The prime geodesic theorem in arithmetic progressions

(joint work with Ikuya Kaneko and Dimitrios Chatzakos)

Gergely Harcos

Alfréd Rényi Institute of Mathematics https://users.renyi.hu/~gharcos/

16 May 2024
International Conference on
L-Functions and Automorphic Forms
Vanderbilt University, Nashville

Conjugacy classes of $\mathrm{SL}_{2}(\mathbb{Z})$

Question

How to count the conjugacy classes of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$?

Hint

Γ acts on the Riemann sphere by Möbius transformations:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}, \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma, \quad z \in \mathbb{C} \cup\{\infty\} .
$$

For $c \neq 0$, the fixed point equation $c z^{2}+(d-a) z-b=0$ is quadratic with discriminant $(d-a)^{2}+4 b c=(a+d)^{2}-4$, hence the type of the transformation is governed by the trace $t=a+d$.

For $|t|<2$ the transformation is elliptic with one fixed point in \mathcal{H} and another one in $\overline{\mathcal{H}}$. For $|t|=2$ the transformation is either the identity or it is parabolic with a single fixed point in $\mathbb{Q} \cup\{\infty\}$. For $|t|>2$ the transformation is hyperbolic with two fixed points in \mathbb{R}.

Elliptic and parabolic conjugacy classes of $\mathrm{SL}_{2}(\mathbb{Z})$

Plan

We shall count the conjugacy classes of $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ according to their traces t. Without loss of generality, $t \geqslant 0$.

Consider an elliptic conjugacy class of Γ of trace $t=0$ or $t=1$. The corresponding fixed points in \mathcal{H} form the Γ-orbit of $\frac{t+\sqrt{t^{2}-4}}{2}$, and the conjugacy class is represented by

$$
\left(\begin{array}{cc}
t & -1 \\
1 & 0
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & t
\end{array}\right)
$$

Consider a parabolic conjugacy class of trace $t=2$. The corresponding fixed points form the Γ-orbit of ∞, and the conjugacy class is represented by

$$
\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right) \quad \text { for a unique } \quad n \in \mathbb{Z}
$$

Hyperbolic conjugacy classes of $\mathrm{SL}_{2}(\mathbb{Z})$ (1 of 2)

A hyperbolic conjugacy class of trace $t \geqslant 3$ corresponds bijectively to a positive integer u and a Γ-class of quadratic forms in $\mathbb{Z}[x, y]$ of discriminant $\left(t^{2}-4\right) / u^{2}$. Moreover, it corresponds bijectively to an oriented closed geodesic of length $2 \log \left(\frac{t+\sqrt{t^{2}-4}}{2}\right)$ in $\Gamma \backslash \mathcal{H}$.

Here are some details. Pick an element $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ from the conjugacy class. Then $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ fixes the quadratic form $c x^{2}+(d-a) x y-b y^{2}$ of discriminant $t^{2}-4$. Now $u=\operatorname{gcd}(c, d-a, b)$ only depends on the conjugacy class, and $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ fixes the primitive quadratic form

$$
A x^{2}+B x y+C y^{2}=\frac{c x^{2}+(d-a) x y-b y^{2}}{u}
$$

of discriminant $B^{2}-4 A C=\left(t^{2}-4\right) / u^{2}$. Hence in fact

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
(t-B u) / 2 & -C u \\
A u & (t+B u) / 2
\end{array}\right) .
$$

Hyperbolic conjugacy classes of $\mathrm{SL}_{2}(\mathbb{Z})$ (2 of 2)

On the other hand, if we consider the oriented geodesic in \mathcal{H}

$$
\text { going from } \frac{-B-\sqrt{B^{2}-4 A C}}{2 A} \text { to } \frac{-B+\sqrt{B^{2}-4 A C}}{2 A},
$$

then we find that the representative element

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{cc}
(t-B u) / 2 & -C u \\
A u & (t+B u) / 2
\end{array}\right)
$$

moves the points forward by hyperbolic distance $2 \log \left(\frac{t+\sqrt{t^{2}-4}}{2}\right)$ on this geodesic.

Summary

For each discriminant $\left(t^{2}-4\right) / u^{2}$, we exhibited $h\left(\left(t^{2}-4\right) / u^{2}\right)$ oriented closed geodesics of length $2 \log \left(\frac{t+\sqrt{t^{2}-4}}{2}\right)$ in $\Gamma \backslash \mathcal{H}$.

An analogue of Chebyshev's counting function

In analogy with the Chebyshev counting function for prime powers, it is natural to count the oriented closed geodesics of $\Gamma \backslash \mathcal{H}$ (or equivalently the hyperbolic conjugacy classes of Γ) by considering them up to $\log x$ in length and weighting each of them by the length of the underlying primitive closed geodesic.

By Dirichlet's class number formula, the resulting sum equals

$$
\Psi_{\Gamma}(x)=2 \sum_{3 \leqslant t \leqslant x^{1 / 2}+x^{-1 / 2}} \sqrt{t^{2}-4} L\left(1, t^{2}-4\right),
$$

where $L\left(s, t^{2}-4\right)$ is Zagier's L-series:

$$
L\left(s, t^{2}-4\right)=\sum_{\left(t^{2}-4\right) / u^{2} \equiv 0,1(\bmod 4)} L\left(s, \chi_{\left.\left(t^{2}-4\right) / u^{2}\right) u^{1-2 s} .} .\right.
$$

Initially observed by Kuznetsov (1978) and Bykovskiĭ (1994).

Zagier's L-series

Writing $t^{2}-4=D \ell^{2}$, where D is a fundamental discriminant,

$$
\begin{aligned}
L\left(s, t^{2}-4\right) & =\prod_{\boldsymbol{p}}\left(\sum_{0 \leqslant m<v_{\boldsymbol{p}}(\ell)} \boldsymbol{p}^{m(1-2 s)}+\frac{\boldsymbol{p}^{v_{\boldsymbol{p}}(\ell)(1-2 s)}}{1-\chi_{D}(\boldsymbol{p}) \boldsymbol{p}^{-s}}\right) \\
& =\frac{\zeta(2 s)}{\zeta(s)} \sum_{q=1}^{\infty} \frac{\#\left\{x(\bmod 2 q): x^{2} \equiv t^{2}-4(\bmod 4 q)\right\}}{q^{s}}
\end{aligned}
$$

We used \boldsymbol{p} in the Euler product as p will be a fixed prime later.
$L\left(s, t^{2}-4\right)$ satisfies GRH if and only if $L\left(s, \chi_{D}\right)$ does.
The completed series

$$
\Lambda\left(s, t^{2}-4\right)=\left(t^{2}-4\right)^{s / 2} \pi^{-s / 2} \Gamma(s / 2) L\left(s, t^{2}-4\right)
$$

is entire and invariant under $s \leftrightarrow 1-s$.

Prime geodesic theorem (1 of 2)

Theorem (Conrey-Iwaniec 2000)

For $\theta=1 / 6$ and some $A>0$ we have that

$$
L\left(s, t^{2}-4\right) \ll \varepsilon\left(t^{2}-4\right)^{\theta+\varepsilon}|s|^{A}, \quad \operatorname{Re}(s)=1 / 2
$$

Theorem (Soundararajan-Young 2013)

For $\sqrt{x} \leqslant u \leqslant x$ we have that

$$
\Psi_{\Gamma}(x+u)-\Psi_{\Gamma}(x)=u+O_{\varepsilon}\left(u^{1 / 2} x^{1 / 4+\theta / 2+\varepsilon}\right)
$$

The proof is nontrivial, e.g. it uses that the coefficient of q^{-s} in $L\left(s, t^{2}-4\right)$ equals

$$
\sum_{q_{1}^{2} q_{2}=q} \frac{1}{q_{2}} \sum_{k\left(\bmod q_{2}\right)} e\left(\frac{k t}{q_{2}}\right) S\left(k^{2}, 1 ; q_{2}\right)
$$

Setting $u=x$ in the above mentioned short-interval estimate of Soundararajan-Young (2013), and applying a dyadic decomposition, we obtain a version of the prime geodesic theorem:

$$
\Psi_{\Gamma}(x)=x+O_{\varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right)
$$

Originally Selberg (1956) treated $\Psi_{\Gamma}(x)$ with his trace formula. In fact Iwaniec (1984) proved the following spectral counterpart of the Kuznetsov-Bykovskiĭ formula. For $1 \leqslant T \leqslant \sqrt{x} / \log ^{2} x$ we have

$$
\Psi_{\Gamma}(x)=x+2 \operatorname{Re} \sum_{0<t_{j} \leqslant T} \frac{x^{1 / 2+i t_{j}}}{1 / 2+i t_{j}}+O\left(\frac{x}{T} \log ^{2} x\right) .
$$

This readily yields the error term $O_{\varepsilon}\left(x^{3 / 4+\varepsilon}\right)$ in the PGT, which was subsequently improved by Iwaniec (1984), Luo-Sarnak (1995), Cai (2002), Soundararajan-Young (2013), and Kaneko (2024).

New result

Inspired by the prime number theorem for arithmetic progressions, we restrict the trace t in our count to a residue class (modulo a prime for simplicity):

$$
\Psi_{\Gamma}(x ; p, a)=2 \sum_{\substack{3 \leqslant t \leqslant x^{1 / 2}+x^{-1 / 2} \\ t \equiv a(\bmod p)}} \sqrt{t^{2}-4} L\left(1, t^{2}-4\right)
$$

Our main result was conjectured by Golovchanskiǐ-Smotrov (1999):

Theorem (Chatzakos-Harcos-Kaneko 2023)

Let $p \geqslant 3$ be a prime. Then we have that

$$
\Psi_{\Gamma}(x ; p, a)= \begin{cases}\frac{1}{p-1} \cdot x+O_{\varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right) & \text { if }\left(\frac{a^{2}-4}{p}\right)=1, \\ \frac{1}{p+1} \cdot x+O_{\varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right) & \text { if }\left(\frac{a^{2}-4}{p}\right)=-1, \\ \frac{p}{p^{2}-1} \cdot x+O_{p, \varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right) & \text { if }\left(\frac{a^{2}-4}{p}\right)=0 .\end{cases}
$$

Sketch of the proof (1 of 5)

Let $L^{p}\left(s, t^{2}-4\right)$ denote $L\left(s, t^{2}-4\right)$ without the Euler factor at $\boldsymbol{p}=p$. The idea is to consider the sum

$$
\Psi_{\Gamma}^{\star}\left(x ; p^{n}, r\right)=2 \sum_{\substack{3 \leqslant t \leqslant x^{1 / 2}+x^{-1 / 2} \\ t \equiv r\left(\bmod p^{n}\right)}} \sqrt{t^{2}-4} L^{p}\left(1, t^{2}-4\right) .
$$

Mimicking Soundararajan-Young (2013), we find that

$$
\Psi_{\Gamma}^{\star}\left(x ; p^{n}, r\right)=\frac{x}{p^{n}}+O_{\varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right)
$$

Now if $t \equiv a \not \equiv \pm 2(\bmod p)$, then writing $t^{2}-4=D \ell^{2}$ as before (with D a fundamental discriminant), we see that $p \nmid \ell$ and

$$
\chi_{D}(p)=\left(\frac{D}{p}\right)=\left(\frac{D \ell^{2}}{p}\right)=\left(\frac{t^{2}-4}{p}\right)=\left(\frac{a^{2}-4}{p}\right) .
$$

Hence the result follows for $a \not \equiv \pm 2(\bmod p)$, because in that case

$$
\Psi_{\Gamma}(x ; p, a)=\left(1-\left(\frac{a^{2}-4}{p}\right) p^{-1}\right)^{-1} \Psi_{\Gamma}^{\star}(x ; p, a)
$$

We need to work harder when $a \equiv \pm 2(\bmod p)$. Without loss of generality, $a= \pm 2$. We decompose

$$
\Psi_{\Gamma}(x ; p, a)=\sum_{k=1}^{\infty} \Psi_{\Gamma}(x ; p, a ; k)
$$

where

$$
\Psi_{\Gamma}(x ; p, a ; k)=2 \sum_{\substack{3 \leqslant t \leqslant x^{1 / 2}+x^{-1 / 2} \\ v_{p}(t-a)=k}} \sqrt{t^{2}-4} L\left(1, t^{2}-4\right) .
$$

The idea behind this decomposition is that, as we shall see, the Euler factor at p of $L\left(s, t^{2}-4\right)$ is constant within $\Psi_{\Gamma}(x ; p, a ; k)$.

Note that $p^{k}>t-a$ implies $\Psi_{\Gamma}(x ; p, a ; k)=0$. Also, the condition $v_{p}(t-a)=k$ constrains t to $p-1$ residue classes modulo p^{k+1}, and it yields $v_{p}\left(t^{2}-4\right)=k$.

If $k=2 n-1$ is odd, then $p \mid D$ and $v_{p}(\ell)=n-1$, hence

$$
L\left(s, t^{2}-4\right)=\frac{1-p^{n(1-2 s)}}{1-p^{1-2 s}} L^{p}\left(s, t^{2}-4\right),
$$

yielding

$$
\begin{aligned}
\Psi_{Г}(x ; p, a ; 2 n-1) & =\frac{p-1}{p^{2 n}} \cdot \frac{1-p^{-n}}{1-p^{-1}} \cdot x+O_{p, \varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right) \\
& =\left(p^{1-2 n}-p^{1-3 n}\right) x+O_{p, \varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right)
\end{aligned}
$$

It is important that the implied constant is independent of n.

Sketch of the proof (4 of 5)

If $k=2 n$ is even, then $p \nmid D$ and $v_{p}(\ell)=n$, hence

$$
L\left(s, t^{2}-4\right)=\left(\frac{1-p^{n(1-2 s)}}{1-p^{1-2 s}}+\frac{p^{n(1-2 s)}}{1-\chi_{D}(p) p^{-s}}\right) L^{p}\left(s, t^{2}-4\right)
$$

Writing $t=a+p^{2 n} r$, we get $t^{2}-4=2 a p^{2 n} r+p^{4 n} r^{2}$, hence

$$
\chi_{D}(p)=\left(\frac{D}{p}\right)=\left(\frac{D \ell^{2} p^{-2 n}}{p}\right)=\left(\frac{2 a r}{p}\right) .
$$

So among the $p-1$ choices for t modulo $p^{2 n+1}$, half the time $\chi_{D}(p)$ equals +1 , and half the time it equals -1 . Therefore,

$$
\begin{aligned}
\Psi_{\Gamma}(x ; p, a ; 2 n) & =\frac{p-1}{p^{2 n+1}}\left(\frac{1-p^{-n}}{1-p^{-1}}+\frac{(1 / 2) p^{-n}}{1-p^{-1}}+\frac{(1 / 2) p^{-n}}{1+p^{-1}}\right) x+\ldots \\
& =\left(p^{-2 n}-\frac{p^{-3 n}}{p+1}\right) x+O_{p, \varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right)
\end{aligned}
$$

As before, the implied constant is independent of n.

Sketch of the proof (5 of 5)

In the end,

$$
\Psi_{\Gamma}(x ; p, \pm 2)=c_{p} x+O_{p, \varepsilon}\left(x^{3 / 4+\theta / 2+\varepsilon}\right)
$$

where

$$
c_{p}=\sum_{n=1}^{\infty}\left(p^{1-2 n}-p^{1-3 n}+p^{-2 n}-\frac{p^{-3 n}}{p+1}\right)=\frac{p}{p^{2}-1} .
$$

Thanks for your attention!

