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Abstract
Developmental researchers commonly utilize mul-
tilevel models (MLMs) to describe and predict
individual differences in change over time. In
such growth model applications, researchers have
been widely encouraged to supplement reporting
of statistical significance with measures of effect
size, such as R-squareds (R2) that convey variance
explained by terms in the model. An integrative
framework for computing R-squareds in MLMs
with random intercepts and/or slopes was recently
introduced by Rights and Sterba and it subsumed
pre-existing MLM R-squareds as special cases.
However, this work focused on cross-sectional
applications, and hence did not address how the
computation and interpretation of MLM R-squareds
are affected by modeling considerations typically
arising in longitudinal settings: (a) alternative cen-
tering choices for time (e.g., centering-at-a-constant
vs. person-mean-centering), (b) nonlinear effects of
predictors such as time, (c) heteroscedastic level-1
errors and/or (d) autocorrelated level-1 errors. This
paper addresses these gaps by extending the Rights
and Sterba R-squared framework to longitudinal
contexts. We: (a) provide a full framework of total
and level-specific R-squared measures for MLMs
that utilize any type of centering, and contrast these
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with Rights and Sterba’s measures assuming cluster-
mean-centering, (b) explain and derive which
measures are applicable for MLMs with nonlinear
terms, and extend the R-squared computation to
accommodate (c) heteroscedastic and/or (d) auto-
correlated errors. Additionally, we show how to use
differences in R-squared (ΔR2) measures between
growth models (adding, for instance, time-varying
covariates as level-1 predictors or time-invariant
covariates as level-2 predictors) to obtain effects
sizes for individual terms. We provide R software
(r2MLMlong) and a running pedagogical exam-
ple analyzing growth in adolescent self-efficacy to
illustrate these methodological developments. With
these developments, researchers will have greater
ability to consider effect size when analyzing and
predicting change using MLMs.

K E Y W O R D S
effect size, longitudinal analyses, mixed effects modeling, multi-
level modeling, R-squared

Researchers studying child and adolescent development commonly analyze repeated mea-
sures data using multilevel models (MLMs) in order to describe and predict individual dif-
ferences in change over time (see, e.g., Hoffman, 2015; Raudenbush & Bryk, 2002; Singer &
Willett, 2003). For instance, developmental researchers use MLMs (also called hierarchical
linear models or linear mixed effects models) to assess longitudinal changes in newborns’
sleep duration (Hoeksma & Koomen, 1992), children’s language skills (Siller & Sigman,
2008), adolescents’ cortical thickness (King et al., 2018), and young adults’ risky behavior
(Fergus, Zimmerman, & Caldwell, 2007). Multilevel modeling has proven a useful frame-
work for such applications in that it readily accommodates the inherent dependency of
individual observations nested within persons by allowing regression coefficients to vary
across persons.

In such longitudinal growth applications of MLMs, researchers have been widely encour-
aged to compute measures of effect size to convey practical or clinical significance of
results (e.g., APA, 2009; Hoffman, 2015; Kwok et al., 2008; LaHuis, Blackmore, & Bryant-
Lees, 2019; Lorah, 2018; Nezlek, 2012). One such effect size measure ubiquitously reported
in single-level regression analyses is R-squared, indicating the proportion of variance
explained by a given model. In contrast, for MLM applications, the reporting of R-squared
measures has been historically complicated by the fact that many R-squared measures for
MLMs were separately developed and there was little understanding of how to relate, inter-
pret, or choose among them (LaHuis, Hartman, Hakoyama, & Clark, 2014). To address these
issues, Rights and Sterba (2019) recently developed an integrative framework of R-squared
measures for MLMs that analytically related pre-existing measures (from, e.g., Aguinis &
Culpepper, 2015; Hox, 2010; Johnson, 2014; Kreft & de Leeuw, 1998; Nakagawa & Schielzeth,
2013; Raudenbush & Bryk, 2002; Snijders & Bosker, 2012; Vonesh & Chinchilli, 1997; Xu,
2003) as special cases, supplied new measures to fill gaps, and provided a unified, accessi-
ble approach for visualizing and interpreting these measures.
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However, Rights and Sterba (2019) focused primarily on cross-sectional multilevel appli-
cations, and their R-squared framework did not fully accommodate the following five mod-
eling features that developmental researchers commonly utilize in longitudinal applica-
tions:

1. Utilizing alternative centering strategies. Researchers fitting growth models are often
interested in interpreting coefficients after centering time at a constant value such
as the first or last occasion (e.g., Biesanz, Deeb-Sossa, Papadakis, Bollen, & Curran,
2004), rather than cluster-mean-centering time. However, Rights and Sterba’s (2019) full
framework of measures was provided under the assumption of cluster-mean-centering
(called person-mean-centering in longitudinal contexts). They provided only a limited
subset of their framework’s R-squared measures (some1 of their total measures and
none of their level-specific measures) for other centering strategies (e.g., centering-at-
a-constant) that are more common in longitudinal analyses.

2. Specifying a nonlinear functional form of time. Developmental theory frequently leads
researchers to specify growth models with nonlinear functions of time (Bollen & Cur-
ran, 2006; Hoffman, 2015; Singer & Willett, 2003). However, Rights and Sterba’s (2019)
examples involved only linear effects of predictors. The inclusion of nonlinear terms has
implications for which R-squared measures are available and how to interpret them.

3. Allowing heteroscedastic error variances across timepoints. In growth model applications
there are commonly theoretical reasons to expect level-1 error variances to differ over
time (e.g., Crowder & Hand, 1990; Goldstein, 2011). However, Rights and Sterba’s (2019)
framework (as well as nearly all previous measures subsumed as special cases of their
framework) pertained strictly to homoscedastic (i.e., constant across time) error vari-
ances.

4. Incorporating non-diagonal error covariance structures. In longitudinal settings, level-
1 errors may be expected to covary across time, especially when assessments are close
in time (e.g., with daily diary data; Bolger & Laurenceau, 2013). However, Rights and
Sterba’s (2019) framework (as well as prior measures subsumed therein) assumed level-
1 errors do not covary across time (i.e., a diagonal error covariance structure).

5. Including time-varying covariates (i.e., level-1 predictors other than time) and time-
invariant covariates (i.e., level-2 predictors). Once developmental researchers have iden-
tified their unconditional model of change, they typically want to investigate the impact
of time-varying and/or time-invariant covariates. Rights and Sterba (2020) provided
procedures for using R-squared differences (ΔR2) between models as descriptive effect
sizes for individual terms; however, they focused on cross-sectional cluster-mean-
centered models, and some interpretations would change under model specifications
common in longitudinal analyses, complicating the quantification of effect size for
time-varying and time-invariant covariates.

The current paper addresses these gaps by extending the Rights and Sterba (2019, 2020)
framework to longitudinal contexts, providing R-squared measures and delineating the
implications of R-squared computation for each of the five aforementioned modeling fea-
tures. We will use a running example modeling self-efficacy across adolescence to first con-
sider alternative centering options, to next consider nonlinear change over time, to then
allow error variances to vary over time, to subsequently allow errors to correlate across

1 For instance, Rights and Sterba’s (2019) total measures for cluster-mean-centered MLMs distinguished the contribution of level-
1 versus level-2 predictors via fixed slopes (called sources f1 and f2). However, their total measures for non-cluster-mean-centered
MLMs did not distinguish between these two sources (which is unideal when substantive interest lies in distinguishing within-
person versus between-person sources of explained variance).
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timepoints, and, finally, to include both time-varying and time-invariant covariates. For
each of these models, we will illustrate how the computation, choice, and interpretation of
MLM R-squareds incorporates these modeling features. Mathematical derivations under-
lying these methodological developments are presented in our appendices so that we can
focus the main body of the text on the practical application and interpretation of these
R-squared measures in a developmental context. Additionally, to aid researchers in imple-
menting these measures, in the Supporting Information, we provide the example dataset
(selfeffdata.txt) as well as an R script (r2MLMlong_supplementalfile.R) to fit each model
and compute all R-squared measures.

1 BACKGROUND: MULTILEVEL GROWTH MODELS FOR
LONGITUDINAL ANALYSES

For illustrative purposes, we will use a running pedagogical simulated example in which
we describe and predict adolescents’ individual differences in self-efficacy over time. This
data set has a hierarchical structure in which, at level-1 (i.e., the observation level), there are
repeated observations, and at level-2 (i.e., the person level), there are adolescents. Although
data collection was attempted at the same 10 measurement occasions for all adolescents in
this example, due to attrition there were only on average 7.5 observations per adolescent.
Our level-2 sample size (i.e., number of adolescents) is 400. For now, we are concerned with
only two variables in this dataset, namely, our outcome selfeff (a numerical rating of self-
efficacy) and time (given as age in years, i.e., 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5);
we will later consider additional predictors that are theoretically anticipated to be related
to self-efficacy (GPA, time spent volunteering in the community, and gender; e.g., Johnson,
Beebe, Mortimer, & Snyder, 1998; Larose et al., 2008).

We start with an unconditional growth model in which our only predictor is time, and in
which we assume linear change, as shown in Equation (1).

Level 1: selfeffij = 𝛽0j + 𝛽1jtimeij + eij,

Level 2: 𝛽0j = 𝛾00 + u0j,

𝛽1j = 𝛾10 + u1j,

eij ∼ N(0,𝜎2)[
u0j

u1j

]
∼ MVN

([
0

0

]
,
[
𝜏00

𝜏01 𝜏11

])
. (1)

The i subscript denotes a repeated measure (i = 1…I) where in our running example I
= 10. The subscript j denotes adolescent (j = 1…J) where in our running example J =
400. Hence, selfef fij represents the ith repeated observation of the outcome for adoles-
cent j. Next we define the person-specific growth coefficients. The person-specific inter-
cept, given as 𝛽0j, is adolescent j’s expected self-efficacy when timeij = 0, and the person-
specific slope of timeij, given as 𝛽1j, is adolescent j’s expected change in self-efficacy per
unit increase in time. The 𝛾’s are the fixed components of the person-specific growth coeffi-
cients, which reflect across-adolescent averages. The fixed component of the intercept, 𝛾00,
is the across-adolescent average expected self-efficacy when timeij = 0. The fixed compo-
nent of the slope, 𝛾10, is the across-adolescent average expected change in self-efficacy for
each year increase in timeij. The u’s, in contrast, are the random components of the person-
specific growth coefficients, which reflect adolescent-specific deviations from the fixed



RIGHTS and STERBA 69

components. Hence, the random component of the intercept, u0j, is the difference between
the adolescent-specific intercept (𝛽0j) and the across-adolescent average intercept (𝛾00),
and the random component of the slope, u1j, is the difference between the adolescent-
specific slope (𝛽1j) and the across-adolescent average slope (𝛾10). The random components
are assumed multivariate normally distributed, with the random intercept variance given
as 𝜏00, random slope variance as 𝜏11, and intercept-slope covariance as 𝜏01. The level-1
error, eij, is the difference between an adolescent’s expected self-efficacy (𝛽0j + 𝛽1jtimeij)
and their actual self-efficacy (selfef fij), and, for now, it is assumed to be normally dis-
tributed with mean 0 and variance 𝜎2.

2 BACKGROUND: OVERVIEW OF RIGHTS AND STERBA (2019) MLM
R-SQUARED FRAMEWORK

Rights and Sterba (2019) developed an integrative framework for defining and relating
R-squared measures for MLMs and it subsumed popular pre-existing MLM R-squared
measures (from, e.g., Aguinis & Culpepper, 2015; Hox, 2010; Johnson, 2014; Kreft & de
Leeuw, 1998; Nakagawa & Schielzeth, 2013; Raudenbush & Bryk, 2002; Snijders & Bosker,
2012; Vonesh & Chinchilli, 1997; Xu, 2003) as special cases, as well as provided novel ways
of quantifying explained variance. We briefly review their framework here as a foundation
for subsequent methodological developments. Recall that generically an R-squared can
be defined as the ratio of the explained portion of the variance to the overall outcome
variance:

R2 =
explained variance
outcome variance

. (2)

This yields an effect size indicating the proportion of the outcome variance that is
explained by the model. Further defining a particular R-squared measure then requires one
to consider (a) which sources of variation are considered to give rise to explained variance
(which defines the numerator) and (b) what outcome variance is of interest (which defines
the denominator). Rights and Sterba (2019) first delineated how to address these consider-
ations for cluster-mean-centered models, which, in the present longitudinal context with
persons as clusters, amounts to person-mean-centered models. Person-mean centering
implies that, for each level-1 predictor (e.g., time in Equation 1), the person’s mean value
is subtracted from the raw value. Such person-mean centering assures that the predictor
explains only within-person variance, and that its slope reflects a purely within-person
effect (e.g., Curran & Bauer, 2011; Enders & Tofighi, 2007; Hoffman, 2015).

To define the denominator and numerator of MLM R-squared measures, Rights and
Sterba (2019) provided a novel decomposition of outcome variance whereby one can quan-
tify the proportion of outcome variance attributable to each of a set of distinct sources:

∙ level-1 (e.g., occasion-level) predictors via the fixed components of slopes (shorthand:
f1)

∙ level-1 predictors via random slope variation (shorthand: v)
∙ level-1 errors
∙ level-2 (e.g., adolescent-level) predictors via fixed components of slopes (shorthand: f2)
∙ level-2 (e.g., adolescent-specific) outcome means via random intercept variation (short-

hand: m)

In defining the denominator of R-squared measures in person-mean-centered MLMs,
the model-implied outcome variance of interest could be the total variance (i.e.,
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variance attributable to all five above sources), the within-person variance (i.e., vari-
ance attributable to the first three sources), or the between-person variance (i.e., vari-
ance attributable to the last two sources), leading respectively to total measures, within-
person measures, or between-person measures. A within-person R-squared measure is the
most directly relevant effect size metric if, for example, a researcher modeling growth in
self-efficacy were most interested in understanding within-adolescent fluctuations, and
the extent to which these can be understood through growth trajectories and/or time-
varying covariates. In contrast, a between-person R-squared measure is the most directly
relevant effect size metric if, for example, a researcher modeling growth in self-efficacy
were instead most interested in understanding why some adolescents are, on average,
more self-efficacious than others. As a third option, a total R-squared measure provides
a more omnibus effect size metric, quantifying the proportion of both the within- and
between-adolescent variance that is explained.

In defining the numerator of a total MLM R-squared, variance attributable to f1, f2, v,
and/or m, can be considered singly or in combination. Variance attributable to f1 and/or v
can be considered for the numerator of a within-person R-squared measure, and variance
attributable to f2 or m can be considered for the numerator of a between-person R-squared
measure. When a single source of explained variance appears in the numerator of an R-
squared measure (e.g., f1) we term this a single-source measure, but when sums of multiple
sources appear in the numerator (e.g., f1 + v), we term this a combination-source measure.
For further discussion on the distinction between these types of measures and examples of
their application and interpretation, see Rights and Sterba (2019, 2020).

Rather than choosing one particular measure to report, however, Rights and Sterba
(2019, 2020) argue that one can instead obtain a more complete understanding by con-
sidering the entire breakdown of individual sources to which (total, within, or between)
variance is attributable. Such a full decomposition of variance can be easily visualized
in a barchart, an example of which is given in Figure 1 for the Equation (1) model fit to
the self-efficacy example data set, in which we currently person-mean center time.2 In
Figure 1, the shaded segments of the left-most column displays a breakdown of how much
each individual source f1, f2, v, m contributes to the total outcome variance (with the
contribution of level-1 errors shown in white). For instance, here we see that an estimated
8% of the total variability in self-efficacy repeated measures is explained by the linear effect

of time via its fixed component, indicated by the R-squared measure R̂2(f1)
t = .08—with

the superscript (“f1”) indicating the source of explained variance, and the subscript (“t”)
indicating the outcome variance under consideration (t = total, w = within-person, and b
= between-person).3 In terms of quantifying the degree of individual differences in growth
over time, we see that an estimated 11% of the total variance is attributable to the linear
effect of time via random slope variation, indicated by R̂2(v)

t = .11. These results highlight
the utility of quantifying the contribution of not only the marginal (or average) trajectory,
but also individual differences around it, as both can account for meaningful amounts of
outcome variance. We also can use the left-most bar to further quantify evidence of mean-
ingful individual differences, as an estimated 48% of outcome variance is attributable to
person-specific differences in self-efficacy via intercept variation, indicated by R̂2(m)

t = .48.
The shaded segments of the middle bar then shows the breakdown of how much each
within-person source f1 and v contributes to within-person outcome variance (with the

2 Note that point estimates and standard errors for this fitted model are in Table 1.
3 Using formulas in Appendix A and estimates in Table 1, this R̂

2(f1)
t is computed as the ratio of the variance attributable to time

via its fixed component (here given as 1.882var(time)) to the model-implied total outcome variance (given as 1.882var(time) +
4.70var(time) + 130.43 + 90.94). The ratio of these two variances, .08, is reflected in the solid red portion of the leftmost bar in
Figure 1.
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F I G U R E 1 Visualizing R-squared results for the unconditional linear growth model of self-efficacy that
person-mean centered time and assumed a homoscedastic, diagonal error covariance structure (Equation 1)
Notes. The shaded segments of the first bar graphically depict each single-source total R-squared measure. The
shaded segments of the second bar graphically depict each single-source within-person R-squared measure. The
shaded segments of the third bar depict each single-source between-person R-squared measure. Corresponding
numerical values for all of these single-source measures are listed on the far right. The white space in the first and
second columns refers to the contribution of level-1 error variance, to either the total or within-person variance.
Combination-source measures can be visualized as the combination of multiple shaded patterns within a given
bar. The shaded patterns in the legend each refer to a different source of variance accounted for. The same shaded
pattern appears in multiple bars when the same source is counted as explained variance in total and level-specific
measures. Detailed definitions of each measure depicted in Figure 1 were given in Table 3 column 1. Finally, note
that for person-mean-centered MLMs (where there is no v2) the v1 can simply be referred to as v (as in Rights &
Sterba, 2019, 2020).

contribution of level-1 errors again shown in white). Here, the linear effect of time accounts
for 16% of variance in self-efficacy repeated measures via its fixed component and 21%
percent via random slope variation. The shaded segments of the right bar show the break-
down of how much each between-person source (f2 and m) contributes to between-person
variance. Because time is presently person-mean-centered, it necessarily has only within-
person variability, and as such, we see that no between-person variance is explained by any

predictors in this unconditional growth model (R̂2(f2)
t = R̂2(f2)

b
= 0). For the remainder of the

current paper, in this fashion, we will focus on interpreting the entire breakdown of individ-
ual sources to which variance is attributable, such as that found in Figure 1. Corresponding
formulas for each R-squared measure depicted in Figure 1 can be found in Appendix A.

3 ALTERNATIVE CENTERING STRATEGIES: IMPLICATIONS FOR
THE MLM R-SQUARED FRAMEWORK

In the model in Equation (1), the meaning of the adolescent-specific intercept, 𝛽0j, and
its mean, variance, and intercept-slope covariance, will change depending on how time is
centered (Biesanz et al., 2004; Mehta & West, 2000). In longitudinal growth applications of
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MLMs, researchers often consider alternative centering choices for level-1 predictors (e.g.,
time). Longitudinal researchers can choose a centering strategy for time that best maps
onto their substantive interpretational goals (as also recommended by, e.g., Biesanz et al.,
2004; Hoffman, 2015). For instance, if a researcher is interested in assessing self-efficacy at
baseline (both in terms of its mean value as well as its across-person differences), then they
can center time such that time = 0 (and hence the intercept) would then indicate base-
line. Alternatively, if a researcher is interested in assessing self-efficacy at the end of the
assessment, they can center time such that time = 0 indicates the final assessment. In con-
trast, if a researcher is interested in assessing self-efficacy at the mean timepoint, grand-
mean-centering (subtracting from each raw value of time the overall mean of time) can be
employed. All of these examples (in addition to leaving time uncentered) are instances of
centering at a constant value for everyone in the sample.

In contrast, person-mean-centering is another strategy that does not necessarily involve
subtracting a constant value from every raw value of time. If time is balanced, meaning that
every adolescent has the exact same set of values for time and there are no missing out-
comes (termed observed data are balanced; Sterba, 2014), then there is no between-person
variability in time, and as such, person-mean-centering time is equivalent to grand-mean-
centering time. However, if time is unbalanced (either that people would have had the exact
same set of values for time if all data had been non-missing—termed complete data are bal-
anced in Sterba [2014]—or that people have completely unique measurement occasions—
termed truly individually varying measurements in Sterba [2014]), there is between-person
variability in time. Person-mean-centering then will remove the between-person variabil-
ity, creating a variable that purely varies within-person. In doing so, each person-specific
intercept, 𝛽0j, can be interpreted as the adolescent’s expected self-efficacy at their own per-
sonal mean value of time, with 𝛾00 reflecting its average across adolescents; researchers
desiring this interpretation can choose to person-mean-center.

Here we extend the original R-squared framework of Rights and Sterba (2019), whose
focus was providing R-squared measures for MLMs that used person-mean-centering, to
fully accommodate alternative centering strategies beyond person-mean-centering (e.g.,
centering at the first occasion, last occasion, or grand mean, or even leaving level-1 predic-
tors uncentered). This newly enables researchers—using any centering strategy—to con-
sider (a) the proportion of variance explained within-person versus between-person, and
(b) the relative impact of predictors at the within-person versus between-person level.4 As
detailed in Table 2 and derived in Appendix B, we developed an expanded decomposition
of outcome variance for non-person-mean-centered models which distinguishes among
variance attributable to:

∙ the within-person-varying portion of level-1 predictors via the fixed components of
slopes (f1)

∙ the within-person-varying portion of level-1 predictors via random slope variation (v1)
∙ level-1 errors
∙ the between-person-varying portion of level-1 and/or level-2 predictors via the fixed

components of slopes (f2)
∙ the between-person-varying portion of level-1 predictors via random slope5 variation (v2)

4 For further discussion on the utility of considering within-person and between-person measures and separately considering the
impact of predictors within-person versus between-person, see Rights and Sterba (2020) sections titled Comments on using total
versus level-specific R2 for MLMs and Comments on using combination-source versus single-source R2 for MLMs.
5 Though rarely employed in practice except when modeling level-2 heteroscedasticity (not considered here), if a level-2 predictor
also had a random slope (see Rights & Sterba, 2016; [blinded], under review; Goldstein, 2011; Snijders & Bosker, 2012), it would
also contribute to variance accounted for by v2.
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T A B L E 2 Decomposition of model-implied outcome variance for person-mean-centered MLMs versus
non-person-mean-centered MLMs

Source to
which
variance
can be
attributable

Definition of source when
person-mean-centering all
level-1 predictors, including
time

Definition of source when not person-mean-centering
all level-1 predictors, including time (e.g., centering at
origin or at grand mean)

f1 Level-1 predictors via the fixed
components of slopes

The within-person-varying portion of level-1 predictors
via the fixed components of slopes

f2 Level-2 predictors via the fixed
components of slopes

The between-person-varying portion of level-1 and/or
level-2 predictors via the fixed components of slopes

v1 Level-1 predictors via random
slope variation*

The within-person-varying portion of level-1 predictors
via random slope variation

v2 N/A The between-person-varying portion of level-1
predictorsa via random slope variation

m Person-specific outcome
means via random intercept
variation

Person-specific outcome means via random intercept
variation at the mean of all predictors with random
slopes

level-1
errors†

Note:
*= For person-mean-centered MLMs (where there is no v2) the v1 can simply be referred to as v (as in Rights & Sterba, 2019, 2020).
†= All sources other than the level-1 errors can potentially be considered as numerator terms in constructing MLM R-squared
measures.
a= Though rarely employed in practice and not considered here, if a level-2 predictor also had a random slope (see Rights &
Sterba, 2016; [blinded], under review; Goldstein, 2011; Snijders & Bosker, 2012 for conceptual explanation), then this text would
read “level-1 or level-2.”

∙ person-specific outcome means via random intercept variation at the mean of all predic-
tors with random slopes (m)

From this decomposition, we can now create a full set of single-source R-squared measures
for non-person-mean-centered models that includes total, within-person, and between-
person measures. The definitions of the full set of single-source R-squared measures under
the assumption of person-mean-centering versus non-person-mean-centering is given in
Table 3. Specific formulas for each measure in Table 3 Column 2 are given in Appendix A
and specific formulas for each measure in Table 3 Column 3 are given in Appendix C.

One way this new decomposition (Column 3 of Table 2) differs from Rights and Sterba’s
(2019) decomposition for person-mean-centered models (Column 2 of Table 2) is that
level-1 predictors can explain both within-person variance (via sources f1 and v1) and
between-person variance (via sources f2 and v2) in non-person-mean-centered models,
whereas in person-mean-centered models level-1 predictors can only explain within-
person variance (via sources f1 and v1). If there is no between-person variability in all level-
1 predictors (including, e.g., time), however, then f1 and f2 will retain their definitions from
the person-mean-centered decomposition, and there will be no variance attributable to v2.

Table 1 shows that a second difference between this new decomposition and the decom-
position for person-mean-centered models concerns the definition of source m. Although
in random slope MLMs the intercept variance is known to change depending on the con-
stant at which predictors are centered (e.g., Biesanz et al., 2004), Appendix D shows analyt-
ically that the proportion of variance attributable to source m does not change. However,
as indicated in Table 2, the definition of source m does change—when centering at a con-
stant (rather than centering at the person-mean), variance attributable to person-specific
outcome means via random intercept variation is now defined at the mean of all predic-
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T A B L E 3 Definitions of single-source† MLM R2 measures under person-mean versus non-person-mean
centering

Single-source†

R2 measure

Definition when
person-mean-centering all level-1
predictors

Definition when not person-mean-centering all
level-1 predictors

Total R-squared measures

R2(f1)
t Proportion of total outcome

variance attributable to level-1
predictors via the fixed
components of slopes

Proportion of total outcome variance attributable
to the within-cluster-varying portion of level-1
predictors via the fixed components of slopes

R2(f2)
t Proportion of total outcome

variance attributable to level-2
predictors via the fixed
components of slopes

Proportion of total outcome variance attributable
to the between-cluster-varying portion of
level-1 and/or level-2 predictors via the fixed
components of slopes

R2(v1)
t Proportion of total outcome

variance attributable to level-1
predictors via random slope
variation*

Proportion of total outcome variance attributable
to the within-cluster-varying portion of level-1
predictors via the random slope variation

R2(v2)
t N/A Proportion of total outcome variance attributable

to the between-cluster-varying portion of
level-1 predictorsa via random slope variation

R2(m)
t Proportion of total outcome

variance attributable to
person-specific outcome means
via random intercept variation

Proportion of total outcome variance attributable
to person-specific outcome means via random
intercept variation at mean of all predictors
with random slopes

Within-person R-squared measures

R2(f1)
w Proportion of within-person

outcome variance attributable to
level-1 predictors via fixed
components of slopes

Proportion of within-person outcome variance
explained by the within-person-varying portion
of level-1 predictors via fixed components of
slopes

R2(v1)
w Proportion of within-person

outcome variance attributable to
level-1 predictors via random
slope variation*

Proportion of within-person outcome variance
attributable to the within-person-varying
portion of level-1 predictors via random slope
variation

Between-person R-squared measures

R2(f2)
b

Proportion of between-person
outcome variance attributable to
level-2 predictors via fixed
components of slopes

Proportion of between-person outcome variance
explained by the between-person-varying
portion of level-1 and/or level-2 predictors via
fixed components of slopes

R2(v2)
b

N/A Proportion of between-person outcome variance
attributable to the between-person-varying
portion of level-1 predictorsa via random slope
variation

R2(m)
b

Proportion of between-cluster
outcome variance attributable to
person-specific outcome means
via random intercept variation

Proportion of between-person outcome variance
attributable to person-specific outcome means
via random intercept variation at the mean of
all predictors with random slopes

Note:
*= For cluster-mean centered MLMs (where there is no v2) the R

2(v1)
t can be simply referred to as R2(v)

t and the R
2(v1)
w can be simply

referred to as R
2(v1)
w (as in Rights & Sterba, 2019, 2020).

a= See Table 2 note.
†= Rights and Sterba (2019, 2020) contrasted single-source measures with combination-source measures that are simple sums

of these single-source measures, and hence quantify variance explained jointly by multiple sources. For example, R2(f )
t = R

2(f1)
t +

R
2(f2)
t , or R2(fv)

t = R
2(f1)
t + R

2(f2)
t + R

2(v1)
t + R

2(v2)
t , or R2(fvm)

t = R
2(f1)
t + R

2(f2)
t + R

2(v1)
t + R

2(v2)
t + R2(m)

t .
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tors with random slopes (Snijders & Bosker, 2012). This distinction is not necessary in the
person-mean-centered decomposition, as all level-1 predictors have a mean of 0 by defini-
tion, and thus variance attributable to source m is simply the random intercept variance.

To illustrate the implications of different types of centering for MLM R-squared mea-
sures, we re-fit the unconditional growth model in Equation (1), but instead of person-
mean-centering time, we now centered time at each of two different constant values. The
first constant value we chose was the grand mean, and hence we grand-mean6 centered
time and computed the set of single-source R-squared measures from Table 3; parameter
estimates and standard errors (SE) for this model are found in Table 1. The second constant
value we chose was the origin, and hence we centered time at the origin and re-computed
this set of R-squared measures from Table 3; parameter estimates and SEs for this model are
again found in Table 1. First we focus on comparing results between these two centering-
at-a-constant models. As expected based on statistical theory (e.g., Biesanz et al., 2004), the
only difference between the parameter estimates of these centering-at-a-constant mod-
els is in the estimated fixed component of the intercept, the intercept variance, and the
intercept-slope covariance, as the intercept has a different meaning in the two centering-
at-a-constant models. However, consistent with the derivation in Appendix D, the set of
R-squared measure results is nonetheless the same for both centering-at-a-constant mod-
els, as depicted in Figure 2.

Now we focus on comparing R-squared results between the centering-at-a-constant
models (in Figure 2) and the person-mean-centered model (in Figure 1). In this illustrative
example, recall that there was between-person variability in time scores when centering-at-
a-constant (here created by attrition, leading to 13% of the variance in time being between-
persons) but not when person-mean-centering time. Comparing Figures 1 and 2, we can
see the only difference is that the person-mean-centered model R-squared results in Fig-
ure 1 do not contain any variance attributable to f2 or v2. This is because person-mean-
centering time removes f2 and v2 as possible sources of explained variance, as time is then
made a purely within-person variable. As such, although in Figure 1 the between-person-
varying portion of time was nonexistent and thus explained 0% of total outcome variance
and 0% of between-person outcome variance, in the left-most bar in Figure 2 we see that
the between-person-varying portion of time explains 1% of the total outcome variance via
its fixed component and 2% via its random component. In the right-most bar in Figure 2
the between-person-varying portion of time also now explains 3% of the between-person
variance via its fixed component and 3% of the between-person variance via its random
component.

In practice, the amount of between-person outcome variance explained by time will
depend on how much between-person variance there is in time, that is, the degree to
which people’s mean values of time differ. Because the between-person variance in time is
not usually reported in applications, it is difficult to know what is typical of practice. See
Sterba (2014) and Mehta and West (2000) for further discussion. The within-person versus
between-person variance explained by time itself could be due to missing-at-random
attrition processes, as in our running example, or could be due to some substantively
meaningful underlying between-person differences in an unmodeled variable (e.g., con-
scientiousness) leading to differences in attrition rates. Thus, finding that time explains a
meaningful portion of between-person variance can aid researchers in considering ways

6 When centering time at a constant as we do here (rather than person-mean-centering time as done earlier) researchers implicitly
make the assumption that there is no contextual effect of time, meaning that the slope associated with within-person variability
in time is equivalent to the slope associated with between-person variability in time. If this did not hold, then the estimated slope
of time would then implicitly reflect a weighted average of the within-person and between-person slopes (see Enders & Tofighi,
2007; Rights, Preacher, & Cole, 2019).
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F I G U R E 2 Visualizing R-squared results for the unconditional linear growth model of self-efficacy that cen-
tered time at a constant (e.g., the origin or the final assessment or the grand mean) and assumed a homoscedastic,
diagonal error covariance structure (Equation 1)
Notes. See Figure 1 notes. Additionally, detailed definitions of each measure depicted in Figure 2, and subsequent
figures, were given in Table 3 column 2. As explained in the manuscript text, the R-squared results in this Figure
2 would look the same regardless of which constant was chosen for centering time (e.g. the origin vs. the final
assessment vs. the grand mean).

of explicitly accounting for such individual differences using other predictors in future
modeling (e.g., by including a main effect of conscientiousness, as well as a cross-level
interaction with time).

4 NONLINEAR FUNCTIONAL FORM OF TIME: IMPLICATIONS FOR
THE MLM R-SQUARED FRAMEWORK

Thus far our example analysis has assumed a linear relationship between self-efficacy and
time; however, it is possible for the expected rate of change in self-efficacy itself to change
over time. For instance, if the beginning of the assessment period involves a particular
time of increased independence (e.g., adolescents obtaining a driver’s license) or increased
opportunity (e.g., joining extracurricular activities at the beginning of high school) it may
be that adolescents tend to initially see large increases in self-efficacy but that self-efficacy
eventually stops increasing as rapidly.

The most common method of modeling such nonlinear changes over time is to use poly-
nomial functions of time (e.g., Bollen & Curran, 2006; Singer & Willett, 2003). For instance,
to allow for a mean quadratic relationship between self-efficacy and time whose degree
of acceleration varies across adolescents, we can add fixed and random components for
time 2 to the model. We could additionally include fixed and random components of time3

to allow for a cubic relationship, and so on. For simplicity, here will focus on a random
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quadratic model for self-efficacy:

Level 1: selfef fij = 𝛽0j + 𝛽1jtimeij + 𝛽2jtime2
ij + eij,

𝛽0j = 𝛾00 + u0j,

Level 2: 𝛽1j = 𝛾10 + u1j,

𝛽2j = 𝛾20 + u2j,

eij ∼ N(0,𝜎2),

⎡⎢⎢⎣
u0j

u1j
u2j

⎤⎥⎥⎦ ∼ MVN

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0

0

0

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
𝜏00

𝜏01 𝜏11

𝜏02 𝜏12 𝜏22

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (3)

Though the interpretation of 𝛽0j (and all components thereof) is unchanged from Equation
(1), the interpretation of the slope of time has changed. The slope of the linear component,
𝛽1j, is the person-specific expected rate of change in self-efficacy when time = 0 (with 𝛾10
reflecting the across-person average and u1j the person-specific deviation), whereas the
slope of the quadratic component, 𝛽2j, is the expected change in the rate of change in self-
efficacy for each half-unit increase in time (with 𝛾20 reflecting the across-person average
and u2j the person-specific deviation). The 𝛽1j coefficient can be thought of as the “veloc-
ity” of self-efficacy when time = 0, whereas 𝛽2j describes the “acceleration” of self-efficacy
as a function of time (for further discussion and illustrations of such quadratic patterns of
change, see Hoffman, 2015, p. 213).

A complication for R-squared computation when modeling such higher-order terms is
that, even if the time variable varies exclusively within-person (e.g., if time is person-mean-
centered), it is possible that time 2 can still vary between-person. In other words, when
time by itself only explains within-person variability, time 2 can still explain some between-
person variability (for instance, with our example self-efficacy dataset, even when person-
mean-centering time, the intraclass correlation for time 2 is nonetheless .15 (i.e., 15% of
the variability in time 2 lies at the between-person level). This is not well recognized in
the context of R-squared computation. As derived in Appendix F, this occurs in the set-
ting where there are different variances of time across persons, which arises in situations
where there are truly individually varying measurement occasions and also in situations
where persons had the same attempted measurement occasions but some persons had
missing outcomes. Consequently, in such situations, some persons have more variability
in measurement occasions than others.

Researchers modeling nonlinear terms involving any level-1 variable (e.g., time2)—
regardless of how its linear component (e.g., time) is centered—can obtain the outcome
variance decomposition for non-person-mean-centered models, in Table 2 Column 3,
and can use the set of R-squared measures for non-person-mean-centered models, in
Table 3 column 3. These measures allow researchers to quantify, for instance, how much
time 2 explains both within-person (via f1 and v1) and between-person (via f2 and v2).
The amount of between-person outcome variance that is explained by time 2 when time
itself varies solely within-person will reflect the degree to which persons have different
variability in measurement occasions (as shown mathematically in Appendix F). Such
variability in occasions may not itself be of substantive interest, and the time 2 term will
explain extremely small amounts of between-person outcome variance when all persons
have similar variability in occasions. On the other hand, if time 2 accounts for a large
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portion of between-person outcome variance, this can aid researchers in considering ways
of accounting for such between-person differences in variability in measurement occa-
sions in future modeling (e.g., considering whether treatment assignment leads to different
degrees of variability in completing assessments).

To illustrate the computation and interpretation of MLM R-squared measures for growth
models with polynomial functions of time, we fit the model in Equation (3) to our illustra-
tive self-efficacy dataset, with time centered such that 0 = baseline. Parameter estimates
and SEs are found in Table 1. We find that the estimated initial rate of change is positive
(�̂�10 = 1.60), and that the estimated rate of change slightly increases over time (�̂�20 = 0.05);
however, the latter estimate is non-significant (i.e., there is no evidence of any acceleration
or deceleration in the rate of change). The Table 3 Column 3 R-squared estimates for this
model are given in Appendix E Figure E1.7 In a later section we delve more deeply into the
interpretation and construction of differences-in-R2s (i.e., ΔR2), but for now note the fol-
lowing increments in variance explained by time 2 via its fixed and random components–
going from the random linear growth model in Figure 2 to the random quadratic growth

model in Appendix E Figure E1 we see the following increments: ΔR̂
2(f1)
t < .01, ΔR̂

2(f2)
t < .01,

ΔR̂
2(v1)
t = .01, and ΔR̂

2(v2)
t < .01. In short, these R-squared values show little to no change

when adding fixed and random components of time 2. For all further models, we will
assume a linear trend over time for parsimony, excluding time 2.

5 LEVEL-1 HETEROSCEDASTICITY: IMPLICATIONS FOR THE MLM
R-SQUARED FRAMEWORK

In our running example, we have thus far assumed that there is only a single, homoscedas-
tic, level-1 error variance, given by 𝜎2. Often times in longitudinal settings, however, one
would theoretically expect that the level-1 error variance would differ across timepoints
(i.e., have level-1 heteroscedasticity across time; Grimm & Widaman, 2010). For instance,
at the earlier stages of data collection, the adolescents in our sample might be in rela-
tively similar situations relevant to independence and self-efficacy (e.g., all having recently
started high school, living with parents, etc.), whereas in later stages they might be more
dissimilar (e.g., some having dropped out of high school, some moving out of their par-
ent’s house, some attending boarding school, etc.). If the model does not explicitly account
for these differences with the included predictors, then we might expect the level-1 error
variance to be greater at later timepoints than others. Erroneously constraining the level-
1 error variance to be constant across all timepoints would then inaccurately reflect the
actual generating process, and could manifest, for instance, as biased random slope vari-
ance and standard errors associated with the fixed effect of time (Snijders & Berkhof,
2008).

To relax the homoscedasticity constraint for 𝜎2, we can expand the model in Equation
(3) by allowing level-1 error variances to differ across time. There are two basic approaches
to doing so: (a) freely estimating the level-1 error variance for each individual timepoint,
or (b) specifying a functional form by which the level-1 error variance changes as function
of time. Though the former approach can accommodate complex patterns by which the
error variance changes, the latter approach is more parsimonious, and can more readily

7 Specifically, in Appendix E Figure E1 we see that time and time 2 together explain an estimated 9% of the total variance and 17%

of the within-person variance via f1 (R̂
2(f1)
t = .09, R̂

2(f1)
w = .17), 1% of the total variance and 3% of the between-person variance via

f2 (R̂
2(f2)
t = .01, R̂

2(f2)
b = .03), 13% of the total variance and 26% of the within-person variance via v1 (R̂

2(v1)
t = .13, R̂

2(f1)
w = .26), and

2% of the total variance and 4% of the between-person variance via v2 (R̂
2(v2)
t = .02, R̂

2(f2)
b = .04).



RIGHTS and STERBA 81

allow for individually varying timepoints (e.g., Diggle, Heagerty, Liang, & Zeger, 2002). For
our running example that has a discrete set of measurement occasions, we chose to flexibly
allow the error variances to differ across timepoints, as shown in Equation (4):

⎡⎢⎢⎢⎢⎣
e1j
e2j

⋮

e10j

⎤⎥⎥⎥⎥⎦
∼ MVN

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣

0

0

⋮

0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣
𝜎2

1

0 𝜎2
2

⋮ ⋱ ⋱

0 ⋯ 0 𝜎2
I

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠
. (4)

Here, rather than a single 𝜎2, there is now a separately estimated 𝜎2
i specific to each

timepoint i = 1…I. (For a demonstration of instead specifying the variance as a contin-
uous parametric function of time, rather than estimating a discrete set of variances, see
Appendix G.)

In the original Rights and Sterba (2019) framework, level-1 errors were assumed to be
homoscedastic. This means that previously researchers could not obtain R-squared mea-
sures from this framework when fitting an MLM with level-1 heteroscedasticity. To expand
this R-squared framework to accommodate level-1 heteroscedasticity, we show analytically
in Appendix G that the framework can accommodate heteroscedastic level-1 error variance
by replacing the 𝜎2

i term with the expected value of 𝜎2
i across all timepoints. With balanced

measurement occasions and freely estimating each time-specific variance, this resolves to
the average of the 𝜎2

i estimates across timepoints. When the level-1 error variance is instead
modeled as a continuous parametric function of time—which readily accommodates indi-
vidually varying measurement occasions—we provide formulas to compute the estimated
expected value of 𝜎2

i when 𝜎2
i follows a linear or a quadratic functional form in Appendix G

Equations (G7)–(G10).
Our running simulated self-efficacy example was generated with heteroscedastic time-

specific level-1 error variances in the population. When we added time-specific level-1
error variances, as in Equation (4), to our fitted linear self-efficacy growth model, the error
variance is indeed estimated to be smaller at the earlier timepoints, and larger at the later
timepoints (see Table 1 for parameter estimates and SEs). Appendix E Figure E2 shows that
R-squared results, however, are relatively unchanged from the prior homoscedastic linear
growth model in Equation (3) (Figure 2). It is likely, however, that under certain circum-
stances R-squared measures computed from a homoscedastic model can be biased when
level-1 heteroscedasticity exists, given that inappropriately constraining the error variance
to be homoscedastic can induce bias in random slope variances (Snijders & Berkof, 2008).

It is important to note that this R-squared framework extension to accommodate level-
1 heteroscedasticity is not designed to be used to diagnose the presence of level-1 het-
eroscedasticity because, as illustrated here, R-squared measures assuming homoscedas-
ticity versus allowing level-1 heteroscedasticity can be similar, even when level-1 het-
eroscedasticity exists in the population. Rather, the advantage of using the framework
extension presented here to accommodate level-1 heteroscedasticity is to allow MLM
parameters and their standard errors to be accurately estimated by correctly modeling the-
orized level-1 heteroscedasticity in the fitted model, without needing to fit an underspeci-
fied model simply to obtain R-squareds.

6 NON-DIAGONAL RESIDUAL COVARIANCE STRUCTURE:
IMPLICATIONS FOR THE MLM R-SQUARED FRAMEWORK

Though we extended the level-1 error covariance structure in the prior section by allowing
for heteroscedasticity, we have thus far assumed a diagonal error covariance structure in
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that only the variances (i.e., the diagonal elements of the covariance matrix of the e’s in
Equation 4) were estimated, whereas the covariances (i.e., the off-diagonal elements of the
covariance matrix of the e’s in Equation 4) were fixed at 0. This assumption is reasonable
in cross-sectional data in which there is no meaningful sequential order of observations
within persons, and may be reasonable in longitudinal contexts where measurement occa-
sions are spaced far apart in time. However, particularly in longitudinal designs in which
measurements are spaced close together in time (e.g., in ecological momentary assess-
ments or daily diary data; see Bolger & Laurenceau, 2013), it is likely that the predictors
and random effects included in the model do not perfectly capture the similarity between
observations (e.g., Bollen & Curran, 2004; Campbell & Kenny, 1999; Goldstein, Healy, &
Rasbash, 1994; Kwok et al., 2008; Singer & Willet, 2003). In the event of such autocorre-
lated errors, failing to properly account for this autocorrelation can lead to biased standard
errors for fixed coefficients as well as biased random effect variances (Ferron, Dailey, & Yi,
2002; Kwok, West, & Green, 2007; Sivo, Fan, & Witta, 2005).

Rights and Sterba’s (2019) original R-squared framework dealt exclusively with diago-
nal covariance structures, meaning there was no autocorrelation. As we prove in Appendix
H, the mathematical computation of the original framework’s R-squared measures (i.e.,
the specific set of formulae used) is unaffected by the inclusion of any kind of autocor-
relation (e.g., unstructured, Toeplitz, compound symmetric, or first-order autoregressive
error covariance structures, to name a few; see Wolfinger (1993) or Diggle (1990) for a
more extensive review of possibilities).8 However, given that ignoring autocorrelation in
the level-1 errors when fitting MLMs can lead to biased random effect variances, R-squared
measures obtained from a model that fails to properly include autocorrelation can similarly
be distorted.

To illustrate, we revisit our running simulated example which was generated with auto-
correlation in the population; specifically, it was generated with a first-order autoregressive
structure, which is commonly employed in developmental applications of growth models
(e.g., Curran & Bollen, 2001; Goldstein et al., 1994). Here, error covariance between two

timepoints a and b is given as
√
𝜎2

a𝜎
2
b
𝜌|a−b|. This yields an error correlation between adja-

cent timepoints of 𝜌, and a weaker correlation for timepoints separated by more than one
unit of time. This first-order autoregressive error covariance structure (with heteroscedas-
tic variances) is given as:

⎡⎢⎢⎢⎢⎣
e1j

e2j

⋮

eIj

⎤⎥⎥⎥⎥⎦
∼ MVN

⎛⎜⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
0

0

⋮

0

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

𝜎2
1√

𝜎2
1𝜎

2
2𝜌 𝜎2

2

⋮ ⋱ ⋱√
𝜎2

1𝜎
2
I 𝜌 ⋯

√
𝜎2

I−1𝜎
2
I 𝜌 𝜎2

I

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
. (5)

We specified this heteroscedastic first-order autoregressive error covariance structure
in Equation (5) when fitting our linear self-efficacy growth model and computed the R-
squared results. From the parameter estimates in Table 1, we see that the 𝜌 parameter
is estimated to be .31, indicating a modest correlation between subsequent timepoints.
From the R-squared results shown in Appendix E Figure E3, of note is that the proportion
of variance attributable to v and m decreased vis-a-vis the previous model that ignored

8 This proof also applies to many other such measures that utilize the estimated level-1 error variance in their computation (e.g.,
Hox, 2010; Johnson, 2014; Kreft & de Leeuw, 1998; Nakagawa & Schielzeth, 2013; Raudenbush & Bryk, 2002; Snijders & Bosker,
2012). Thus, in the current paper, we supply a novel proof that the formulas of these pre-existing measures additionally hold
under autocorrelation.
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the autocorrelation, that is, Appendix E Figure E2 (in which ΔR̂
2(v1)
t = −.04, ΔR̂

2(v2)
t = −.01,

andΔR̂
2(m)
t = −.05—indicating that, cumulatively, v and m accounted for 10% less outcome

variance in the properly specified model). Hence, a researcher who ignored autocorrelated
errors by erroneously fitting a diagonal error covariance structure would obtain a mislead-
ingly large estimate of the degree of between-adolescent differences in terms of growth tra-
jectories and mean levels of self-efficacy. This finding is consistent with the prior findings
that failing to appropriately model autocorrelated errors can yield inflated estimates of ran-
dom effect variances, as the random effects in the underspecified model help to account
for covariances among repeated measures that are actually due to omitted autocorrelations
(e.g., Ferron et al., 2002; Kwok et al., 2007; Sivo et al.,2005).

7 ADDING TIME-VARYING COVARIATES (LEVEL-1 PREDICTORS
OTHER THAN TIME) AND TIME-INVARIANT COVARIATES (LEVEL-2
PREDICTORS): ILLUSTRATION OF MLM R-SQUARED DIFFERENCES

Usually, once the centering location for time has been chosen, the functional form of time
has been identified, and the level-1 and level-2 covariance structure of the unconditional
growth model have been determined, substantive interest turns to the potential impact
of additional predictors, rather than just change over time. For instance, when examining
self-efficacy over time, a researcher can consider level-1 predictors other than time, that
is, time-varying covariates (e.g., “do adolescents have higher levels of self-efficacy at time
i when they are actively volunteering versus when they are not actively volunteering at
that timepoint?”), as well as level-2 predictors, that is, time-invariant covariates (e.g., “do
adolescents with higher GPA tend to have higher levels of self-efficacy than adolescents
with lower GPA?”). Additionally, researchers can examine how change over time may differ
across levels of certain predictors by allowing cross-level interactions with time (e.g., “do
female adolescents have a higher rate of change in self-efficacy than male adolescents?”).

In so doing, beyond considering a set of overall model R-squareds for the researcher’s
final (full) MLM, the researcher can also compute R-squared differences (ΔR2) between
models to quantify the effect size associated with individual term(s). To explain, we denote
the difference in a generic single-source R-squared measure between models as R2

mod B
−

R2
mod A

= ΔR2, wherein R2
mod B

is obtained from the more complex model that contains

the added term(s) of interest, and R2
mod A

is obtained from the model that excludes these
particular term(s).

Importantly, the impact of each kind of term added to the Model A MLM to form the
Model B MLM can be detected by a particular single-source ΔR2 measure (Rights & Sterba,

2020). For instance, the single-source R-squared difference measure ΔR2(f1)
t is suited to

detect the overall contribution of a person-mean-centered level-1 predictor via its fixed

component (source f1), whereas ΔR2(f1)
w is suited to detect the level-specific contribution of

that person-mean-centered level-1 predictor via its fixed component (source f1). Using the
wrong single-source ΔR2 to assess the impact of an added term can lead the researcher to
erroneously conclude that there is no contribution of that predictor, when that predictor
may indeed have an impact, just via a different source (Rights & Sterba, 2020). Rights
and Sterba (2020) also showed that using combination-source ΔR2 measures to assess
the impact of an added term can also be problematic because the added term can have
opposite effects on different sources that cancel out when combined, thus preventing
the researcher from realizing that there was any impact of the predictor whatsoever. As
such, we recommend that single-source, not combination-source, ΔR2 be computed and
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T A B L E 4 Which target single-source ΔR2 can be used to quantify the impact of individual term(s) added to
the MLM during model building?

When using R2 measures that assume
person-mean-centering:

When using R2 measures that do not
assume person-mean-centering:

The term added to
the MLM whose
unique
contribution is to
be detected is a…

To detect the
overall impact of
the term, use this
single-source ΔR2

measure

To detect the
level-specific impact
of the term, use this
single-source ΔR2

measure

To detect the
overall impact of
the term, use this
single-source ΔR2

measure

To detect the
level-specific impact
of the term, use this
single-source ΔR2

measure

…fixed component
of a level-1
predictor’s slope
(including a
level-1 × level-1
or level-1 ×
level-2 predictor
product term’s
slope)

ΔR2(f1)
t ΔR2(f1)

w ΔR2(f1)
t

(also ΔR2(f2)
t if

level-1 predictor
has between-
person variance*)

ΔR2(f1)
w

(also ΔR2(f2)
b

if level-1
predictor has
between-person
variance*)

… level-2
predictor’s slope
(including a
level-2 × level-2
predictor
product term’s
slope)

ΔR2(f2)
t ΔR2(f2)

b
ΔR2(f2)

t ΔR2(f2)
b

…random
component of a
level-1
predictor’s slope

ΔR2(v1)
t ΔR2(v1)

w ΔR2(v1)
t

(also ΔR2(v2)
t if

level-1 predictor
has between-
person variance*)

ΔR2(v1)
w

(also ΔR2(v2)
b

if level-1
predictor has
between-person
variance*)

Notes: For person-mean-centered MLMs (where there is no v2) the v1 can simply be referred to as v (as in Rights & Sterba, 2019,
2020).
*This level-1 predictor could be a higher-order polynomial term (e.g., quadratic or cubic term or a product term involving multiple
level-1 predictors). Higher-order polynomial terms associated with level-1 predictors (e.g., x2

ij) as well as product terms involving

multiple level-1 predictors (e.g., xij × timeij) can have between-cluster variance, even when their constituent level-1 predictors
(xij and timeij) are themselves cluster-mean-centered (see our derivation in Appendix F), and in this event the procedures in the
fourth and fifth columns of Table 4 can be followed.

examined to detect the impact of added terms. For didactic purposes, Table 4 (first column)
lists each possible kind of term that can be added to the Model A MLM to form the Model
B MLM; remaining columns list which target single-source ΔR2 measure should be used to
detect the (overall or level-specific) impact of that added term. More specifically, contents
of the second and third columns of Table 4 pertain to person-mean-centered models and
are reviewed from Rights and Sterba (2020). Contents of the fourth and fifth columns of
Table 4 pertain to non-person-mean-centered models and are a novel contribution of the
present paper.

Next we illustrate the use of Table 4 by assessing the unique contribution of two time-
varying covariates and two time-invariant covariates, as well as a cross-level interaction
of a time-invariant-covariate and time, for our running self-efficacy example. Following
widespread recommendations, we person-mean-centered our time-varying covariates to
avoid conflation of level-specific effects (Enders & Tofighi, 2007; Raudenbush & Bryk,
2002; Rights, Preacher, & Cole, 2019); these included person-mean-centered grade-point-
average (GPA, i.e., an adolescent’s GPA at a given timepoint relative to their average GPA)
and person-mean-centered time spent volunteering in the community (volunteer, i.e., an
adolescent’s community service involvement at the time of assessment relative to their
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average number of hours of community service each week). For the time-invariant covari-
ates, we included person-mean GPA, person-mean volunteer, and female (a dichotomous
variable in which 1 indicates female and 0 indicates male). Including both the within-
person and between-person components of GPA and volunteer allows us to separately
assess potential within-person and between-person effects (e.g., Curran & Bauer, 2011).
The cross-level interaction term is female × time, which allows the growth rate in self-
efficacy to differ between females and males. These predictors are each added to our self-
efficacy unconditional linear growth model with heteroscedastic first-order autoregressive
errors, and with time centered at the origin, to form the full model of interest:

Level 1: selfeffij = 𝛽0j + 𝛽1jtimeij + 𝛽2j
(

gpaij − gpa·j
)
+ 𝛽3j

(
volunteerij − volunteer·j

)
+ eij,

Level2: 𝛽0j = 𝛾00 + 𝛾01genderj + 𝛾02gpa
·j + 𝛾03volunteer·j + u0j,

𝛽1j = 𝛾10 + 𝛾11genderj + u1j,

𝛽2j = 𝛾20 + u2j,

𝛽3j = 𝛾30 + u3j (6)

where:

⎡⎢⎢⎢⎣
u0j

u1j

u2j

⎤⎥⎥⎥⎦ ∼ MVN

⎛⎜⎜⎜⎝
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0
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𝜏00
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and

⎡⎢⎢⎢⎢⎣
e1j

e2j

⋮

eIj

⎤⎥⎥⎥⎥⎦
∼ MVN
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0

0

⋮

0
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𝜎2
1√

𝜎2
1𝜎

2
2𝜌 𝜎2

2

⋮ ⋱ ⋱√
𝜎2

1𝜎
2
I 𝜌 ⋯

√
𝜎2

I−1𝜎
2
I 𝜌 𝜎2

I

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
.

Parameter estimates and SE results for the Equation (6) model are found in Table 1.
Here we see that each predictor has a positive and significant association with self-efficacy.
While these raw coefficients are informative, it is difficult to quantify and compare their
associated effect sizes, as coefficients are on differing metrics and we cannot tell how much
variance each term uniquely contributes. We hence supplement these results using R-
squared difference measures from Table 4 Columns 4–5 (rather than Columns 2–3 because
time was not person-mean-centered). Here we compute increments in variance for (i.e.,
ΔR2) using a simultaneous model-building approach.9 For simplicity of presentation, we

9 In defining the unique proportion of variance accounted for by a particular added term, Rights and Sterba (2020) distinguish
between a hierarchical model-building approach (wherein the proportion of variance contributed by each newly added term is
defined controlling for previously added terms, but not subsequently added terms) versus a simultaneous approach (wherein the
proportion of variance contributed by an added term controls for all other terms in the full model). Under a hierarchical approach,
one starts with a baseline model (e.g., an unconditional growth model) and adds terms sequentially until forming the full MLM
of interest, computing single-source R-squared differences associated with each added term at each step. Under a simultaneous
approach, one compares the full MLM of interest to a set of MLMs, each of which excludes a term, and the researcher computes
single-source R-squared differences to quantify the proportion of variance uniquely attributable to each excluded single term, in
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F I G U R E 3 Visualizing R-squared results for the conditional linear growth model of self-efficacy that cen-
tered time at a constant and specified a heteroscedastic, first-order autoregressive covariance structure and
included time-varying and time-invariant predictors (Equation 6)
Notes. See Figure 1 and 2 notes.

focus interpretation total ΔR2 results here, but report corresponding level-specific ΔR2s in
footnotes.

We first estimate the proportion of variance uniquely explained by GPA. Note that
this involves three separate model terms each having a different source of explained
variance—the fixed component of person-mean-centered GPA, the random component
of person-mean-centered GPA, and the fixed component of person-mean GPA. We will
thus compare the full model in Equation (6) (whose R-squared results were provided in
Figure 3) to a model that removes these three components (given in Appendix I Equation
I1) and we quantify the proportion of total variance uniquely explained by these terms

with, ΔR2(f1)
t , ΔR2(f2)

t , and ΔR2(v1)
t , respectively. We estimate that GPA explains more vari-

ance via its within-person fixed component than via its between-person fixed component,

as ΔR̂
2(f1)
t = .06 and ΔR̂

2(f2)
t < .01. This implies a stronger impact of current grades at a

given assessment, relative to an adolescent’s own typical grades, with adolescents hav-
ing meaningfully more self-efficacy when doing well relative to their own average, and
less self-efficacy when doing worse relative to their average. We additionally find that
the within-person varying portion of GPA does not contribute a meaningful amount of

outcome variance via random slopes, as ΔR̂
2(v1)
t < .01.10

turn (see Rights & Sterba, 2020 for more details). Additionally, rather than adding/removing only a single term at a time, unique
term-specific contributions can also be identified when multiple terms are added at a given step (under a hierarchical approach),
or multiple terms are removed from the full model (under the simultaneous approach), so long as these multiple terms each
reflect different sources of explained variance (which we illustrate for GPA and volunteer in our example).
10 For these three terms, total measures were reported in the manuscript text and level-specific measures are provided here:

ΔR̂
2(f1)
w = .12, ΔR̂

2(v1)
w < .01, ΔR̂

2(f2)
b < .01.
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We will next repeat this procedure for volunteer hours by comparing the full model in
Equation (6) to a model that removes the fixed component of person-mean-centered vol-
unteer hours, the random component of person-mean-centered volunteer hours, and the
fixed component of person-mean volunteer hours (given in Appendix I Equation I2). We
find largely the opposite pattern than what we found for GPA—more variance is explained

by volunteerism via its between-person fixed component (ΔR̂
2(f2)
t = .19) than its within-

person fixed component (ΔR2(f1)
t = 0.01). This suggests that adolescents who over time tend

to volunteer more have meaningfully higher levels of self-efficacy than those who rarely
volunteer, but that the relative amount of volunteering at a given assessment explains
little of the variance. Another pattern we find here that differs from GPA, is that volun-
teerism accounts for a non-zero proportion of variance in self-efficacy via its random slope,

quantified as ΔR̂
2(v1)
t = .03;11 this highlights the possibility for future modeling to consider

including cross-level interactions to account for such random slope variation (see Agui-
nis & Culpepper, 2015; Rights & Sterba, 2019). As an example, it could be that adolescents
higher in altruism have a more positive association of volunteering and self-efficacy than
adolescents who are less altruistic.

Lastly, we can compute an effect size associated with the interaction of time and female
by estimating the proportion of total variation explained by their product term via its fixed
component. We compare the full model in Equation (6) to a reduced model that excludes
this product term, given in Appendix I Equation (I3). Because this product term involves
a non-cluster-mean-centered level-1 predictor (time) and a level-2 predictor (female), this
product term can vary both within-cluster and between-cluster. As such, in accordance

with Table 4, we need to examine bothΔR2(f1)
t andΔR2(f2)

t ; we see that this term cumulatively

explains an estimated 8% of the total outcome variance (ΔR̂
2(f1)
t = .03 and ΔR̂

2(f2)
t = .05),

providing an indication of the importance of considering gender-specific differences in
trajectories.12

8 DISCUSSION

8.1 Summary

Developmental researchers often fit longitudinal growth models to examine change over
time in children and adolescents’ behaviors, symptoms, or abilities. For such multilevel
analyses of repeated measures data, however, developmental researchers have received
limited methodological guidance on employing and interpreting effect size metrics such
as R-squared measures. Though a recently developed framework of MLM R-squared com-
putation (Rights & Sterba, 2019, 2020) integrated, analytically related, and filled gaps in
previously published MLM R-squareds to provide a coherent approach for reporting, visu-
alizing, and interpreting these measures, it concentrated on cross-sectional applications
that used cluster-mean-centering. The current paper extended the Rights and Sterba (2019,
2020) original framework to longitudinal contexts by (a) clarifying how the interpretation
and computation of R-squared (R2) and R-squared difference (ΔR2) measures are mod-
ified to accommodate alternative centering strategies common in longitudinal applica-
tions (e.g., centering-at-a-constant such as the origin), and (b) clarifying what measures

11 For these three terms, total measures were reported in the manuscript text and level-specific measures are provided here:

ΔR̂
2(f1)
w < .01,ΔR̂

2(v1)
w = .05, ΔR̂

2(f2)
b = .43.

12 For this term, total measures were reported in the manuscript text and level-specific measures are provided here: ΔR̂
2(f1)
w = .06

and ΔR̂
2(f2)
b = .09.
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to use when incorporating: nonlinear effects (e.g., of time), level-1 heteroscedasticity, and
autocorrelation of level-1 errors. We illustrated the application of this extended R-squared
framework in a running illustrative growth model that described and predicted change over
time in adolescent self-efficacy.

8.2 Software implementation

To aid researchers in implementing this expanded R-squared framework in practice, we
have a provided an R function, r2MLMlong. In Appendix I, we provide the code for this
function, as well as example input and a description of all of the function arguments. This
function expands upon the original r2MLM function (Rights & Sterba, 2019)13 by (a) allow-
ing researchers to specify either homoscedastic or heteroscedastic level-1 residual variance
and (b) providing a full decomposition of variance and full set of R-squared measures for
both person-mean-centered and non-person-mean-centered models (as shown in Tables 3
and 4).

8.3 Future directions

Some limitations of the current work serve as future research directions. Here we restricted
focus to models that are “linear in the parameters,” meaning that the expected value of the
outcome is a simple sum of coefficients weighted by predictors—which still allows for the
possibility for the predictors to be polynomial (e.g., quadratic or cubic) functions of time,
as discussed earlier. Longitudinal researchers sometimes wish to employ more complex
functional forms where the coefficients do not necessarily enter the model linearly. Exam-
ples include exponential, logarithmic, or power functions (see Cudeck & Harring, 2007, for
a review). Similarly, researchers may also wish to model the error variance using one of
these such intrinsically nonlinear functions (e.g., Browne & Du Toit, 1991). Though empir-
ical applications of such intrinsically nonlinear functions are much rarer than the polyno-
mial growth models discussed in this paper (Grimm, Ram, & Hamagami, 2011), future work
can expand the current framework for models that are nonlinear in the parameters.

Second, here we focused on growth models fit in an MLM framework. However, it is
widely appreciated that growth models specified as MLMs can alternatively be fit within a
structural equation modeling (SEM) framework (e.g., Bauer, 2003; Curran, 2003). The mod-
els discussed in this paper could be fit via SEM, and our provided software could be used
to compute R-squared measures (although the dataset itself would need to be converted
from wide format—to fit the SEM—to long format—to use our function).

Last, in the current work, we did not specify effect size benchmarks for what constitutes
a “small,” “medium,” or “large” contribution of variance for a particular kind of term in the
MLM via a particular source. Though such rules of thumb are often employed in single-
level regression analyses (e.g., Cohen, 1988), benchmarks have neither been proposed nor
systematically evaluated for R-squared measures in longitudinal or cross-sectional multi-
level contexts. For the latter contexts, reporting a common framework of MLM R-squared
measures needs to become routine in applied practice before subfields can amass substan-
tive grounding to inform rence points for these measures (see Schafer & Schwarz, 2019).

13 Shaw, Rights, Sterba, and Flake (2020) recently provided an R package in which users can obtain R-squared measures from
Rights & Sterba’s (2019) original framework by directly entering fit objects obtained from the MLM model-fitting packages lme4
(Bates, Maechler, Bolker, & Walker, 2014) or nlme (Pinheiro et al., 2020); a future direction is to incorporate the r2MLMlong func-
tion into this package. The current provided r2MLMlong function offers the flexibility of obtaining estimates via any MLM soft-
ware.



RIGHTS and STERBA 89

8.4 Conclusions

Though longitudinal growth models have proven to be an invaluable and popular analytic
tool for developmental researchers, there has been little guidance provided on how to con-
struct and interpret MLM R-squareds for these models. This stands at odds with the current
widespread recommendations to consider effect size, rather than relying on the exclusive
reporting of statistical significance, when reporting MLM results (e.g., APA, 2009; Hoffman,
2015; Kwok et al., 2008; Lorah, 2018; Nezlek, 2012). This paper fills this gap by providing a
framework by which researchers can compute, visualize, compare, and interpret R-squared
measures for longitudinal MLMs. In so doing, we delineated how the various model spec-
ification decisions faced by longitudinal researchers have important implications for R-
squared measures.
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A P P E N D I X A : R E V I E W F R O M R I G H T S A N D S T E R B A ( 2 0 1 9 ) O F
D E F I N I T I O N S O F R - S Q U A R E D M E A S U R E S A N D
C O R R E S P O N D I N G F O R M U L A S , A S S U M I N G
P E R S O N - M E A N - C E N T E R I N G
Here we briefly review the Rights and Sterba (2019) decomposition of model-implied out-
come variance for cluster-mean-centered models, framing this decomposition in terms of
longitudinal models wherein observations are nested within persons (and hence clusters
= persons). We will show how this decomposition is used to form each R-squared measure.
Importantly, this decomposition here assumes that the level-1 errors are homoscedastic
and have no autocorrelation—assumptions we later relax in the current paper.

First note that a two-level person-mean-centered model can be expressed generally as

yij = x′
w
ij 𝛄

w + x′
b
j 𝛄

b + w′
ijuj + eij,

uj ∼ MVN(0, T),

eij ∼ N(0,𝜎2),

(A1)

where xw
ij denotes a vector of all level-1 predictors (each person-mean-centered), 𝛄w a

vector of fixed components of slopes corresponding to elements in xw
ij , xb

j a vector of 1 and

https://doi.org/10.1002/cad.20387


92 RIGHTS and STERBA

all level-2 predictors, 𝛄b a vector of fixed components of slopes corresponding to elements
in xb

j , wij a vector with the first element equal to 1 and all subsequent elements being pre-

dictors with random slopes, uj a vector of random effect errors (with covariance matrix
T) corresponding to the elements in wij, and eij the level-1 error. The level-1 errors are
presently assumed uncorrelated with homoscedastic variance 𝜎2. The model-implied vari-
ance for the person-mean-centered model expression, derived in Rights and Sterba (2019),
is then given as

var
(

yij
)
= var

(
x′

w
ij 𝛄

w + x′
b
j 𝛄

b + w′
ijuj + eij

)
= 𝛄w′

𝚽
w
𝛄w + 𝛄b′𝚽

b
𝛄b + tr (T𝚺) + 𝜏00 + 𝜎2, (A2)

where 𝚽
w, 𝚽b, and 𝚺 denote covariance matrices of elements of xw

ij , xb
j , and w′

ij, respec-

tively, and 𝜏00 denotes the random intercept variance. The five separate terms in Equa-
tion (A2) each denote variance attributable to a distinct source: 𝛄w′

𝚽
w
𝛄w denotes vari-

ance attributable to level-1 predictors via fixed components of slopes, 𝛄b′𝚽
b
𝛄b vari-

ance attributable to level-2 predictors via fixed components of slopes, tr(T𝚺) variance
attributable to level-1 predictors via random slope variance, 𝜏00 variance attributable
to cluster-specific outcome means via random intercept variation, and 𝜎2 variance
attributable to level-1 errors. Three of these variances (𝛄w′

𝚽
w
𝛄w, tr(T𝚺), and 𝜎2) reflect

purely within-person variation, whereas the other two (𝛄b′𝚽
b
𝛄b and 𝜏00) reflect purely

between-person variation.
From this decomposition, we can compute the total single-source R-squared measures,

quantifying total variance explained by one source at a time, for person-mean-centered
models (defined in Table 3 Column 2) as:

R
2(f1)
t =

𝛄w′
𝚽

w
𝛄w

𝛄w′
𝚽

w
𝛄w + 𝛄b′𝚽

b
𝛄b + tr (T𝚺) + 𝜏00 + 𝜎2

,

R
2(f2)
t =

𝛄b′𝚽
b
𝛄b

𝛄w′
𝚽

w
𝛄w + 𝛄b′𝚽

b
𝛄b + tr (T𝚺) + 𝜏00 + 𝜎2

,

R2(v)
t =

tr (T𝚺)

𝛄w′
𝚽

w
𝛄w + 𝛄b′𝚽

b
𝛄b + tr (T𝚺) + 𝜏00 + 𝜎2

,

R2(m)
t =

𝜏00

𝛄w′
𝚽

w
𝛄w + 𝛄b′𝚽

b
𝛄b + tr (T𝚺) + 𝜏00 + 𝜎2

. (A3)

The total combination-source R-squared measures, quantifying total variance explained
by multiple sources together, are then just combinations of these equations, for instance:

R2(f )
t = R2(f1)

t + R2(f2)
t ,R2(fv)

t = R2(f1)
t + R2(f2)

t + R2(v)
t , and R2(fvm)

t = R2(f1)
t + R2(f2)

t + R2(v)
t + R2(m)

t .
The single-source within-person measures for person-mean-centered models are then
given as

R
2(f1)
w =

𝛄w′
𝚽

w
𝛄w

𝛄w′
𝚽

w
𝛄w + tr (T𝚺) + 𝜎2

,

R2(v)
w =

tr (T𝚺)

𝛄w′
𝚽

w
𝛄w + tr (T𝚺) + 𝜎2

. (A4)
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A combination-source within-person measure is given as R2(f1v)
w = R2(f1)

w + R2(v)
w . The single-

source between-person measures for person-mean-centered models are likewise:

R
2(f2)
b

=
𝛄b′𝚽

b
𝛄b

𝛄b′𝚽
b
𝛄b + 𝜏00

,

R2(m)
b

=
𝜏00

𝛄b′𝚽
b
𝛄b + 𝜏00

.

A P P E N D I X B : N E W E X T E N S I O N : F U L L D E C O M P O S I T I O N O F
O U T C O M E V A R I A N C E F O R NON- P E R S O N - M E A N - C E N T E R E D
M O D E L S
In Appendix B, we derive a complete model-implied variance decomposition for non-
person-mean-centered models (i.e., models involving uncentered level-1 predictors or
involving centering level-1 predictors at a constant value such as the first assessment value
or the grand mean). Here we show how this variance is a sum of variances attributable to
each of the following distinct sources:

∙ the within-person-varying portion of level-1 predictors via fixed components of slopes
(f1);

∙ the between-person-varying portion of level-1 and/or level-2 predictors via fixed com-
ponents of slopes (f2);

∙ the within-person-varying portion of level-1 predictors via random slope variation (v1);
∙ the between-person-varying portion of level-1 predictors via random slope variation

(v2);
∙ person-specific outcome means via random intercept variation at the mean of all pre-

dictors with random slopes (m);
∙ level-1 errors.

From this decomposition, we show how each of the R-squared measures described in
Table 3 Column 3 are computed. Rights and Sterba (2019) had provided a more limited
decomposition for non-person-mean-centered models which did not break down f into f1
(reflecting purely within-cluster variance) and f2 (reflecting purely between-cluster vari-
ance), and did not break down v into v1 and v2.

An expression for a two-level multilevel model without assuming person-mean-
centering is:

yij = x′ij𝛄 + w′
ijuj + eij,

uj ∼ MVN (0, T) ,

eij ∼ N
(

0,𝜎2
)
. (B1)

Here, yij denotes the outcome for observation i nested within cluster j, xij a vector with
the first element equal to 1 and all subsequent elements being predictors for observation
i within person j, 𝛄 a vector of fixed components of coefficients corresponding to the ele-
ments in xij, wij a vector with the first element equal to 1 and all subsequent elements
being predictors with random slopes, uj a vector of random effect errors (with covariance
matrix T) corresponding to the elements in wij, and eij the level-1 error. The level-1 error
covariance matrix is presently assumed diagonal with homoscedastic variance 𝜎2.
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First note that we can decompose every predictor into a purely within-person-varying
portion and a purely between-person-varying portion by using the following substitutions:

xij = (xij − x·j) + x·j,

wij = (wij − w·j) + w·j.
(B2)

Here, x·j and w·j denote vectors of person means of each element of xij and wij, respectively.
Hence, (xij − x·j) reflects a vector of variables that are deviations from the person-specific
means, and is thus the portion of xij that varies exclusively within-person (since Ei|j[xij −

x·j] = 0 for all clusters, and hence varj[xij − x·j] = 0). Similarly, (wij − w·j) is the portion of wij
that varies exclusively within-person. The parts of xij and wij that vary exclusively between-
person then are x·j and w·j, respectively (since x·j and w·j are vectors of constants for each
cluster, i.e., vari|j[x·j] = vari|j[w·j] = 0).

We can then re-write the model expression in Equation (A1) as

yij = x′ij𝛄 + w′
ijuj + eij

=
(

xij − x·j + x·j
)′
𝛄 +

(
wij − w·j + w·j

)′
uj + eij

=
(

xij − x·j
)′
𝛄 + x′·j𝛄 +

(
wij − w·j

)′
uj + w′

·juj + eij. (B3)

We can then compute the model-implied variance as

var
(

yij
)
= var

((
xij − x·j

)′
𝛄 + x′

·j𝛄 +
(

wij − w·j
)′

uj + w′
·juj + eij

)
= var

((
xij − x·j

)′
𝛄
)
+ var

(
x′
·j𝛄

)
+ var

((
wij − w·j

)′
uj

)
+ var

(
w′
·juj

)
+ var

(
eij
)
.

(B4)

The five variances in the second line of Equation (B4) are separable because of the lack of
covariance between the following pairs: the fixed components and random components,
the purely within-cluster-varying portion of predictors and the purely between-cluster-
varying portion, and the level-1 errors and all other terms. The first part of Equation (B4) is
computed as

var
((

xij − x·j
)′
𝛄
)
= 𝛄′𝚽w𝛄, (B5)

where 𝚽w is the covariance matrix of the within-cluster-varying portions of xij. The second
part of Equation (B4) is computed as

var
(

x′
·j𝛄

)
= 𝛄′𝚽b𝛄, (B6)

where 𝚽b is the covariance matrix of the between-cluster-varying portions of xij. The third
part of Equation (B4) is computed using the law of total variance as

var
((

wij − w·j
)′

uj

)
= E

[
var

((
wij − w·j

)′
uj|uj

)]
+ var

(
E
[(

wij − w·j
)′

uj|uj

])



RIGHTS and STERBA 95

= E
[

u′
j𝚺wuj

]
+ var

(
E
[(

wij − w·j
)′]

uj

)
= E

[
tr
(

u′
j𝚺wuj

)]
+ var (0)

= E
[

tr
(

uju
′
j𝚺w

)]
= tr

(
E
[

uju
′
j

]
𝚺w

)
= tr

(
T𝚺w

)
, (B7)

where 𝚺w is the covariance matrix of the within-cluster-varying portions of wij. The fourth
part of Equation (B4) is computed, again using the law of total variance, as

var
((

wj
)′

uj

)
= E

[
var

(
w′
·juj|uj

)]
+ var

(
E
[

w′
·juj|uj

])
= E

[
u′

j𝚺buj

]
+ var

(
E
[

w′
·j

]
uj

)
= E

[
tr
(

u′
j𝚺buj

)]
+ var

(
mbuj

)
= E

[
tr
(

uju′
j𝚺b

)]
+ m′

b
var

(
uj
)

mb

= tr
(

E
[

uju
′
j

]
𝚺b

)
+ m′

b
Tmb

= tr
(

T𝚺b
)
+ m′

b
Tmb, (B8)

where 𝚺b is the covariance matrix of the between-cluster-varying portions of wij and mb is
a vector containing the means of all elements of wij. The fifth part of Equation (B4) is then
simply

var
(

eij
)
= 𝜎2. (B9)

Thus, the total model-implied outcome variance is

var
(

yij
)
= 𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr

(
T𝚺w

)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2. (B10)

These six distinct variances in Equation (B10) denote the variance attributed, in order, to
each source listed in bullet points at the beginning of the Appendix B section. (Later, in
Appendix G, we show how this expression is modified for heteroscedastic models by replac-
ing 𝜎2 with E[𝜎2].)

A P P E N D I X C : N E W E X T E N S I O N : F U L L S E T O F D E F I N I T I O N S
O F R - S Q U A R E D M E A S U R E S A N D C O R R E S P O N D I N G F O R M U L A S
U N D E R NON- P E R S O N - M E A N - C E N T E R I N G
From the decomposition of outcome variance provided in Appendix B, we can compute
the total single-source R-squared measures for non-person-mean-centered models (i.e.,
models involving uncentered level-1 predictors or involving centering level-1 predictors at
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a constant value such as the first assessment value or the grand mean) as

R
2(f1)
t =

𝛄′𝚽w𝛄

𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr
(

T𝚺w
)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2

,

R
2(f2)
t =

𝛄′𝚽b𝛄

𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr
(

T𝚺w
)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2

,

R
2(v1)
t =

tr
(

T𝚺w
)

𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr
(

T𝚺w
)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2

,

R
2(v2)
t =

tr
(

T𝚺b
)

𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr
(

T𝚺w
)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2

,

R2(m)
t =

m′Tm

𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr
(

T𝚺w
)
+ tr

(
T𝚺b

)
+ m′Tm + 𝜎2

. (C1)

Example combination-source total R-squared measures that could be constructed

are: R2(f )
t = R2(f1)

t + R2(f2)
t , R2(fv)

t = R2(f1)
t + R2(f2)

t + R2(v1)
t + R2(v2)

t , and R2(fvm)
t = R2(f1)

t + R2(f2)
t +

R2(v1)
t + R2(v2)

t + R2(m)
t .

The single-source within-person measures are then

R2(f1)
w =

𝛄′𝚽w𝛄

𝛄′𝚽w𝛄 + tr(T𝚺w) + 𝜎2
,

R2(v1)
w =

tr(T𝚺w)

𝛄′𝚽w𝛄 + tr(T𝚺w) + 𝜎2
.

(C2)

Summing these yields a combination-source within-person measure: R2(f1v1)
w = R2(f1)

w +

R2(v1)
w .
The single-source between-person measures are:

R2(f2)
b

=
𝛄′𝚽b𝛄

𝛄′𝚽b𝛄 + tr(T𝚺b) + m′Tm
,

R2(v2)
b

=
tr(T𝚺b)

𝛄′𝚽b𝛄 + tr(T𝚺b) + m′Tm

R2(v2)
b

=
m′Tm

𝛄′𝚽b𝛄 + tr(T𝚺b) + m′Tm
.

, (C3)

Summing these yields a combination-source between-person measure: R2(f2v2)
b

= R2(f2)
b

+

R2(v2)
b

.
Previous work (Rights & Sterba, 2019) had provided a more limited set of measures for

non-person-mean-centered models compared to those given above (i.e., previous work
only provided total measures, not level-specific measures, for non-person-mean-centered
models).



RIGHTS and STERBA 97

A P P E N D I X D : P R O O F T H A T T H E P R O P O R T I O N O F V A R I A N C E
A T T R I B U T A B L E T O S O U R C E m, D E F I N E D I N T A B L E 2 , D O E S
N O T C H A N G E W H E N C E N T E R I N G P R E D I C T O R S B Y A
C O N S T A N T , R E G A R D L E S S O F T H E C H O S E N C E N T E R I N G
C O N S T A N T ’ S V A L U E
In Appendix D, we show that, in the population, the following are invariant to centering
predictors by a constant value: the proportion of total variance attributable to predic-
tors via fixed components of slopes, the proportion of total variance attributable to pre-
dictors via random slope variation, and the proportion of variance attributable to source
m (defined separately for cluster-mean-centered and non-cluster-mean-centered in
Table 2).

We start with the unconditional linear growth model defined in Equation (1), written
here in reduced form:

yij = 𝛾00 + u0j + 𝛾10xij + u1jxij + eij,[
u0j

u1j

]
∼ MVN

([
0

0

]
,
[
𝜏00

𝜏01 𝜏11

])
,

eij ∼ N
(

0,𝜎2
)
.

(D1)

For generality, we denote y as the outcome (e.g., self-efficacy) and x as the level-1 predictor
(e.g., time). We will compare this to a model that centers x by an arbitrary constant, a. We
will show that the aforementioned proportions will always be the same as those obtained
from the uncentered model, regardless of the value of a. The centered-by-a model is thus
given as

yij = 𝛾∗00 + u∗0j + 𝛾∗10

(
xij − a

)
+ u∗1j

(
xij − a

)
+ e∗ij. (D2)

We use asterisks to denote terms and parameters from the centered-by-a model. It is well-
established that these two models (Equation D1 and D2) are equivalent models in that their
likelihoods are maximized at the same value and they generate the same set of expectations
and dispersions (Kreft, de Leeuw, & Aiken 1995). As such, we can write each component of
the centered-by-a model in terms of the components of the uncentered model by rearrang-
ing terms like so:

yij = 𝛾∗00 + u∗0j + 𝛾∗10

(
xij − a

)
+ u∗1j

(
xij − a

)
+ e∗ij

= 𝛾∗00 + u∗0j + 𝛾∗10xij − 𝛾∗10a + u∗1jxij − u∗1ja + e∗ij

=
(
𝛾∗00 − 𝛾∗10a

)
+
(

u∗0j − u∗1ja
)
+ 𝛾∗10xij + u∗1jxij + e∗ij. (D3)

This re-expression highlights the following equivalencies between the two models:

𝛾00 = 𝛾∗00 − 𝛾∗10a,

u0j = u∗0j − u∗1ja,

𝛾10 = 𝛾∗10,

u1j = u∗1j,

eij = e∗ij.

(D4)
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Hence, we can rewrite the centered-by-a model using terms from the uncentered model as

yij =
(
𝛾00 + 𝛾10a

)
+
(

u0j + u1ja
)
+ 𝛾10xij + u1jxij + eij. (D5)

The variance component from the centered-by-a model can then be written as

var
(

u∗0j

)
= var

(
u0j + u1ja

)
= var

(
u0j

)
+ var

(
u1ja

)
+ 2cov

(
u0j, u1ja

)
= 𝜏00 + a2𝜏11 + 2a𝜏01,

var
(

u∗1j

)
= var

(
u1j

)
= 𝜏11,

cov
(

u∗0j, u1j

)
= cov

(
u0j + u1ja, u1j

)
= cov

(
u0j, u1j

)
+ cov

(
u1ja, u1j

)
= 𝜏01 + a𝜏11. (D6)

Using the formulas outlined in Appendix B and in Rights and Sterba (2019), we can
then compute the total variance attributable to predictors via fixed components in the
centered-by-a model as:

𝛄∗′𝚽
∗
𝛄∗ =

[
𝛾00 + 𝛾10a 𝛾10

] [0 0

0 var(xij)

] [
𝛾00 + 𝛾10a

𝛾10

]
=

[
0 𝛾10var(xij)

] [𝛾00 + 𝛾10a

𝛾10

]
= 𝛾2

10var(xij).

(D7)

And we see that this is exactly equal to that obtained from the uncentered model:

𝛄′Φ𝛾 =
[
𝛾00 𝛾10

] [0 0

0 var(xij)

] [
𝛾00

𝛾10

]
=

[
0 𝛾10var(xij)

] [𝛾00

𝛾10

]
= 𝛾2

10var(xij).

(D8)

We can additionally compute the total variance attributable to predictors via random slope
variation in the centered-by-a model as:

tr(T∗𝚺
∗) = tr

([
𝜏00 + a2𝜏11 + 2a𝜏01 𝜏01 + a𝜏11

𝜏01 + a𝜏11 𝜏11

] [
0 0

0 var(xij)

])
= tr

([
0 𝜏01var(xij) + a𝜏11var(xij)

0 𝜏11var(xij)

])
= 𝜏11var(xij).

(D9)
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And we again see that this is exactly equal to that obtained from the uncentered model:

tr(TΣ) = tr
([

𝜏00 𝜏01

𝜏01 𝜏11

] [
0 0

0 var(xij)

])

= tr
([

0 𝜏01var(xij)

0 𝜏11var(xij)

])
= 𝜏11var(xij).

(D10)

Lastly, we compute the total variance attributable to source m in the centered-by-a model
as:

m∗′T∗m∗ =
[
1 E

[
xij − a

]] [𝜏00 + a2𝜏11 + 2a𝜏01 𝜏01 + a𝜏11

𝜏01 + a𝜏11 𝜏11

][
1

E
[
xij − a

]]

=
[
1 E

[
xij

]
− a

] [𝜏00 + a2𝜏11 + 2a𝜏01 𝜏01 + a𝜏11

𝜏01 + a𝜏11 𝜏11

][
1

E
[
xij

]
− a

]

=
[
𝜏00 + a2𝜏11 + 2a𝜏01 +

(
E
[
xij

]
− a

) (
𝜏01 + a𝜏11

)
𝜏01 + a𝜏11 +

(
E
[
xij

]
− a

)
𝜏11

]
[

1

E
[
xij

]
− a

]

= 𝜏00 + a2𝜏11 + 2a𝜏01 +
(

E
[
xij

]
− a

) (
𝜏01 + a𝜏11

)
+
(

E
[
xij

]
− a

)
(𝜏01

+a𝜏11) +
(

E
[
xij

]
− a

)2
𝜏11

= 𝜏00 + a2𝜏11 + 2a𝜏01 + 2
(

E
[
xij

]
− a

) (
𝜏01 + a𝜏11

)
+ E

[
xij

]2
𝜏11

+a2𝜏11 − 2aE
[
xij

]
𝜏11

= 𝜏00 + a2𝜏11 + 2a𝜏01 + 2E
[
xij

]
𝜏01 − 2a𝜏01 − 2a2𝜏11 + 2aE

[
xij

]
𝜏11 + E

[
xij

]2
𝜏11

+a2𝜏11 − 2aE
[
xij

]
𝜏11

= 𝜏00 + 2E
[
xij

]
𝜏01 + E

[
xij

]2
𝜏11. (D11)

And we see that this is exactly equal to that obtained from the uncentered model:

m′Tm =
[
1 E[xij]

] [𝜏00 𝜏01

𝜏01 𝜏11

] [
1

E[xij]

]
=

[
𝜏00 + E[xij]𝜏01 𝜏01 + E[xij]𝜏11

] [ 1

E[xij]

]
= 𝜏00 + 2E[xij]𝜏01 + E[xij]

2
𝜏11.

(D12)
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A P P E N D I X E : S U P P L E M E N T A R Y R E S U L T S F R O M F I T T I N G
S E L F - E F F I C A C Y G R O W T H M O D E L S
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F I G U R E E 1 Visualizing R-squared results for the unconditional quadratic growth model of self-efficacy that
centered time at-a-constant and assumed a homoscedastic, diagonal error covariance structure (Equation 3)
Notes. See manuscript Figures 1 and 2 notes.
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F I G U R E E 2 Visualizing R-squared results for the unconditional linear growth model of self-efficacy that
centered time at-a-constant and specified a heteroscedastic, diagonal error covariance structure (see Equation 4)
Notes. See manuscript Figures 1 and 2 notes.
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Single-source total R-squared measures: 
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F I G U R E E 3 Visualizing R-squared results for the unconditional linear growth model of self-efficacy that
centered time at-a-constant and specified a heteroscedastic, first-order autoregressive covariance structure
(Equation 5)
Notes. See manuscript Figures 1 and 2 notes.

A P P E N D I X F : P R O O F T H A T W H E N TIME B Y I T S E L F E X P L A I N S
O N L Y W I T H I N - P E R S O N V A R I A B I L I T Y , TIME2 C A N S T I L L
E X P L A I N S O M E B E T W E E N - P E R S O N V A R I A B I L I T Y
Here we show that including higher-order (i.e.,> 1) polynomial terms associated with level-
1 predictors can explain between-cluster variance even when the level-1 predictor has only
within-cluster variance. To illustrate, we will consider the reduced form expression for the
quadratic model given in Equation (3); for generality, we will denote the level-1 predictors
(e.g., time) as x:

yij = 𝛾00 + u0j + 𝛾10xij + 𝛾20x2
ij + u1jxij + u2jx

2
ij + eij. (F1)

Using the formula in Appendix B Equation (B6), we can compute the total variance
attributable to the between-cluster-varying portion of x via its fixed component as

𝛄′𝚽b𝛄 =
[
𝛾00 𝛾10 𝛾20

] ⎡⎢⎢⎢⎣
0 0 0

0 var(Ei|j[xij]) cov(Ei|j[xij], Ei|j[x2
ij])

0 cov(Ei|j[xij], Ei|j[x2
ij]) var(Ei|j[x2

ij])

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛾00

𝛾10

𝛾20

⎤⎥⎥⎦
=

[
𝛾00 𝛾10 𝛾20

] ⎡⎢⎢⎢⎣
0 0 0
0 0 0

0 0 var(Ei|j[x2
ij])

⎤⎥⎥⎥⎦
⎡⎢⎢⎣
𝛾00

𝛾10

𝛾20

⎤⎥⎥⎦
= 𝛾2

20var(Ei|j[x2
ij])

= 𝛾2
20var(vari|j(xij) + Ei|j[xij]

2)

= 𝛾2
20var(vari|j(xij)).

(F2)
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Note that Ei|j[xij] is necessarily constant across clusters (as the level-1 predictor has
only within-cluster variance), and hence var(Ei|j[xij]) = cov(Ei|j[xij], Ei|j[x2

ij]) = 0. However,

Ei|j[x2
ij] is not necessarily the same for each cluster, and will vary across clusters when clus-

ters have different degrees of within-cluster variance of x. As shown in Equation (F2), hold-
ing all else constant, the amount of between-cluster variance explained by x2

ij via its fixed

component will increase as the amount of across-cluster variability in the within-cluster
variability of x increases.

We can similarly compute the total variance attributable to the between-cluster-varying
portion of x via random slope variation as

tr
(

T𝚺b
)
= tr

⎛⎜⎜⎜⎝
⎡⎢⎢⎣
𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

0 0 0

0 var
(

Ei|j [xij
])

cov
(

Ei|j [xij
]

, Ei|j [x2
ij

])
0 cov

(
Ei|j [xij

]
, Ei|j [x2

ij

])
var

(
Ei|j [x2

ij

])
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= tr

⎛⎜⎜⎜⎝
⎡⎢⎢⎣
𝜏00 𝜏01 𝜏02
𝜏01 𝜏11 𝜏12
𝜏02 𝜏12 𝜏22

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

0 0 0
0 0 0

0 0 var
(

Ei|j [x2
ij

])⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

= 𝜏22var
(

Ei|j [x2
ij

])
= 𝜏22var

(
vari|j (xij

)
+ Ei|j[xij

]2)
= 𝜏22var

(
vari|j (xij

))
. (F3)

Similarly, Equation (F3) shows that, holding all else constant, the amount of between-
cluster variance explained by x2

ij via random slope variation will increase as the amount

of across-cluster variability in the within-cluster variability of x increases.

A P P E N D I X G : P R O O F T H A T H E T E R O S C E D A S T I C L E V E L - 1
E R R O R V A R I A N C E C A N B E A C C O M M O D A T E D I N T H E
R - S Q U A R E D F R A M E W O R K B Y R E P L A C I N G T H E 𝝈2 T E R M W I T H
T H E E X P E C T E D V A L U E O F 𝝈2

i
A C R O S S A L L T I M E P O I N T S

In Appendix B Equation (B10), the level-1 error was assumed homoscedastic, and thus the
variance was given as a single value, 𝜎2. Here, we will consider the more general case in
which the variance of eij can differ as a discrete or continuous function of covariates, such
as allowing it to differ discretely across timepoints, or specifying it as a smooth parametric
function of time. We will first let ej be a cluster-specific nj × 1 vector of all eij’s for cluster j
(where nj is the number of observations in cluster j). We can thus allow for heteroscedastic
errors with the following expression:

ej ∼ MVN

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

0
0
⋮

0

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
𝜎2

1
0 𝜎2

2
⋮ ⋱ ⋱

0 ⋯ 0 𝜎2
ni

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (G1)
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where each diagonal element in the covariance matrix denotes the error variance at each
particular value of i, and each off-diagonal element of 0 indicates that there is no autocor-
relation (an assumption we relax in Appendix H).

We will then let Iij be a cluster-specific nj × 1 indicator vector such that the ith element
is equal to 1 and all other elements are equal to 0. We can then say that

eij = I′ijej. (G2)

For example, if a given cluster j has four observations, and i is 3, then

e3j = [0 0 1 0]

⎡⎢⎢⎢⎢⎣
e1j

e2j

e3j

e4j

⎤⎥⎥⎥⎥⎦
= e3j. (G3)

Using the law of total variance, we can thus compute the variance of eij as

var
(

eij
)
= var

(
I′ijej

)
= E

[
var

(
I′ijej

) |I′ij] + var
(

E
[

I′ijej|I′ij])
= E

[
𝜎2

i

]
+ var (0)

= E
[
𝜎2

i

]
, (G4)

where 𝜎2
i is the error variance for observation i. Hence, the overall/across-time error vari-

ance is, sensibly, the expected value of the error variance.
Computing this expected value when there are a discrete set of error variances, by defi-

nition, can be done as

var
(

eij
)
= E

[
𝜎2

i

]
=

max
(

nj
)∑

i=1

𝜋i𝜎
2
i , (G5)

where max(nj) is the largest possible cluster size and 𝜋i is the probability of a randomly
selected observation being the ith observation within a cluster. As an example, if we had
four discrete timepoints with a separate error variance for each, and had an equal number
of observations per timepoint, the expected error variance would be given as

var(eij) = E[𝜎2
i ]

=

4∑
t=1

𝜋i𝜎
2
i

=
1
4
𝜎2

1 +
1
4
𝜎2

2 +
1
4
𝜎2

3 +
1
4
𝜎2

4,

(G6)

which is just the unweighted mean of the four error variances.
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When there is not a discrete set of error variances, and the error variance instead varies
as a function of continuous covariates, we compute the expected error variance as

var
(

eij
)
= E

[
𝜎2

i

]
= E

[
𝜷
′Xij

]
= 𝜷

′E
[
Xij

]
, (G7)

where 𝜷 is the vector of coefficients that are used to model the error variance, and Xij is the
vector of observation-specific predictors of the error variance. As an example, if the error
variance differed as a linear function of time, then

var(eij) = E[𝜎2
i ]

= E
[

[𝛽0 𝛽1]
[

1

timeij

]]
= E

[
𝛽0 + 𝛽1timeij

]
= 𝛽0 + 𝛽1E[timeij].

(G8)

Similarly, if the error variance were modeled as a quadratic function of time,

var
(

eij
)
= E

[
𝜎2

i

]
= E

[
𝛽0 + 𝛽1timeij + 𝛽2time2

ij

]
= 𝛽0 + 𝛽1E

[
timeij

]
+ 𝛽2E

[
time2

ij

]
. (G9)

As a last example, if the error variance were modeled as a quadratic function of time, and a
linear function of some other covariate xij

var
(

eij
)
= E

[
𝜎2

i

]
= E

[
𝛽0 + 𝛽1timeij + 𝛽2time2

ij + 𝛽3xij

]
= 𝛽0 + 𝛽1E

[
timeij

]
+ 𝛽2E

[
time2

ij

]
+ 𝛽3E

[
xij

]
. (G10)

When estimating these quantities in a sample, the above expectations can be replaced
with sample means, and the parameters can be replaced with estimates. For instance,
with our example dataset, if we were to specify the error variance to have the form of
Equation (G10) (with xij denoting female to allow for different error variances for boys

and girls), and we would obtain estimates of 𝛽0 = 70, 𝛽1 = 5, 𝛽2 = 0.01, and 𝛽3 = 2, and
we would then compute the expected error variance as 70 + 5(sample mean of timeij) +

0.01(sample mean of time2
ij) + 2(sample mean of genderij), which in our case is 90. Hence,

our estimate of E[𝜎2
i ] would be 90 (e.g., we would enter 90 in the sigma2 argument of the

r2MLMlong function in Appendix J).
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Integrating Appendix B and the current Appendix G, the total model-implied outcome
variance allowing heteroscedasticity of level-1 errors is given as

var
(

yij
)
= 𝛄′𝚽w𝛄 + 𝛄′𝚽b𝛄 + tr

(
T𝚺w

)
+ tr

(
T𝚺b

)
+ m′Tm + E

[
𝜎2

i

]
. (G11)

The sources corresponding to these terms are defined in Table 2. The only difference in
this expression and that provided in Appendix B Equation (B10) is that 𝜎2 is replaced with
E[𝜎2

i ].

A P P E N D I X H : P R O O F T H A T T H E M A T H E M A T I C A L
C O M P U T A T I O N O F T H E F R A M E W O R K ’ S R - S Q U A R E D
M E A S U R E S I S U N A F F E C T E D B Y T H E I N C L U S I O N O F A N Y K I N D
O F A U T O C O R R E L A T I O N
In the newly derived expression for var(eij) given in Appendix G, we assumed there was no
autocorrelation. Here we prove that the addition of autocorrelation does not change this
formula. We will expand the expression in Appendix G Equation (G1) to allow for autocor-
relation as such:

ej ∼ MVN

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎣

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎣

𝜎2
1

𝜎2
12 𝜎2

2

⋮ ⋱ ⋱

𝜎2
1nj

⋯ 𝜎2(
nj−1

)
nj
𝜎2

1nj

⎤⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
. (H1)

Here, each off-diagonal element denotes the error covariance between two different values
of i.

Again letting Iij be a cluster-specific nj × 1 indicator vector such that the ith element is
equal to 1 and all other elements are equal to 0. We can then say that

eij = I′ijej. (H2)

And can compute the variance of eij as

var
(

eij
)
= var

(
I′ijej

)
= E

[
var

(
I′ijej

) |I′ij] + var
(

E
[

I′ijej|I′ij])
= E

[
𝜎2

i

]
+ var (0)

= E
[
𝜎2

i

]
. (H3)

This expression here in Equation (H3) is identical to that in Equation (G4), and
hence, the autocorrelation does not change the formulas used to compute R-squared
measures.
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A P P E N D I X I : S P E C I F I C A T I O N S U S E D T O O B T A I N 𝚫R2 E F F E C T
S I Z E S F O R I N D I V I D U A L T E R M S I N O U R I L L U S T R A T I V E
C O N D I T I O N A L G R O W T H M O D E L O F S E L F - E F F I C A C Y
Letting Model B denote the full model of interest given in Equation (6), and using a simul-
taneous model-building approach (see Rights & Sterba, 2020) we can compute the variance
uniquely explained by GPA (via each of f1, f2, and v1) by computing R-squared differences
between the full Model B and the following reduced Model A that excludes both person-
mean-centered GPA and person-mean GPA:

selfeffij = 𝛽0j + 𝛽1jtimeij + 𝛽2j
(

volunteerij − volunteerj
)
+ eij,

𝛽0j = 𝛾00 + 𝛾01femalej + 𝛾03volunteerj + u0j,

𝛽1j = 𝛾10 + 𝛾11femalej + u1j,

𝛽2j = 𝛾20 + u2j. (I1)

Specifically, the variance uniquely explained by person-mean-centered GPA via its fixed

component is estimated as ΔR̂2(f1)
t (for total variance) and ΔR̂2(f1)

w (for within-person vari-
ance), the variance uniquely explained by person-mean GPA via its fixed component

is estimated as ΔR̂2(f2)
t (for total variance) and ΔR̂2(f2)

b
(for between-person variance),

and the variance uniquely explained by person-mean-centered GPA via random slope
variation is estimated as ΔR̂2(v1)

t (for total variance) and ΔR̂2(v1)
w (for within-person

variance).
We can similarly compute the variance uniquely explained by volunteer hours (via each

of f1, f2, and v1) by computing these same R-squared differences between the full Model B
and the following reduced Model C that excludes person-mean-centered volunteer hours
and person-mean volunteer hours:

selfeffij = 𝛽0j + 𝛽1jtimeij + 𝛽2j
(

gpaij − gpaj
)
+ eij,

𝛽0j = 𝛾00 + 𝛾01femalej + 𝛾02gpaj + u0j,

𝛽1j = 𝛾10 + 𝛾11femalej + u1j,

𝛽2j = 𝛾20 + u2j. (I2)

Lastly, we can compute the variance uniquely explained by the product term of time ×
female by comparing the full Model B and the following reduced Model D that excludes
this product term:

selfeffij = 𝛽0j + 𝛽1jtimeij + 𝛽2j
(

gpaij − gpaj
)
+ 𝛽3j

(
volunteerij − volunteerj

)
+ eij,

𝛽0j = 𝛾00 + 𝛾01femalej + 𝛾02gpaj + 𝛾03workj + u0j,

𝛽1j = 𝛾10 + u1j,

𝛽2j = 𝛾20 + u2j,

𝛽3j = 𝛾30 + u3j. (I3)
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Specifically, the variance uniquely explained by time × female via its fixed component is

estimated as the sum of ΔR̂2(f1)
t nd ΔR̂2(f2)

t (for total variance), byΔR̂2(f1)
w (for within-person

variance), and by ΔR̂2(f2)
b

for between-person variance).

A P P E N D I X J : S O F T W A R E I M P L E M E N T A T I O N O F R- S Q U A R E D
F R A M E W O R K V I A R F U N C T I O N r 2 M L M l o n g
r2MLMlong R function description:
This R function reads in raw data as well as parameter estimates from the researcher’s pre-
viously fit longitudinal growth model (hence, any software program can have been used to
fit the researcher’s longitudinal growth model prior to the use of this R function, so long
as parameter estimates from the fitted model are recorded). This function then outputs
R-squared measures (shown in manuscript Table 3), as well as variance decompositions
and associated barcharts (e.g., Figures 1–3). This function allows researchers to input het-
eroscedastic residual variance by including multiple estimates, for example, corresponding
to individual timepoints. Users need not specify if predictors are person-mean-centered
or not—the function will automatically output total, within-person, and between-person
variance attributable to each potential source of explained variance (f1, f2, v1, v2, and m).
Note, however, that the interpretations of these sources differ for person-mean-centered
versus non-person-mean-centered models (as delineated in manuscript Table 2) and that
variance attributable to v2 will necessarily be 0 for person-mean-centered models.

r2MLMlong R function input description:

data—dataset in long format, in which rows denote individual observations and columns
denote variables

covs—list of predictors in the dataset that have fixed components of slopes included in the
model (if none, set to NULL)

random_covs—list of predictors in the dataset that have random components of slopes
included in the model (if none, set to NULL)

clusterID—variable name in dataset corresponding to cluster (e.g., person) identification

gammas—vector containing estimated fixed components of all slopes, listed in the order
specified in covs (if none, set to NULL)

Tau—random effect covariance matrix; the first row and the first column denote the inter-
cept variance and covariances and each subsequent row/column denotes a given random
slope’s variance and covariances (to be entered in the order listed by random_covs)

sigma2—level-1 residual variance; can be entered as a single number, or as a set of num-
bers, for example corresponding to different residual variances at individual timepoints; if
entered as a set of numbers, function will assume equal weights and take the raw average
of these to estimate the expectation of the error variance
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r2MLMlong R function example input:

#NOTE: estimates in the input represent hypothetical results for a random slope model with “time” and “x”
as level-1 predictors and “w1” and “w2” as level-2 predictors; model also allows level-1 residual variance
to vary across the five timepoints

#in practice a user would have previously obtained these input estimates by fitting their model in MLM
software

#additionally, the input consists of hypothetical predictor data, whereas in practice a user would read-in
their actual data

exampledata <- matrix(NA,100*5,5)
time <-rep(seq(5),100)
x <- rnorm(100*5,0,2)
w1<-rnorm(100,2,1)
w2<-rnorm(100,3,2)
exampledata[,1] <- rep(seq(100),each=5)
exampledata[,2:3] <- cbind(time,x)
exampledata[,4] <- rep(w1,each=5)
exampledata[,5] <- rep(w2,each=5)
exampledata<-as.data.frame(exampledata)

colnames(exampledata) <- c("person","time","x","w1","w2")
r2MLMlong(data=exampledata,covs=c("time","x","w1","w2"),random_covs=c("time","x"),

gammas=c(.25,1.5,-.75,.01),
clusterID="person",Tau=matrix(c(4,1,.75,1,1,.25,.75,.25,.5),3,3),sigma2=c(10,11,12,14,15))

r2MLMlong R function code:
#need to install the following packages
library(rockchalk)

r2MLMlong <- function(data,covs,random_covs,clusterID,gammas,Tau,sigma2){

if(is.null(covs)==FALSE){
centered_data <- gmc(data,covs,clusterID)
phi_w <- var(centered_data[,c(paste0(covs,"_dev"))]) phi_b <-
var(centered_data[,c(paste0(covs,"_mn"))]) gammas <- matrix(c(gammas),ncol=1)
f1<-t(gammas)%*%phi_w%*%gammas
f2<-t(gammas)%*%phi_b%*%gammas
}
else{
f1<-0
f2<-0
}

if(is.null(random_covs)==FALSE){
centered_data_rand <- gmc(data,random_covs,clusterID)
Sig_w <- var(centered_data_rand[,c(paste0(random_covs,"_dev"))]) Sig_b <-
var(centered_data_rand[,c(paste0(random_covs,"_mn"))]) m_mat <-
matrix(c(colMeans(cbind(1,data[,c(random_covs)]))),ncol=1)
v1<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_w))
v2<-sum(diag(Tau[2:nrow(Tau),2:nrow(Tau)]%*%Sig_b))
}
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else{
v1<-0
v2<-0
m_mat <- 1
}

m<- t(m_mat)%*%Tau%*%m_mat

sigma<-mean(sigma2)

#decompositions

decomp_fixed_within <- f1/sum(f1,f2,v1,v2,m,sigma)
decomp_fixed_between <-f2/sum(f1,f2,v1,v2,m,sigma)
decomp_varslopes_within <- v1/sum(f1,f2,v1,v2,m,sigma)
decomp_varslopes_between <- v2/sum(f1,f2,v1,v2,m,sigma)
decomp_varmeans <- m/sum(f1,f2,v1,v2,m,sigma)
decomp_sigma <- sigma/sum(f1,f2,v1,v2,m,sigma)

decomp_fixed_within_w <- f1/sum(f1,v1,sigma)
decomp_fixed_between_b <-f2/sum(f2,v2,m)
decomp_varslopes_within_w <- v1/sum(f1,v1,sigma)
decomp_varslopes_between_b <- v2/sum(f2,v2,m)
decomp_varmeans_b <- m/sum(f2,v2,m)
decomp_sigma_w <- sigma/sum(f1,v1,sigma)

#barchart

contributions_stacked <-
matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes_
between,decomp_varmeans,decomp_sigma,

decomp_fixed_within_w,0,decomp_varslopes_within_w,0,0,decomp_sigma_w,
0,decomp_fixed_between_b,0,decomp_varslopes_between_b,decomp_varmeans_b,0),6,3)

colnames(contributions_stacked) <- c("total","within","between")
rownames(contributions_stacked) <- c("fixed slopes (within)",

"fixed slopes (between)",
"slope variation (within)",
"slope variation (between)",
"intercept variation (between)",
"residual (within)")

barplot(contributions_stacked, main="Decomposition", horiz=FALSE,
ylim=c(0,1),col=c("darkred","steelblue","darkred","steelblue","midnightblue","white"),

ylab="proportion of variance",
density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0),xlim=c(0,1.5),width=c(.3,.3))

legend(1.1,.65,legend=rownames(contributions_stacked_avg),fill=c("darkred",
"steelblue","darkred","steelblue","midnightblue","white"),

cex=.7, pt.cex = 1,xpd=T,density=c(NA,NA,30,40,40,NA),angle=c(0,45,0,90,135,0))

#create tables for output

decomp_table <-
matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,decomp_varslopes_
between,decomp_varmeans,decomp_sigma,

decomp_fixed_within_w,"NA",decomp_varslopes_within_w,"NA","NA",decomp_sigma_w,
"NA",decomp_fixed_between_b,"NA",decomp_varslopes_between_b,decomp_varmeans_b,"NA"),6,3)
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colnames(decomp_table) <- c("total","within","between")
rownames(decomp_table) <- c("fixed slopes (within)",

"fixed slopes (between)",
"slope variation (within)",
"slope variation (between)",
"intercept variation (between)",
"residual (within)")

R2_table <- matrix(c(decomp_fixed_within,decomp_fixed_between,decomp_varslopes_within,
decomp_varslopes_between,decomp_varmeans,
decomp_fixed_within+decomp_fixed_between,decomp_fixed_within+decomp_fixed_between+decomp_
varslopes_within+decomp_varslopes_between,

decomp_fixed_within+decomp_fixed_between+decomp_varslopes_within+decomp_
varslopes_between+decomp_varmeans,

decomp_fixed_within_w,"NA",decomp_varslopes_within_w,"NA","NA","NA",decomp_
fixed_within_w+decomp_varslopes_within_w,"NA",

"NA",decomp_fixed_between_b,"NA",decomp_varslopes_between_b,decomp_varmeans_b,"NA",
decomp_fixed_between_b+decomp_varslopes_between_b,"NA"),8,3)

colnames(R2_table) <- c("total","within","between")
rownames(R2_table) <- c("f1","f2","v1","v2","m","f","fv","fvm")

Output <- list(noquote(decomp_table),noquote(R2_table))
names(Output) <- c("Decompositions","R2s")

return(Output)
}
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