Sex Differences in Mathematical Reasoning Ability: More Facts

Camilla Persson Benbow and Julian C. Stanley
Sex Differences in Mathematical Reasoning Ability: More Facts

Abstract. Almost 40,000 selected seventh-grade students from the Middle Atlantic region of the United States took the College Board Scholastic Aptitude Test as part of the Johns Hopkins regional talent search in 1980, 1981, and 1982. A separate nationwide talent search was conducted in which any student under age 13 who was willing to take the test was eligible. The results obtained by both procedures establish that by age 13 a large sex difference in mathematical reasoning ability exists and that it is especially pronounced at the high end of the distribution: among students who scored ≥ 700, boys outnumbered girls 13 to 1. Some hypothesized explanations of such differences were not supported by the data.

In 1980 we reported large sex differences in mean scores on a test of mathematical reasoning ability for 9927 mathematically talented seventh and eighth graders who entered the Johns Hopkins regional talent search from 1972 through 1979 (1, 2). One prediction from those results was that there would be a preponderance of males at the high end of the distribution of mathematical reasoning ability. In this report we investigate sex differences at the highest levels of that ability. New groups of students under age 13 with exceptional mathematical aptitude were identified by means of two separate procedures. In the first, the Johns Hopkins regional talent searches in 1980, 1981, and 1982 (3), 39,820 seventh graders from the Middle Atlantic region of the United States who were selected for high intellectual ability were given the College Board Scholastic Aptitude Test (SAT). In the second, a nationwide talent search was conducted for which any student under 13 years of age who was willing to take the SAT was eligible. The results of both procedures substantiated our prediction that before age 13 far more males than females would score extremely high on SAT-M, the mathematical part of SAT.

The test items of SAT-M require numerical judgment, relational thinking, or insightful and logical reasoning. This test
is designed to measure the developed mathematical reasoning ability of 11th and 12th graders (4). Most students in our study were in the middle of the seventh grade. Few had had formal opportunities to study algebra and beyond (5, 6). Our rationale is that most of these students were unfamiliar with mathematics from algebra onward, and that most who scored high did so because of extraordinary reasoning ability (7).

In 1980, 1981, and 1982, as in the earlier study (1), participants in the Johns Hopkins talent search were seventh graders, or boys and girls of typical seventh-grade age in a higher grade, in the Middle Atlantic area. Before 1980, applicants had been required to be in the top 3 percent nationally in the mathematics section of any standardized achievement test. Beginning in 1980, students in the top 3 percent in verbal or overall intellectual ability were also eligible. During that and the next 2 years 19,883 boys and 19,937 girls applied and were tested. Even though this sample was more general and had equal representation by sex, the mean sex difference on SAT-M remained constant at 30 points favoring males (males' $X = 416$, S.D. = 87; females' $X = 386$, S.D. = 74; $t = 37$; $P < 0.001$). No significant difference in verbal ability as measured by SAT-V was found (males' $X = 367$, females' $X = 365$).

The major point, however, is not the mean difference in SAT-M scores but the ratios of boys to girls among the high scorers (Table 1). The ratio of boys to girls scoring above the mean of talent-search males was 1.5:1. The ratio among those who scored ≥ 500 (493 was the mean of 1981-82 college-bound 12th-grade males) was 2:1. Among those who scored ≥ 600 (600 was the 79th percentile of the 12th-grade males) the ratio was 4:1.1. These ratios are similar to those previously reported (1) but are derived from a broader and much larger data base.

Scoring 700 or more on the SAT-M before age 13 is rare. We estimate that students who reach this criterion (the 95th percentile of college-bound 12th-grade males) before their 13th birthday represent the top one in 10,000 of their age group. It was because of their rarity that the nationwide talent search was created in November 1980 in order to locate such students who were born after 1967 and facilitate their education (8). In that talent search applicants could take the SAT at any time and at place at which it was administered by the Educational Testing Service or through one of five regional talent searches that cover the United States (9). Extensive nationwide efforts were made to inform school personnel and parents about our search. The new procedure (unrestricted by geography or previous ability) was successful in obtaining a large national sample of this exceedingly rare population. As of September 1983, the number of such boys identified was 260 and the number of girls 20, a ratio of 13.0:1 (10). This ratio is remarkable in view of the fact that the available evidence suggests there was essentially equal participation of boys and girls in the talent searches. The total number of students tested in the Johns Hopkins regional annual talent searches and reported so far is 49,747 (9,927 in the initial study and 39,820 in the present study). Preliminary reports from the 1983 talent search based on some 15,000 cases yield essentially identical results. In the ten Middle Atlantic regional talent searches from 1972 through 1983 we have therefore tested about 65,000 students. It is abundantly clear that far more boys than girls (chiefly 12-year-olds) scored in the highest ranges on SAT-M, even though girls were matched with boys by intellectual ability, age, grade, and voluntary participation. In the original study (1) students were required to meet a qualifying mathematics criterion. Since we observed the same sex difference then as now, the current results cannot be explained solely on the grounds that the girls may have qualified by the verbal criterion. Moreover, if that were the case, we should expect the girls to have scored higher than the boys on SAT-V. They did not.

Several "environmental" hypotheses have been proposed to account for sex differences in mathematical ability. Fox et al. and Meece et al. (11) have found support for a social-reinforcement hypothesis which, in essence, states that sex-related differences in mathematical achievement are due to differences in social conditioning and expectations for boys and girls. The validity of this hypothesis has been evaluated for the population we studied earlier (1) and for a subsample of the students in this study. Substantial differences between boys' and girls' attitudes or backgrounds were not found (5, 6, 12). Admittedly, some of the measures used were broadly defined and may not have been able to detect subtle social influences that affect a child from birth. But it is not obvious how social conditioning could affect mathematical reasoning ability so adversely and significantly, yet have little detectable effect on stated interest in mathematics, the taking of mathematics courses during the high school years before the SAT's are normally taken, and mathematics-course grades (5, 6).

An alternative hypothesis, that sex differences in mathematical reasoning ability arise mainly from differential course-taking (13), was also not validated, either by the data in our 1980 study (1) or by the data in the present study. In both studies the boys and girls were shown to have had similar formal training in mathematics (5, 6).

It is also of interest that sex differences in mean SAT-M scores observed in our early talent searches became only slightly larger during high school. In the selected subsample of participants studied, males improved their scores an average of 10 points more than females (the mean difference went from 40 to 50 points). They also increased their scores on the SAT-V by at least 10 points more than females (6). Previously, other researchers have postulated that profound differences in socialization during adolescence caused the well-documented sex differences in 11th and 12th-grade SAT-M scores (11), but that idea is not supported in our data. For socialization to account for our results, it would seem necessary to postulate (ad hoc) that chiefly early socialization pressures significantly influence the sex difference in SAT-M scores—that is, that the intensive social pressures during adolescence have little such effect.

\begin{table}
\centering
\begin{tabular}{llll}
\hline
\textbf{Score} & \textbf{Number} & \textbf{Percent} & \textbf{Ratio of boys to girls} \\
\hline
420 or more & 9119 & 45.9 & 1.5:1 \\
500 or more & 6212 & 31.1 & 1.2:1 \\
600 or more & 1707 & 8.6 & 2:1:1 \\
700 or more & 64 & 3.3 & 4:1:1 \\
Girls & 158 & 0.8 & \\
\hline
\end{tabular}
\caption{Number of high scorers on SAT-M among selected seventh graders—19,883 boys and 19,937 girls—tested in the Johns Hopkins regional talent search in 1980, 1981, and 1982, and of scorers of ≥ 700 prior to age 13 in the national search (9).}
\end{table}

\begin{table}
\centering
\begin{tabular}{llll}
\hline
\textbf{National search} & \textbf{In Johns Hopkins talent search region} & \textbf{Outside Johns Hopkins talent search region} \\
\hline
Boys & 113 & + & 12.6:1 \\
Girls & 9 & + & \\
\hline
\end{tabular}
\caption{Number of high scorers on SAT-M among selected seventh graders—19,883 boys and 19,937 girls—tested in the Johns Hopkins regional talent search in 1980, 1981, and 1982, and of scorers of ≥ 700 prior to age 13 in the national search (9).}
\end{table}
It is important to emphasize that we are dealing with intellectually highly able students and that these findings may not generalize to average students. Moreover, these results are of course not generalizable to particular individuals. Finally, it should be noted that the boys’ SAT–M scores had a larger variance than the girls’. This is obviously related to the fact that more mathematically talented boys than girls were found (14). Nonetheless, the experimental hypotheses outlined above attempt to explain mean differences, not differences in variability. Thus, even if one concludes that our findings result primarily from greater male variability, one must still explain why.

Our principal conclusion is that males dominate the highest ranges of mathematical reasoning ability before they enter adolescence. Reasons for this sex difference are unclear (15).

CAMILLA PERSSON BENBOW
JULIAN C. STANLEY

Study of Mathematically Precocious Youth, Johns Hopkins University, Baltimore, Maryland 21218

References and Notes
3. The Johns Hopkins Center for the Advancement of Academically Talented Youth (CTY) conducts talent searches during January in Delaware, the District of Columbia, Maryland, New Jersey (added in 1980), Pennsylvania, Virginia, and West Virginia. In 1983 coverage expanded north to include Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont.
7. We have found that among the top 10 percent of these students (who are eligible for our fast-paced summer programs in mathematics) a majority do not know even first-year algebra well.
9. The regional talent searches are conducted by Johns Hopkins (begun in 1972), Duke (1981), Arizona State–Tempe (1981), Northwestern (1982), and the University of Denver (1982). Because there was no logical way to separate students who entered through the regional programs from those who entered through the national channel, results were combined. Most students fit into both categories but at different time points, so the SAT could be taken more than once to qualify or could be retaken in the regional talent search programs. The SAT is not administered by the Educational Testing Service between June and October or November of each year. Therefore, entrants who had passed their 13th birthday before taking the test were excluded if they scored 10 additional points for each excess month or a fraction of a month.
10. There is a remarkably high incidence of left-handedness or ambidexterity (30 percent), immune disorders (55 percent), and myopia (55 percent) in this group (manuscript in preparation).
14. Why boys are generally more variable has been addressed by H. Eysenck and L. Kamin [The Intelligence Controversy (Wiley, New York, 1983)] and others.
16. We thank K. Alexander, L. Barnett, B. Benbow, R. Gordon, P. Hines, L. Minor, B. Persson, B. Polkcs, D. Powers, B. Stanley, Z. Ussikin, and P. Zak. This study was supported by grants from the Spencer and Donner Foundations.

8 November 1982; accepted 17 May 1983