SLy(Z) (1 of 2)

A hyperbolic conjugacy class of trace t > 3 corresponds bijectively
to a positive integer v and a l-class of quadratic forms in Z[x, y|
of discriminant (t?> — 4)/u®. Moreover, it corresponds bijectively to

an oriented closed geodesic of length 2 log (Hi V2t2_4) in F\H.

Here are some details. Pick an element (g 2) from the conjugacy
class. Then (25) fixes the quadratic form cx? 4 (d — a)xy — by?
of discriminant t> — 4. Now u = gcd(c, d — a, b) only depends on
the conjugacy class, and (2 5) fixes the primitive quadratic form

cx? + (d — a)xy — by?
u

Ax? 4+ Bxy + Cy? =

of discriminant B2 — 4AC = (t> — 4)/u?. Hence in fact

a b\ _ ((t—Bu)/2 —Cu
c d) Au (t+ Bu)/2)"



Hyperbolic conjugacy classes of SLy(Z) (2 of 2)

On the other hand, if we consider the oriented geodesic in H

~B- VB 4AC B+ VB2 4AC

going from A A

then we find that the representative element

a b\ ((t—Bu)/2 —Cu

c dl Au (t+ Bu)/2
moves the points forward by hyperbolic distance 2 log (t+7 V2t2_4)
on this geodesic.

For each discriminant (t? — 4)/u?, we exhibited h((t* — 4)/u?)
oriented closed geodesics of length 2 log (H— V2t274) in M\H.




An analogue of Chebyshev's counting function

In analogy with the Chebyshev counting function for prime powers,
it is natural to count the oriented closed geodesics of '\'H (or
equivalently the hyperbolic conjugacy classes of I') by considering
them up to log x in length and weighting each of them by the
length of the underlying primitive closed geodesic.

By Dirichlet’s class number formula, the resulting sum equals

Vr(x) =2 > V2 —4 (1,82 — 4),

3<t<xl/24x—1/2

where L(s, t?> — 4) is Zagier's L-series:

L(57 £ — 4) = Z L(S, )((1'2—4)/u2)ul_25
(t2—4)/u?=0,1 (mod 4)

Initially observed by Kuznetsov (1978) and Bykovskil (1994).



Zagier's L-series

Writing t> — 4 = D/?, where D is a fundamental discriminant,

vo(£)(1—25)
L(s, t? —4) = H ( Z pm(1=2s) 4 pp>

P \o<m<vy(t) 1 -xo(p)p~*

~((25) X #{x(mod2q) : x* = t? — 4 (mod 4q)}
~<(s) (,2_:1 g*

We used p in the Euler product as p will be a fixed prime later.
L(s, t?> — 4) satisfies GRH if and only if L(s, xp) does.
The completed series

N(s, t? — 4) = (2 — 4)"27 /[ (s/2)L(s, t* — 4)

is entire and invariant under s <+ 1 — s.



Prime geodesic theorem (1 of 2)

Theorem (Conrey—lwaniec 2000)

For § =1/6 and some A > 0 we have that

L(s,t? — 4) <. (t2 — 4)%F|s|A,  Re(s) =1/2.

Theorem (Soundararajan—Young 2013)

For \/x < u < x we have that
Vr(x +u) = Vr(x) =u+ Og(u1/2x1/4+0/2+6).

The proof is nontrivial, e.g. it uses that the coefficient of g7 in
L(s, t> — 4) equals

Z i Z e<kt>5(k2,1;q2).

q%qzzq q2 k (mod qg) q2



Prime geodesic theorem (2 of 2)

Setting u = x in the above mentioned short-interval estimate of
Soundararajan—Young (2013), and applying a dyadic
decomposition, we obtain a version of the prime geodesic theorem:

\Vr(X) = x+ OE(X3/4+0/2+5).

Originally Selberg (1956) treated Wr(x) with his trace formula. In
fact lwaniec (1984) proved the following spectral counterpart of the
Kuznetsov-Bykovskii formula. For 1 < T < v/x/ log? x we have

» Z s 1/2+it X
Vr(x) = x+ 2Re _+O<Iog x).
0<<T 1/2+Il’j T

This readily yields the error term O.(x3/#*¢) in the PGT, which
was subsequently improved by lwaniec (1984), Luo—Sarnak (1995),
Cai (2002), Soundararajan—Young (2013), and Kaneko (2024).



New result

Inspired by the prime number theorem for arithmetic progressions,
we restrict the trace t in our count to a residue class (modulo a
prime for simplicity):

\Ur(x; p, a) =2 Z Vit2—4 L(]., — 4)

3<t<X1/2+X71/2
t=a(mod p)

Our main result was conjectured by Golovchanskii-Smotrov (1999):

Theorem (Chatzakos—Harcos—Kaneko 2023)
Let p > 3 be a prime. Then we have that

1 x+OE(x3/4+9/2+6) if (=4 — il

p—1 e
Vr(x;p,a) = + x+ O (x3/4+9/2+€) if a2p—4 _1,
P 3/44-6/2+ . 2_4 .
21 X = O ( /4+0/ E) if (2 E -0




Sketch of the proof (1 of 5)

Let LP(s, t?> — 4) denote L(s, t> — 4) without the Euler factor at
p = p. The idea is to consider the sum

VE(x; p"r) =2 > V2 —4 [P(1,t% — 4).

3<t<xt/24x—1/2
t=r (mod p")

Mimicking Soundararajan—Young (2013), we find that
X
VE(x; p",r) = o + O.(x3/4+0/2+=),

Now if t = a # +2 (mod p), then writing t> — 4 = D/? as before
(with D a fundamental discriminant), we see that p { ¢ and

wor= ()= ()= (57) = (%°)

Hence the result follows for a # £2 (mod p), because in that case

®—4 !
Vr(x; p,a) = (1 — ( ) p_1> VE(x; p, a).

p




Sketch of the proof (2 of 5)

We need to work harder when a = +2 (mod p). Without loss of
generality, a = +2. We decompose

Vr(xip,a) =Y Vr(x;p, a k),
k=1

where

Vr(x;p,a k) =2 Z V2 —4 1(1,t% - 4).
3<t<xl/24x—1/2
vp(t—a)=k
The idea behind this decomposition is that, as we shall see, the
Euler factor at p of L(s,t? — 4) is constant within Wr(x; p, a; k).

Note that pX > t — a implies Wr(x; p, a; k) = 0. Also, the
condition v,(t — a) = k constrains t to p — 1 residue classes
modulo p“*1, and it yields v,(t> — 4) = k.



Sketch of the proof (3 of 5)

If k =2n—11is odd, then p| D and v,(¢) = n—1, hence

1— pn(1725)

2 _
L(s,t°—4) = [ i

LP(S, t2 - 4)7

yielding

—1 1—p "
WF(X; p,a;2n — 1) = pp2n . 1 zfl oX 4 Op75(X3/4+0/2+6)

_ (p1—2n _ p1—3n)X + Op,s(X3/4+9/2+6)-

It is important that the implied constant is independent of n.



Sketch of the proof (4 of 5)

If k =2nis even, then pt D and v,(¢) = n, hence
1 — pn(1-2s) n(1-2s)
L(s, t? —4) = A
1-pt=2s  1—xp(p)p—°
Writing t = a + p°"r, we get t2 — 4 = 2ap®"r + p*"r?, hence

o= (2)- (7)),

So among the p — 1 choices for t modulo p?™*1, half the time
xp(p) equals +1, and half the time it equals —1. Therefore,

p—1(1—p™ (1/2)p~" (1/2)p~"
_— o) —
r(x; p,a; 2n) p2n+1 (1 —p! + 1—-p1 + 1+pt xr

>L%;¥—4)

p—3n
_ <p2n o o 1) x + Op75(X3/4+9/2+5).

As before, the implied constant is independent of n.



Sketch of the proof (5 of 5)

In the end,
Wr(x; p, £2) = cpx + Op (x3/4H0/242),
where
- 1-2n 1-3n _on p3n p
Cp:nZ::l<P - P +p _p+1>:p2—1'

Thanks for your attention!



