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Conjugacy classes of SL2(Z)

Question
How to count the conjugacy classes of Γ = SL2(Z)?

Hint
Γ acts on the Riemann sphere by Möbius transformations:(

a b
c d

)
z = az + b

cz + d ,

(
a b
c d

)
∈ Γ, z ∈ C ∪ {∞}.

For c ̸= 0, the fixed point equation cz2 + (d − a)z − b = 0 is
quadratic with discriminant (d − a)2 + 4bc = (a + d)2 − 4, hence
the type of the transformation is governed by the trace t = a + d .

For |t| < 2 the transformation is elliptic with one fixed point in H
and another one in H. For |t| = 2 the transformation is either the
identity or it is parabolic with a single fixed point in Q ∪ {∞}. For
|t| > 2 the transformation is hyperbolic with two fixed points in R.



Elliptic and parabolic conjugacy classes of SL2(Z)

Plan
We shall count the conjugacy classes of Γ = SL2(Z) according to
their traces t. Without loss of generality, t ⩾ 0.

Consider an elliptic conjugacy class of Γ of trace t = 0 or t = 1.
The corresponding fixed points in H form the Γ-orbit of t+

√
t2−4
2 ,

and the conjugacy class is represented by(
t −1
1 0

)
or

(
0 1

−1 t

)
.

Consider a parabolic conjugacy class of trace t = 2.
The corresponding fixed points form the Γ-orbit of ∞,
and the conjugacy class is represented by(

1 n
0 1

)
for a unique n ∈ Z.



Hyperbolic conjugacy classes of SL2(Z) (1 of 2)
A hyperbolic conjugacy class of trace t ⩾ 3 corresponds bijectively
to a positive integer u and a Γ-class of quadratic forms in Z[x , y ]
of discriminant (t2 − 4)/u2. Moreover, it corresponds bijectively to
an oriented closed geodesic of length 2 log

(
t+

√
t2−4
2

)
in Γ\H.

Here are some details. Pick an element
( a b

c d
)

from the conjugacy
class. Then

( a b
c d
)

fixes the quadratic form cx2 + (d − a)xy − by2

of discriminant t2 − 4. Now u = gcd(c, d − a, b) only depends on
the conjugacy class, and

( a b
c d
)

fixes the primitive quadratic form

Ax2 + Bxy + Cy2 = cx2 + (d − a)xy − by2

u

of discriminant B2 − 4AC = (t2 − 4)/u2. Hence in fact(
a b
c d

)
=
(

(t − Bu)/2 −Cu
Au (t + Bu)/2

)
.



Hyperbolic conjugacy classes of SL2(Z) (2 of 2)

On the other hand, if we consider the oriented geodesic in H

going from −B −
√

B2 − 4AC
2A to −B +

√
B2 − 4AC
2A ,

then we find that the representative element(
a b
c d

)
=
(

(t − Bu)/2 −Cu
Au (t + Bu)/2

)

moves the points forward by hyperbolic distance 2 log
(

t+
√

t2−4
2

)
on this geodesic.

Summary
For each discriminant (t2 − 4)/u2, we exhibited h((t2 − 4)/u2)
oriented closed geodesics of length 2 log

(
t+

√
t2−4
2

)
in Γ\H.



An analogue of Chebyshev’s counting function

In analogy with the Chebyshev counting function for prime powers,
it is natural to count the oriented closed geodesics of Γ\H (or
equivalently the hyperbolic conjugacy classes of Γ) by considering
them up to log x in length and weighting each of them by the
length of the underlying primitive closed geodesic.

By Dirichlet’s class number formula, the resulting sum equals

ΨΓ(x) = 2
∑

3⩽t⩽x1/2+x−1/2

√
t2 − 4 L(1, t2 − 4),

where L(s, t2 − 4) is Zagier’s L-series:

L(s, t2 − 4) =
∑

(t2−4)/u2≡0,1 (mod 4)
L(s, χ(t2−4)/u2)u1−2s .

Initially observed by Kuznetsov (1978) and Bykovskĭı (1994).



Zagier’s L-series

Writing t2 − 4 = Dℓ2, where D is a fundamental discriminant,

L(s, t2 − 4) =
∏
p

 ∑
0⩽m<vp(ℓ)

pm(1−2s) + pvp(ℓ)(1−2s)

1 − χD(p)p−s


= ζ(2s)

ζ(s)

∞∑
q=1

#
{
x (mod 2q) : x2 ≡ t2 − 4 (mod 4q)

}
qs .

We used p in the Euler product as p will be a fixed prime later.

L(s, t2 − 4) satisfies GRH if and only if L(s, χD) does.

The completed series

Λ(s, t2 − 4) = (t2 − 4)s/2π−s/2Γ(s/2)L(s, t2 − 4)

is entire and invariant under s ↔ 1 − s.



Prime geodesic theorem (1 of 2)

Theorem (Conrey–Iwaniec 2000)
For θ = 1/6 and some A > 0 we have that

L(s, t2 − 4) ≪ε (t2 − 4)θ+ε|s|A, Re(s) = 1/2.

Theorem (Soundararajan–Young 2013)
For

√
x ⩽ u ⩽ x we have that

ΨΓ(x + u) − ΨΓ(x) = u + Oε(u1/2x1/4+θ/2+ε).

The proof is nontrivial, e.g. it uses that the coefficient of q−s in
L(s, t2 − 4) equals

∑
q2

1q2=q

1
q2

∑
k (mod q2)

e
(kt

q2

)
S(k2, 1; q2).



Prime geodesic theorem (2 of 2)

Setting u = x in the above mentioned short-interval estimate of
Soundararajan–Young (2013), and applying a dyadic
decomposition, we obtain a version of the prime geodesic theorem:

ΨΓ(x) = x + Oε(x3/4+θ/2+ε).

Originally Selberg (1956) treated ΨΓ(x) with his trace formula. In
fact Iwaniec (1984) proved the following spectral counterpart of the
Kuznetsov–Bykovskĭı formula. For 1 ⩽ T ⩽

√
x/ log2 x we have

ΨΓ(x) = x + 2Re
∑

0<tj⩽T

x1/2+itj

1/2 + itj
+ O

( x
T log2 x

)
.

This readily yields the error term Oε(x3/4+ε) in the PGT, which
was subsequently improved by Iwaniec (1984), Luo–Sarnak (1995),
Cai (2002), Soundararajan–Young (2013), and Kaneko (2024).



New result

Inspired by the prime number theorem for arithmetic progressions,
we restrict the trace t in our count to a residue class (modulo a
prime for simplicity):

ΨΓ(x ; p, a) = 2
∑

3⩽t⩽x1/2+x−1/2

t≡a (mod p)

√
t2 − 4 L(1, t2 − 4).

Our main result was conjectured by Golovchanskĭı–Smotrov (1999):

Theorem (Chatzakos–Harcos–Kaneko 2023)
Let p ⩾ 3 be a prime. Then we have that

ΨΓ(x ; p, a) =


1

p−1 · x + Oε(x3/4+θ/2+ε) if
(

a2−4
p

)
= 1,

1
p+1 · x + Oε(x3/4+θ/2+ε) if

(
a2−4

p

)
= −1,

p
p2−1 · x + Op,ε(x3/4+θ/2+ε) if

(
a2−4

p

)
= 0.



Sketch of the proof (1 of 5)
Let Lp(s, t2 − 4) denote L(s, t2 − 4) without the Euler factor at
p = p. The idea is to consider the sum

Ψ⋆
Γ(x ; pn, r) = 2

∑
3⩽t⩽x1/2+x−1/2

t≡r (mod pn)

√
t2 − 4 Lp(1, t2 − 4).

Mimicking Soundararajan–Young (2013), we find that

Ψ⋆
Γ(x ; pn, r) = x

pn + Oε(x3/4+θ/2+ε).

Now if t ≡ a ̸≡ ±2 (mod p), then writing t2 − 4 = Dℓ2 as before
(with D a fundamental discriminant), we see that p ∤ ℓ and

χD(p) =
(D

p

)
=
(

Dℓ2

p

)
=
(

t2 − 4
p

)
=
(

a2 − 4
p

)
.

Hence the result follows for a ̸≡ ±2 (mod p), because in that case

ΨΓ(x ; p, a) =
(

1 −
(

a2 − 4
p

)
p−1

)−1

Ψ⋆
Γ(x ; p, a).



Sketch of the proof (2 of 5)

We need to work harder when a ≡ ±2 (mod p). Without loss of
generality, a = ±2. We decompose

ΨΓ(x ; p, a) =
∞∑

k=1
ΨΓ(x ; p, a; k),

where

ΨΓ(x ; p, a; k) = 2
∑

3⩽t⩽x1/2+x−1/2

vp(t−a)=k

√
t2 − 4 L(1, t2 − 4).

The idea behind this decomposition is that, as we shall see, the
Euler factor at p of L(s, t2 − 4) is constant within ΨΓ(x ; p, a; k).

Note that pk > t − a implies ΨΓ(x ; p, a; k) = 0. Also, the
condition vp(t − a) = k constrains t to p − 1 residue classes
modulo pk+1, and it yields vp(t2 − 4) = k.



Sketch of the proof (3 of 5)

If k = 2n − 1 is odd, then p | D and vp(ℓ) = n − 1, hence

L(s, t2 − 4) = 1 − pn(1−2s)

1 − p1−2s Lp(s, t2 − 4),

yielding

ΨΓ(x ; p, a; 2n − 1) = p − 1
p2n · 1 − p−n

1 − p−1 · x + Op,ε(x3/4+θ/2+ε)

= (p1−2n − p1−3n)x + Op,ε(x3/4+θ/2+ε).

It is important that the implied constant is independent of n.



Sketch of the proof (4 of 5)
If k = 2n is even, then p ∤ D and vp(ℓ) = n, hence

L(s, t2 − 4) =
(

1 − pn(1−2s)

1 − p1−2s + pn(1−2s)

1 − χD(p)p−s

)
Lp(s, t2 − 4).

Writing t = a + p2nr , we get t2 − 4 = 2ap2nr + p4nr2, hence

χD(p) =
(D

p

)
=
(

Dℓ2p−2n

p

)
=
(2ar

p

)
.

So among the p − 1 choices for t modulo p2n+1, half the time
χD(p) equals +1, and half the time it equals −1. Therefore,

ΨΓ(x ; p, a; 2n) = p − 1
p2n+1

(
1 − p−n

1 − p−1 + (1/2)p−n

1 − p−1 + (1/2)p−n

1 + p−1

)
x + . . .

=
(

p−2n − p−3n

p + 1

)
x + Op,ε(x3/4+θ/2+ε).

As before, the implied constant is independent of n.



Sketch of the proof (5 of 5)

In the end,

ΨΓ(x ; p, ±2) = cpx + Op,ε(x3/4+θ/2+ε),

where

cp =
∞∑

n=1

(
p1−2n − p1−3n + p−2n − p−3n

p + 1

)
= p

p2 − 1 .

Thanks for your attention!


