Online Appendix A. `modelavgIRT` R function

`modelavgIRT` R function Description:
This function reads in person scores (i.e., EAP scores) and their standard errors from the validation sample, and information criteria values (BIC, AIC) from the calibration sample from each of a set of candidate IRT models and outputs model-averaged person scores and standard errors (see manuscript Equations 4 and 5).

`modelavgIRT` R function Input:

- `personscores` – A dataset consisting of person scores obtained from each candidate model in the validation sample, with rows denoting person and columns denoting model
- `personSEs` – A dataset consisting of person score standard errors obtained from each candidate model in the validation sample, with rows denoting person and columns denoting model
- `selectionindex` – List of information criteria values (BIC, AIC) for each model, in the order of the columns of `personscores` and `personSEs`
- `rescale` – Logical; if set to TRUE (default), prior to averaging each models’ person scores will be rescaled to have mean of 0 and a variance of 1 and standard errors will be rescaled proportionally

`modelavgIRT` R function Code:

```r
modelavgIRT <- function(personscores,personSEs,selectionindex,rescale=TRUE) {
  ##rescale personscores to have mean 0 and var 1
  #rescale personSEs proportionally
  if(rescale==TRUE){
    for(i in seq(ncol(personscores))){
      personscores[,i] <- (personscores[,i] - mean(personscores[,i]))/sd(personscores[,i])
      personSEs[,i] <- personSEs[,i]/sd(personscores[,i])
    }
  }
  ##compute weights
  weights <- c(rep(NA,length(selectionindex)))
  for(i in seq(length(selectionindex))){
    weights[i] <- sum(exp(-.5*selectionindex[1:length(selectionindex)]+.5*selectionindex[i]))^(-1)
  }
  ##compute averaged person scores
  avg.personscore <- matrix(NA,nrow(personscores),1)
  for(i in seq(nrow(personscores))){
    avg.personscore[i,] <- sum(weights*personscores[i,])
  }
  ##compute averaged person SEs
  avg.personSE <- matrix(NA,nrow(personSEs),1)
  for(i in seq(nrow(personSEs))){
    avg.personSE[i,] <- sum(weights*sqrt(personSEs[i,]^2+(personscores[i,]-avg.personscore[i,])^2))
  }
  output <- list(weights,avg.personscore,avg.personSE)
  names(output) <- c("weights","Average person score","Average person SE")
  return(output)
}
```
Online Appendix B. Generating parameters for illustration

The generating model is a 3-parameter logistic (3-PL) bifactor model with two secondary dimensions. The probability of response “1” is given by:

\[P(y_{ij} = 1 \mid \theta_j, \theta_{jd}) = c_i + \frac{1-c_i}{1 + \exp[-(\alpha_i \theta_j + \alpha_{id} \theta_{jd} - \beta_i)]}, \]

where

- \(y_{ij} \) is the item response (0 or 1) for item \(i \) and person \(j \);
- \(\theta_j \) is the ability score for person \(j \) (primary dimension). It is generated from a standard normal distribution. It is the person score of substantive interest in our illustration;
- \(\theta_{jd} \) is the secondary dimension score for person \(j \). Each item loads onto one of two secondary dimensions, \(d = 1 \) or 2. The first 10 items load on \(d=1 \) and next 10 load on \(d=2 \). The secondary dimension scores are not of substantive interest in our illustration;
- \(\beta_i \) is the item difficulty for item \(i \). It is generated from a standard normal distribution;
- \(\alpha_i \) is the (primary dimension) item discrimination for item \(i \). It is generated from a log-normal distribution with \(\mu = 0.08 \) and \(\sigma = 0.3 \);
- \(\alpha_{id} \) is the (secondary dimension) item discrimination for item \(i \). It is generated as .378 for all items, which induces an ECV (explained common variance; Reise, Bonifay & Haviland, 2013) for the primary dimension equal to .90, implying very weak secondary dimensions; and
- \(c_i \) is the guessing parameter (lower asymptote) for item \(i \). It is generated as .1 (for all items).

Reference