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a  b  s  t  r  a  c  t

Objective:  Colorectal  cancer  is  one  of  the  leading  causes  of  cancer-related  deaths  in  the  world,  although  it
can  be  effectively  treated  if detected  early.  Teleoperated  flexible  endoscopes  are  an  emerging  technology
to  ease  patient  apprehension  about  the  procedure,  and  subsequently  increase  compliance.  Essential  to
teleoperation  is  robust  feedback  reflecting  the  change  in pose  (i.e.,  position  and  orientation)  of  the  tip  of
the endoscope.  The  goal  of  this  study  is to first  describe  a novel  image-based  tracking  system  for  teleop-
erated  flexible  endoscopes,  and  subsequently  determine  its  viability  in  a clinical  setting.  The  proposed
approach  leverages  artificial  neural  networks  (ANNs)  to  learn  the  mapping  that  links  the  optical  flow
between  two  sequential  images  to the  change  in  the  pose  of  the  camera.  Secondly,  the  study  investigates
for  the  first  time  how  narrow  band  illumination  (NBI)  – today  available  in commercial  gastrointestinal
endoscopes  – can  be  applied  to  enhance  feature  extraction,  and  quantify  the  effect  of NBI  and  white
light  illumination  (WLI),  as well  as  their  color  information,  on  the  strength  of features  extracted  from  the
endoscopic  camera  stream.
Methods  and materials:  In order to provide  the best features  for the  neural  networks  to learn  the  change
in pose  based  on  the image  stream,  we  investigated  two different  imaging  modalities  –  WLI  and  NBI  –
and we  applied  two  different  spatial  partitions  –  lumen-centered  and  grid-based  –  to  create  descriptors
used  as  input  to the ANNs.  An  experiment  was  performed  to compare  the  error  of  these  four  variations,
measured  in  root  mean  square  error  (RMSE)  from  ground  truth  given  by  a robotic  arm,  to that  of  a
commercial  state-of-the-art  magnetic  tracker.  The  viability  of  this  technique  for  a clinical  setting  was
then  tested  using  the  four  ANN  variations,  a magnetic  tracker,  and  a commercial  colonoscope.  The  trial
was performed  by an expert  endoscopist  (>2000  lifetime  procedures)  on a colonoscopy  training  model
with  porcine  blood,  and the  RMSE  of  the  ANN  output  was  calculated  with  respect  to  the  magnetic  tracker
readings.  Using  the  image  stream  obtained  from  the  commercial  endoscope,  the strength  of  features
extracted  was evaluated.
Results:  In  the  first  experiment,  the best  ANNs  resulted  from  grid-based  partitioning  under  WLI  (2.42  mm
RMSE) for  position,  and  from  lumen-centered  partitioning  under  NBI  (1.69◦ RMSE)  for  rotation.  By  com-
parison,  the performance  of  the  tracker  was  2.49 mm  RMSE  in  position  and  0.89◦ RMSE in  rotation.  The
trial  with  the  commercial  endoscope  indicated  that  lumen-centered  partitioning  was  the  best  overall,
while  NBI  outperformed  WLI  in  terms  of  illumination  modality.  The  performance  of  lumen-centered
partitioning  with NBI was  1.03  ±  0.8  mm  RMSE  in  positional  degrees  of  freedom  (DOF),  and  1.26  ± 0.98◦

RMSE  in  rotational  DOF,  while  with  WLI,  the  performance  was  1.56  ±  1.15  mm  RMSE in  positional  DOF
and  2.45  ± 1.90◦ RMSE  in  rotational  DOF.  Finally,  the  features  extracted  under  NBI  were  found  to be twice
as  strong  as  those  extracted  under  WLI,  but  no  significance  in feature  strengths  was  observed  between  a
grayscale  version  of  the  image,  and  the  red,  blue,  and  green  color  channels.
Conclusions:  This  work  demonstrates  that both  WLI  and  NBI,  combined  with  feature  partitioning  based
on the anatomy  of  the  colon,  provide  valid  mechanisms  for endoscopic  camera  pose  estimation  via image
stream.  Illumination  provided  by  WLI  and  NBI  produce  ANNs  with  similar  performance  which  are com-
parable to that  of  a state-of-the-art  magnetic  tracker.  However,  NBI  produces  features  that  are  stronger
than WLI,  which  enables  more  robust  feature  tracking,  and  better  performance  of  the  ANN  in terms  of
accuracy.  Thus,  NBI with  lumen-centered  partitioning  resulted  the  best  approach  among  the  different
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variations  tested  for vision-based  pose  estimation.  The  proposed  approach  takes  advantage  of  compo-
nents  already  available  in  commercial  gastrointestinal  endoscopes  to provide  accurate  feedback  about
the  motion  of  the  tip  of  the endoscope.  This  solution  may  serve  as an  enabling  technology  for  closed-loop
control  of  teleoperated  flexible  endoscopes.
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1. Introduction33

Each year, colorectal cancer claims the lives of more than34

600,000 people worldwide, and is the fourth leading cause of35

cancer-related death in the worldy [1].  Colorectal cancer commonly36

progresses to malignancy in approximately 5–10 years. However,37

this type of cancer has the unique quality that if the tumor is38

detected at an early enough stage, the prognosis for survival is 90%,39

whereas if detected too late, it decreases to 5% [2].  This emphasizes40

the relevance of timely screening for population at risk (i.e., people41

over 50 years of age or having family history of colorectal cancer),42

even in the case that no symptoms are observed.43

The most commonly used method for diagnostic and thera-44

peutic assessment of colorectal cancer is through colonoscopy, an45

endoscopic procedure which requires the insertion of a 1.5-m long46

flexible tube through the anus. The endoscope provides illumina-47

tion for visualization of the colon lumen, which enables detection48

and removal of polyps. Standard colonoscopy is performed under49

white light illumination (WLI). However, this approach can fail to50

reveal important information [3].  Even experienced endoscopists51

can miss up to 30% of all potential cancer lesions when using52

standard WLI  [4].53

In the last decade, narrow band imaging (NBI) has been54

introduced to improve diagnosis. NBI uses filters to narrow pro-55

jected light to blue (415 nm)  and green (540 nm)  wavelengths to56

generate a colored image. Blue-green light enhances superficial57

mucosal capillaries and mucosal surface patterns; greater absorp-58

tion of illuminating bands by hemoglobin causes the blood vessels59

to look darker. Despite recent literature demonstrating that NBI60

does not increase the diagnostic yield when compared to WLI  [5],61

this imaging modality is today increasingly common in commercial62

colonoscopes (e.g., H180AL/I, Olympus, Japan).63

Although a colonoscopy usually takes less than 30 min  and is64

performed in outpatient surgery under sedation, patient compli-65

ance with recommended screening is low (i.e., 1 in 3 adults are not66

being screened [6]) due to the preparation required, fear of pain67

during the procedure, and perceived embarrassment. The main68

technological improvements in the field of flexible endoscopy aim69

to help patients to overcome these hindrances.70

An approach for accomplishing this goal is through the devel-71

opment of increasingly flexible endoscopes, wireless capsule72

endoscopy (WCE), and virtual colonoscopy [2].  Complementary to73

these advances is the emergence of computer-assisted technolo-74

gies to aid the doctor, whose purpose is to increase detection of75

malignancies and control over the intended trajectory of the endo-76

scope. Robotics is playing an increasingly important role in this field77

with the development of fully- or semi-automated endoscopic sys-78

tems [2,7–11]. This technological breakthrough has the potential79

to widen the implementation of colorectal cancer screening and80

surveillance programs to rural areas, to mobile camps, or to in-field81

military bases, and the physical presence of an expert endoscopist82

may  no longer be required.83

Real-time pose (i.e., position and orientation) detection of84

the tip of an automated flexible endoscope is crucial to achiev-85

ing reliable and effective teleoperation. These devices operate in86

an intricate, complex environment and by definition are com-87

pliant; many variables exist that cannot be accounted for in a88

model, which severely limits the efficacy of open-loop control.89

Furthermore, medical procedures require a high degree of preci- 90

sion and accuracy; implementing real-time pose detection allows 91

for calculated, controlled movements which enhance system stabil- 92

ity [12]. In particular, the real-time estimated pose of the endoscope 93

head can be used as feedback signal for a closed-loop control strat- 94

egy, as represented in Fig. 1. This allows us to minimize the error 95

between the intended pose (i.e., where the user wants the endo- 96

scope to move and orient the camera), and the reached pose (i.e., 97

the measured pose of the endoscope tip). 98

In order to achieve real-time pose detection, magnetic tracking 99

has emerged as a reliable method and there are several commer- 100

cial manufacturers of 5 or 6 degree of freedom (DOF) trackers 101

[13,14]. Magnetic trackers placed along the entire length of the 102

colonoscope, such as in the commercially available ScopeGuide®
103

(Olympus, Japan), have been used to provide the endoscopist visual 104

feedback of the instrument pose with respect to a global coor- 105

dinate frame [15]. Within bronchoscopy, the endoscopic camera 106

stream has been used in conjunction with image registration and 107

fluoroscopy for tracking of the endoscope [16–19]. 108

However, magnetic trackers require additional space in the 109

endoscope; this results in an increase in the size of the device, 110

and a corresponding reduction in the flexibility of the endo- 111

scope. For endoscopes with extremely limited operating space, 112

such as encephaloscopes, rhinoscopes, and bronchoscopes, mini- 113

mization of the size of the endoscope is fundamental. Furthermore, 114

commercial players in the field of gastrointestinal endoscopy 115

are proposing platforms that are based on magnetic manipula- 116

tion of the endoscopic device [20,21]. This promising approach is 117

also being pursued by several research labs worldwide [22–26]. 118

Magnetic trackers interfere with magnetic manipulation due to 119

the presence of metallic components or because the localiza- 120

tion principle itself is based on triangulation of electromagnetic 121

fields. 122

Tracking of the endoscope head is even more crucial in soft body 123

cavities (e.g., colon, small intestine), since image registration is not 124

effective. Thus, a localization system which is independent of the 125

technology platform to which it is applied, provides accurate pose 126

estimation for real-time feedback, and neither creates unwanted 127

disturbance to the system nor adds additional size to the endoscope 128

will be beneficial for enabling closed-loop control of teleoperated 129

flexible endoscopes. 130

1.1. Related work 131

The problem of real-time localization and steering of flexible 132

endoscopes has a number of challenges [27,28]. Concerning the 133

use of the image stream to steer the endoscope through the lumen, 134

possible approaches include finding the darkest region of the image 135

for lumen detection [29,30],  identifying features such as the ring- 136

like contours surrounding the lumen [31–33],  and using highlights 137

resulting from illumination [34]. Several works have used lumen 138

center detection schemes to correct the current heading of the cam- 139

era towards the lumen center in each control loop [8,35], providing 140

a mechanism for automation. However, these solutions do not mea- 141

sure the change in pose of the endoscope, and thus cannot be used 142

to implement closed-loop control (i.e., although the motors can be 143

actuated towards the center of the lumen, there is no feedback as 144

to whether the actuation was successful). 145
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Fig. 1. Closed-loop control system taking advantage of the proposed pose detection approach to guide a teleoperated endoscope.

Localization and tracking based image motion analysis has been146

quite successful in other fields, including mobile robots, unmanned147

vehicle navigation [36,37], and egomotion estimation [38]. The148

most popular techniques include optical flow [39], visual simul-149

taneous localization and mapping [40], and structure from motion150

(SFM)/stereopsis [41]. These approaches have also been explored151

in gastrointestinal endoscopy. A 3-dimensional reconstruction of152

the colon was achieved using SFM reconstruction with the image153

sequence from a monocular camera [42]. However, this implemen-154

tation assumes zero rotation for simplification, and is thus able155

to calculate just the 3 DOF related to camera translation between156

two images. Furthermore, the SFM algorithm is able to calculate157

6 DOF motion relative to the translation along the optical axis; as158

a consequence, the metric translation along the optical axis (i.e.,159

the longitudinal axis of the lumen) cannot be accurately calculated160

using this model. To remedy this depth estimation problem, the161

spherical camera model has been used, although this again requires162

simplifying assumptions about the rotation of the camera [8].  Focus163

of expansion has also been used to avoid the numerical instability of164

optical flow and SFM calculations, and was successfully employed165

on a virtual colonoscopy and other image sets [43,10]. However,166

algorithm performance on computer-generated datasets can differ167

significantly from a colon simulator or human colon [8].168

As for artificial intelligence and machine learning, techniques169

within endoscopy have been mostly limited to signal filtering170

and facilitation of computer-aided diagnosis (e.g., segmentation,171

object recognition, etc.) [44,45]. Localization of an endoscopic cap-172

sule within general anatomical regions of the gastrointestinal tract173

was achieved by moving picture expert group (MPEG)-7 features174

(commonly used in video and audio compression) with pattern175

recognition classifiers [46]. Rule-based systems using fuzzy logic176

have also been used for extraction of the lumen [31]. However,177

the efficacy of these algorithms for teleoperated systems is again178

limited since they cannot produce an accurate quantitative mea-179

surement of pose.180

The  approach presented in this paper aims to build upon the181

previous body of work by using machine learning techniques to182

estimate the pose variation of the endoscope from optical flow-183

based features. This algorithm estimates the change in pose F(t)184

caused by the actuation of the device. Fig.  1 illustrates how this185

quantity is used within a control loop. Using two  sequential images186

from the endoscope at the current time It and a previous time187

It−�t, the algorithm calculates the feedback F(t), which reflects if188

the actuation of the endoscope has produced the intended pose 189

change R(t). The controller K then works to minimize the potential 190

error E(t). Since the changes in pose are utilized directly within the 191

control loop, no integration is necessary, thus avoiding inaccura- 192

cies related to numerical drift. Our approach describes the optical 193

flow of features between sequential images, and then relates this 194

description of feature movements to the achieved pose using arti- 195

ficial neural networks (ANNs). The applicability of the proposed 196

method to clinical use was also tested by using a commercial 197

endoscope operated by an expert endoscopist (>2000 lifetime pro- 198

cedures). 199

The second contribution of this paper is to quantitatively com- 200

pare the effect of illumination on the strength of image features 201

extracted. This is done by calculating the eigenvalues of individual 202

pixels, which provides a numerical description of the strength of a 203

feature. By comparing the average maximum eigenvalues obtained 204

from the NBI and WLI  image streams obtained using a commercial 205

endoscope, the illumination mechanism most effective in providing 206

better features can be determined. 207

1.2. Outline 208

The outline of this paper is as follows: Section 2 describes the 209

extraction and construction of the feature set based on the esti- 210

mated optical flow between sequential images, and the training 211

and testing of the ANNs used for learning the pose from these 212

extracted features. It furthermore explains the process of validating 213

the algorithm using a commercial endoscope and the method for 214

determining the strength of features extracted using NBI and WLI. 215

Section 3 discusses the impact of the illumination modalities on the 216

performance of the ANNs trained on feature vectors created by the 217

different imaging modalities and spatial partitioning, as well as the 218

results of the validation performed with a commercial endoscope. 219

Section 3 also discusses the extracted feature strengths using NBI 220

and WLI. Section 4 summarizes the relevance of these findings and 221

discuss the future of the work. 222

2. Methodology 223

The proposed technique calculates the change in the endoscope 224

camera pose (i.e., 6 DOF transformation matrix, a common repre- 225

sentation in robotics [47], with three DOF for position and three 226

Euler angles describing orientation) between sequential frames 227
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Fig. 2. Flow diagram for the proposed method for calculating the change in the position and orientation of the endoscopic module, including the investigated variations in
illumination (WLI or NBI) modality and spatial partitions (grid-based or lumen-centered).

using the image stream. Essential to the robust calculation of the228

camera motion parameters is the extraction of stable features229

from the endoscopic image stream. The gastrointestinal lumen230

is well-known for its lack of texture and brightness constancy231

complications due to changes in illumination from the move-232

ment of the endoscope [8,43,46]. The proposed algorithm involves233

finding strong correspondences in two sequential images using234

optical flow, applying a spatial grid to form a feature vector which235

expresses the visual representation of the change in pose, and then236

using this information to train the ANNs, as represented in Fig.  2.237

The performance of the ANN is then tested on a separate diverse238

test set.239

The only assumption made is that the scene is static; thus, the240

movement perceived in the image can be assumed to be due to the241

change in the pose of the camera only. This is a valid assumption242

since there are only three major contributors to the movement of243

the colon: respiration, wall deformation due to the endoscope, and244

haustral contractions. It is assumed that the effects of respiration245

will be minimal, since the colon is insufflated during colonoscopy.246

Additionally, on average, a displacement of only approximately247

7.85 mm occurs in the anterior/posterior plane during deep res-248

piration [48]. Furthermore, the colon wall does deform due to the249

movement of the endoscope; however, this only affects the colon250

in regions behind the camera on the endoscope. Thus, this does251

not contribute significantly to a change in the scene captured by252

the camera. Haustral contractions, which move the content of the 253

colon forward, are the only movements which significantly violate 254

the inertness of the scene. Since these only occur every 25–30 min 255

[49], a specialized control loop within the teleoperation software 256

can be used to handle this exception. 257

In order to perform more accurate pose estimation for endo- 258

scope localization, we  investigate two different imaging modalities 259

– WLI  vs. NBI - and we apply two different spatial partitions – 260

lumen-centered vs. grid-based. We  then compare the performance 261

of the ANNs, trained on ground truth provided by a robotic arm 262

moving the camera during the trials, within these four variations 263

as concerns pose detection. The four variations are then compared 264

to a commercially available state-of-the-art magnetic tracker. Per- 265

formance is measured by calculating the root mean square error 266

(RMSE), where this error is the deviation of the estimated pose 267

from ground truth. We  additionally measure the time to complete 268

the algorithm using a standard laptop (Lenovo Thinkpad T520, Intel 269

Core i5-2520M CPU at 2.50 GHz, Windows 7 Professional; Lenovo; 270

USA). 271

Given these results, we  then assess the validity of this approach 272

in a clinical setting. This is achieved by implementing the technique 273

on a commercial endoscope with both WLI  and NBI capabilities. 274

These experiments are performed in a human colon simulator using 275

fresh blood, and the endoscope is driven by an expert endoscopist. 276

Within this experiment, we again compare the performance of the 277

Fig. 3. (a and b) Spatial partitioning rules for feature vector composition.

dx.doi.org/10.1016/j.artmed.2013.09.002
Original text:
Inserted Text
[8,46,43]

Original text:
Inserted Text
Figure 

Original text:
Inserted Text
7.85mm

Original text:
Inserted Text
25-30 minutes[49]

Original text:
Inserted Text
Spatial



Please cite this article in press as: Bell CS, et al. Image partitioning and illumination in image-based pose detection for teleoperated flexible
endoscopes. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artmed.2013.09.002

ARTICLE IN PRESSG Model

ARTMED 1308 1–12

C.S. Bell et al. / Artificial Intelligence in Medicine xxx (2013) xxx– xxx 5

four variations, but in this case, the ANNs are trained on noisy data278

provided by a magnetic tracker. The metric used to evaluate plausi-279

bility of this algorithm for clinical use is the RMSE between the pose280

reported by the ANNs and the magnetic tracker readings. Using the281

image stream acquired from the commercial endoscope, we also282

calculate the power of features obtained by WLI  and NBI.283

2.1. Feature vector composition284

Fig.  2 shows the flow diagram of the algorithm used to acquire285

each image. Frames are captured from the video processor at times286

t − �t  and t, and first cropped down to their effective pixels and287

converted to grayscale. Using the Shi-Tomasi (S-T) features [50]288

found in image It−�t, the locations of the corresponding features in289

image It are found using the Lucas-Kanade optical flow algorithm290

[39], and thus, the optical flow from the previous to the current291

image is encoded.292

Feature descriptors, which summarize the nature of these corre-293

spondences in specific regions of the image, are constructed based294

on the partitioning method adopted. The region boundaries defined295

by the spatial partitioning divisions, which are shown in Fig.  3.296

The first – grid-based spatial partitioning (Fig. 3a) – is a basic par-297

tition of the image in 25 equal rectangular regions (i.e., 5 × 5 grid).298

This represents a simplistic static grid system, a common parti-299

tioning method in computer vision applications [43,51–53], which300

could easily be achieved by a simple image overlay in an endo-301

scopic module. For each grid location g ∈ G, two feature descriptors302

are calculated as
303

dxg =
∑ng

i=1dxi

ng
304

and
305

dyg =
∑ng

i=1dyi

ng
306

where ng is the number of feature correspondences present in307

image It at grid location g, and dx and dy are the change in coor-308

dinates in the X and Y directions between corresponding features309

in image It−�t and It. These features are then concatenated into a310

feature vector of size 50 (25 grid regions with 2 feature descriptors311

each) as input to the ANN.312

Lumen-centered spatial partitioning, shown in Fig.  3b, is con-313

ceived considering that the colon is a tubular structure with a314

dark region which usually corresponds to the center of the lumen.315

This partitioning method is based on consistently aligning the cen-316

ter of the partition with the lumen center. This approach requires317

first segmenting the image into the lumen center and surrounding318

area. A lumen segmentation approach similar to [8] was taken, by319

first histogram equalizing the image to increase contrast and then320

applying a threshold. In the resultant image, the lumen appears321

white, while the rest of the image appears black.322

The centroid of the lumen (xc, yc) is then calculated. The cir-323

cumference of the lumen is calculated as a summation of the pixels324

on the edge of the lumen in this thresholded image. The radius r325

is calculated using this circumference estimate by dividing by 2�.326

The centroid of lumen in conjunction with this calculated radius327

defines the first region of the lumen-centered approach. The other328

four quadrants are defined by dividing the image horizontally at329

yc, and vertically at xc not including the area labeled as the lumen330

center. For each of these 5 regions, the two feature descriptors are331

calculated as
332

drg =
∑ng

i=1

√
dx2

i + dy2
i

ng
333

Fig. 4. Experimental setup for training and testing of the proposed pose detection
approach.

and
334

�g =
∑ng

i=1tan−1(dyi/dxi)

ng
335

where drg is the average distance of optical flow between corre- 336

sponding features in region g, and �g is the average inclination of 337

the flow of the features in region g. These features are then con- 338

catenated into a feature vector of size 10 (5 regions described by 2 339

feature descriptors each) as input to the ANN. 340

2.2. ANN training and operation 341

The set of feature vectors generated from either the grid-based 342

or the lumen-centered partitions are then used as input into a 343

multi-layer feedforward ANN. ANNs are computational networks 344

which are useful in function approximation and pattern recogni- 345

tion due to their rejection of noise in the training set, high accuracy, 346

and speed of computation during operation [54,55]. ANNs are pow- 347

erful for learning complex mappings, given the correct number and 348

size of hidden layers and certain characteristics of the function to 349

be mapped from a set of exemplars and their target outputs [56]. 350

In order to train the ANN (i.e., tune the weights to learn the 351

mapping between optical flow features and pose change), the full 352

training set is first divided further into a slightly smaller training 353

set, a validation set, and a test set. During training, each input vector 354

in the new training set is presented to the ANN, and forward prop- 355

agated through the network. After the outputs are generated, the 356

error between the network output and the ground truth obtained 357

from the true motion of the endoscopic module is calculated. The 358

weights of the network are then adjusted based on this error using 359

Levenberg–Marquardt error backpropagation [57,58]. Training is 360

stopped when the error in the validation set begins increasing over 361

a specified number of epochs. This technique is referred to as early 362

stopping, and allows the ANN to maintain its ability to generalize 363

by preventing overtraining (i.e., memorization of the training set). 364

In addition, the test set garnered from the training set is used as an 365

independent gauge to assess the learning of the network by testing 366

before training and after training. At this point, the network is con- 367

sidered trained, and testing on an independently generated test set 368

(i.e., not the small test set created by segmenting the training set) 369

is performed. 370
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2.3. Benchtop validation of proposed method371

The purpose of this benchtop experiment is to assess the per-372

formance of the four variations of ANNs along the straight sections373

of the colon to compare the RMSE in pose detection to that of a374

state-of-the-art magnetic tracker. The experimental setup – illus-375

trated in Fig.  4 – consists of a tethered endoscopic module (22 mm376

in length × 27 mm in diameter) rigidly connected to a 6 DOF indus-377

trial robotic arm (RV-6SDL; Mitsubishi Corporation, Japan). Thanks378

to the rigid connection with the robotic arm, the actual position of379

the endoscopic module can be derived from the robot encoders380

at any given point in time. This data is used as ground truth381

for pose detection assessment. The endoscopic module contains382

a 500 × 582 resolution endoscopic camera (291,000 effective pix-383

els, cross-section 3 mm × 3 mm,  and 140◦ field of view; Introspicio384

110, Medigus, Ltd., Israel), 5 white light emitting diodes (LEDs)385

(NESW007BT; Nichia Corporation, Japan), and 6 blue light (450 nm)386

LEDs (Kingbright Electronic Company, Ltd., Taiwan) for NBI. The387

two illumination systems were designed and driven so as to have388

approximately the same light intensity (6.5 candela). The unit389

also contains a 6 DOF magnetic tracker sensor (1.4 mm positional390

nominal RMSE, 0.5◦ rotational nominal RMSE, 240–420 Hz update391

rate; 3D Guidance trakStar, Mid-range; Ascension Technology392

Corporation, USA) to compare the accuracy of the algorithm with393

a commercially available tracker. The validation software provided394

with the device was then used to appropriately position the mag-395

netic tracker transmitter. This was done in order to ensure the396

highest fidelity readings from the sensor by minimizing interfer-397

ence from other metallic objects.398

During training and testing, the endoscopic module is moved399

along the straight sections of a plastic human colon simulator400

(Kyoto Kagaku, Japan). This phantom model is commonly used for401

training medical doctors in performing colonoscopy and possesses402

the gross anatomy of a human colon. In order to recreate features403

that are enhanced by NBI – such as the blood vessels and capillaries404

in the colon – fresh porcine blood was applied to the interior of the405

colon simulator. To accurately model the lighting environment of406

the colon, the simulator was covered by an opaque black cloth (not407

shown in figure).408

Control software written in C++was used to send positional com-409

mands via TCP ethernet connection to the robot controller to move410

Table 1
Magnitude, direction, and number of training repetitions for generating ANN train-
ing  set.

Degree of freedom tested Magnitude of training
repetitions

Total number of
training repetitions

X only ±0.5 mm to ±5 mm 180
Y only ±0.5 mm to ±3 mm 120
Z only ±0.5 mm to ±3 mm 120
Roll only ±0.5 mm to ±2◦ 80
Pitch only ±0.5 mm to ±2◦ 80
Yaw only ±0.5 mm to ±2◦ 80
Translation only Variable 120
Rotation only Variable 80
All degrees Variable 320

the arm in real-time and capture the resulting movement of the 411

camera and tracker in the endoscopic module. Frame couples were 412

compared at each iteration of the procedure outlined in Algorithm 413

1, using a frame grabber connected to a camera video processor 414

(Introspicio; Medigus, Ltd., Israel), and were then read into the con- 415

trol software and processed using OpenCV [59] library functions. 416

The magnetic tracker pose was  read at the same time of the camera 417

and robot encoders using functions from Ascension’s 3D Guidance 418

Application Programming Interface (API). 419

Algorithm 1. Algorithm for training set generation and training 420

of ANN. 421

422

The procedure for generating the training and testing sets is 423

shown in Algorithm 1. Each time the robot/endoscopic module 424

assembly is moved, the resultant optical flow-based feature vec- 425

tors are calculated, and the robot and magnetic tracker positions 426

are recorded. This training trajectory is shown in Table 1, where 427

the coordinates refer to the Cartesian axes of Fig. 4. The 1180 steps 428

of the training trajectory are representative of endoscopic module 429

when it moves in each DOF independently, and then in combina- 430

tions of these DOFs. All these types of movements are common 431

during colonoscopy [60]; however, in this trajectory, the corners of 432

the colon are not traversed. The training set allows 10 repetitions 433

of varying magnitudes for each DOF independently tested, and 5 434

training repetitions for any combinational movement. When com- 435

binational movement is tested, the magnitudes of the movements 436

vary between 0 mm or 0◦ and the absolute maximum of the range 437

shown in Table 1. The conclusion of this training trajectory execu- 438

tion marks the end of the training set generation and the beginning 439

of ANN training. 440

dx.doi.org/10.1016/j.artmed.2013.09.002
Original text:
Inserted Text
Figure 4 – consists of a tethered endoscopic module (22 mm in length ×27

Original text:
Inserted Text
140(°) field of view; Introspicio 110, Medigus, Ltd, Israel), 5 white light emitting diodes (LEDs) (NESW007BT; Nichia Corporation, Japan), and 6 blue light (450nm) LEDs (Kingbright Electronic Company, Ltd,

Original text:
Inserted Text
0.5(°) rotational nominal RMSE, 240-420

Original text:
Inserted Text
4.1

Original text:
Inserted Text
OpenCV

Original text:
Inserted Text
The procedure for generating the training and testing sets is shown in Algorithm 4.1

Original text:
Inserted Text
Figure 

Original text:
Inserted Text
colonoscopy

Original text:
Inserted Text
0(°) 



Please cite this article in press as: Bell CS, et al. Image partitioning and illumination in image-based pose detection for teleoperated flexible
endoscopes. Artif Intell Med (2013), http://dx.doi.org/10.1016/j.artmed.2013.09.002

ARTICLE IN PRESSG Model

ARTMED 1308 1–12

C.S. Bell et al. / Artificial Intelligence in Medicine xxx (2013) xxx– xxx 7

Fig. 5. Experimental setup for training and testing of the proposed pose detection
approach using a commercial colonoscope equipped with a magnetic tracker via
tool  channel.

The offline training of the ANN proceeds as follows: as shown in441

Fig.  2, the inputs to the ANN are optical flow feature vectors, which442

are a compact representation of the evolution of the scene at each443

time step. The corresponding ANN training targets are calculated444

using the previous pose as the reference frame. Then, the change445

in pose is calculated using the current pose, and these differences446

are used as targets for the ANN. Using these data as the training set,447

the ANN learns a numerical estimation of the change in the 6 DOF448

pose of the endoscopic tip as a function of the optical flow between449

two images.450

Testing starts by moving the endoscopic module along an arbi-451

trary trajectory and recording the positions and orientations of452

the robot and magnetic tracker, as well as the optical flow-based453

feature vectors between successive images. The testing set was454

randomly generated to fall within 0 ± 5 mm in the Z direction;455

0 ± 3 mm in the X and Y directions; and rotations of 0 ± 2◦ in roll,456

pitch, and yaw as defined in Fig. 4. The main difference between457

training and testing is that during testing, the inputs are simply for-458

ward propagated to output the approximated pose (that is, there459

is no calculation of or backpropagation of error). The RMSE is then460

calculated for the ANNs and commercial tracker with respect to461

ground truth.462

Matlab’s Neural Network Toolbox was used for training and463

computing outputs for network training and testing. 85% of the464

training set was allocated for pure training, whereas 10% and465

5% of the training set were used for validation and performance466

testing, respectively. To terminate training, early stopping was467

invoked if the error in the validation test set increased for six468

successive epochs. The ANNs are constructed to have 2n+1 hid-469

den layer architecture [61], where n is the number of nodes in470

the input layer (i.e., number of features in the input vector);471

the ANNs, then, have either 50 × 101 × 6 or 10 × 21 × 6 archi-472

tecture for grid-based and lumen-centered spatial partitioning,473

respectively.474

2.4. Application of proposed method to commercial endoscope475

The training method proposed in the previous subsection pro-476

vides the most reliable data on which to train the ANN. However,477

ground truth may  not always be available. To specifically address478

this case, we performed an experiment which more accurately479

reflects the conditions to be expected in a clinical setting.480

The setup used in this experiment is shown in Fig.  5. In this 481

experiment, an expert gastroenterologist performed a set of four 482

colonoscopies on a colonoscopy training model (Kyoto Kagaku, 483

Japan), in which a plastic human colon simulator was  arranged 484

in a basic anatomical configuration (Fig. 5, upper-right corner). In 485

order to ensure the presence of randomized features, the colon 486

was filled with porcine blood, and then adequately drained. A 5 487

DOF magnetic tracking system (1.20 mm positional nominal RMSE, 488

0.5◦ rotational nominal RMSE, 40Hz update rate; Aurora, Table- 489

top Transmitter; Northern Digital Inc. (NDI), USA) was  inserted 490

into the tool channel of a state-of-the-art flexible endoscope 491

(H180AL/I Colonovideoscope; Olympus, Japan), which was  then 492

used to perform 4 colonoscopies – 2 under WLI, and 2 under 493

NBI. Following each colonoscopy, the endoscope was completely 494

removed from the simulator, and the interior of the colon agitated 495

so as to prevent bias due to the ANNs learning the specific blood 496

patterns. 497

Control software written in C++utilizing the NDI  API and OpenCV 498

was used to capture image frames and read the pose from the 499

sensor for the duration of the trial. A trial is defined as a full tra- 500

versal from the sigmoid colon to the cecum and a subsequent return 501

to the sigmoid colon. As in the previous experiment, feature vec- 502

tors were composed as outlined in Section 2.1 for grid-based and 503

lumen-centered partitioning. Two  amendments were made to the 504

procedure for the image processing of NBI images. Since histogram 505

equalization is ineffective in increasing image contrast for NBI, this 506

step was ignored. Furthermore, an image mask was applied to the 507

image such that only the endoscopic image was processed; this 508

excludes the black border surrounding the image. The rest of the 509

steps were performed identically to the previous experiment. Thus, 510

the resultant thresholded image was  comparable to that which 511

would be obtained with WLI. 512

The same procedure employed in the previous experiment was 513

used in order to train the ANNs; using the feature vectors as inputs 514

and the change in pose calculated from the magnetic tracking sys- 515

tem, each of the four ANNs was trained. One trial under both WLI 516

and NBI was  used for training. The remaining trial was used in 517

order to test the performance of the ANNs by evaluating the RMSE 518

between the ANN outputs and the pose reported by the tracker. 519

2.5. Assessment of feature strength based on illumination and 520

color 521

In order to quantitatively compare the strength of the features 522

extracted from WLI  and NBI, the criteria for trackable corners or 523

edges used in the S-T algorithm for good features was employed 524

[50]. The S-T algorithm, a well-established and common image 525

processing method, extracts strong features from an image by 526

calculating the eigenvalues of a pixel of interest in a local neighbor- 527

hood. This algorithm identifies two  types of good features – corners 528

and edges. A corner is indicated when these eigenvalues are both 529

large (i.e., there is a large variation in both directions), and an edge 530

is indicated by one large eigenvalue. 531

In order to evaluate these features, a single image was first 532

divided into its respective red, green, and blue channels, and addi- 533

tionally converted to grayscale. For each of these 4 derived images, 534

the S-T algorithm was  first applied in order to find the locations 535

of the good features, and at these points, the maximum eigen- 536

value was  recorded. Then, the total number of features, as well as 537

the mean and standard deviation of these maximum eigenvalues 538

was found for each image. This was repeated for 200 images col- 539

lected from the trial described in Section 2.4  under both WLI  and 540

NBI. In this way, the strength of the features based on illumination 541

were quantified, and an assessment of the role of each of the color 542

channels was performed. 543
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Fig. 6. RMSE and standard deviation of the ANN variations and state-of-the-art
magnetic tracker with respect to ground truth based on robot encoder readings.

3. Results and discussion544

3.1. Benchtop validation results545

A comparison of the RMSE of the performance of the ANNs and546

magnetic tracker over the entire testing set is shown in Fig.  6. As547

shown, for all variations of the ANNs in all positional DOF, the RMSE548

is less than 5 mm.  The ANNs best estimate the X DOF, which is the549

direction along the optical axis, and arguably the most important.550

Although there is similar performance in all of these ANNs, the grid-551

based partitioning method under WLI  is the best performing ANN.552

This is again confirmed in the Y and Z DOF. Noteworthy is the Y DOF,553

in which all of the ANNs are able to achieve better performance than554

the tracker.555

With regards to the rotational DOF, the lumen-centered parti-556

tioning using NBI is the best performing ANN with RMSE of less than557

1.7◦ in each case. In the yaw DOF, the WLI  lumen-centered parti-558

tion performs marginally better than the ANN resulting from NBI559

and lumen-centered partitioning. In the rotational DOF, the tracker560

consistently outperforms the ANNs, but the average difference is a561

trivial 0.7◦.562

Fig. 7. RMSE and standard deviation of ANN pose estimations against magnetic
tracker readings during clinical evaluation of the algorithm.

3.2. Results of validation with commercial endoscope 563

Fig. 7 shows the RMSE produced by the ANNs for the posi- 564

tional and rotational DOF. In this case, only 5 DOF are shown 565

since the adopted magnetic tracker is only able to report 5 DOF. 566

Approximately 1% of the data was removed to account for outliers. 567

Additionally, the results for grid-based partitioning are not shown 568

in Fig.  7 since their error is up to 10 times greater than that of the 569

lumen-centered partitioning approach. In comparing the illumina- 570

tion modalities for lumen-centered partitioning, the ANNs trained 571

with NBI are able to constantly achieve slightly better performance 572

in terms of accuracy and precision than the WLI  ANNs. Thus, lumen- 573

centered partitioning using NBI is a superior mechanism to WLI  for 574

vision-based motion estimation in this application, although both 575

have RMSE less than 2 mm in position and 3◦ in orientation. 576

An important result of this trial is that the ANNs can be trained 577

on noisy data, and still produce valid results, especially in the X, Y, 578

and yaw directions. Indeed, one of the applications of ANNs is to 579

filter noisy data. Furthermore, this experiment with a commercial 580

endoscope verifies that this approach is robust; during these tri- 581

als, the endoscope water channel was used to clean the lens, the 582

endoscope was  moved with sharp and sudden motions, and blood 583

frequently obscured the image – all of which produce significant 584

noise and disturbances in the image. Even further, the effect of roll 585
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Fig. 8. (A–D) Typical optical flow patterns for a 5-mm translation along the Z axis with combinations of illumination modalities and spatial partitions. Tests were performedQ2
in a human colon simulator with porcine blood staining.

was essentially filtered out from the data set by the ANNs since it586

was unmeasured, but still present in the image stream.587

A major contributor to the error in the pose estimates is likely588

due to this kind of noise, which obscures the image. Smooth, con-589

trolled movements, and dedicated algorithms for compensating590

for lens cleaning will aid in minimizing the error throughout the591

entire trajectory of the colon. One source of error that cannot be592

overlooked is the impact of the corners in this experiment, which593

particularly affects the performance of the grid-based method. This 594

likely explains the poor estimation ability of the grid-based parti- 595

tioning when tested on the entirety of the colon simulator rather 596

than just the straight trajectories as described in Section 2.3. 597

Lastly, given the frame It−�t, the time required to acquire the 598

current frame It and estimate the pose variation is approximately 599

280 ms  for lumen-centered partitioning – the most demanding in 600

terms of computational time – during the highest magnitude of 601

Fig. 9. (A–D) A comparison of the image of the lumen of the colon under WLI  and NBI using a commercial endoscope.
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Fig. 10. A comparison of the strength of features between WLI  and NBI per color
channel. K represents a grayscale version of the image, R is the red channel, B is the
blue channel, and G is the green channel.

movement tested. However, as mentioned in Section 2, this rate is602

highly dependent on the number of S-T feature correspondences603

found in each iteration of the testing procedure, which is approx-604

imately 300–10,000 in this implementation. Also, this algorithm605

was tested on a standard laptop with unoptimized code. Therefore,606

we expect that the computational time will be significantly reduced607

by parallelizing the computation of S-T feature correspondences,608

optimizing the code, and using a faster computer.609

3.3. Feature analysis610

The difference in appearance of the colon during the first trial611

comparing illumination modalities and spatial partitions is shown612

in Fig. 8. This corresponds to a translation of 5 mm along the Z613

axis. Visual inspection of the images reveals that there are distinct614

patterns in the optical flow due to the movements of the camera615

relative to the static image.616

Fig.  9 shows an analogous set of images, but using WLI  and617

NBI provided by the commercial endoscope. As is evident from a618

comparison of Fig.  8 and this figure, there is a visual difference in619

utilizing the artificial NBI LEDs versus NBI from the commercial620

endoscope. However, the effect is still the same; under qualita-621

tive inspection of the image, the blood features using NBI are much622

stronger and obvious as compared to those of WLI. In the figures623

shown, the partitioning approaches are overlaid on the image to624

visualize the impact of the segmentation on the feature set; how-625

ever, in practice such a division is not created on the image. A626

quantitative comparison of feature strength for grayscale repre-627

sentation of the image versus the red, green, and blue (RGB) color628

channels for WLI  and NBI based on the images from the commercial629

endoscope is shown in Fig.  10.  Corners and edges represent areas of630

an image that have high variation; these variations correspond to631

high eigenvalues. As shown in this figure, NBI features have more632

than twice the strength of WLI  features. Although it has a larger633

standard deviation in terms of these eigenvalues, even the lowest634

value of the mean – given this standard deviation – still far exceeds635

that of WLI. The average number of WLI  features is 12,600 for all636

color channels; on average, NBI images have 11,700 features. This637

suggests that although WLI  has more features than NBI, they have638

half the quality of NBI features. In addition, our adoption of an aver-639

aged grayscale image and discarding the other color components is640

justified since the grayscale value has nearly the same mean feature641

strengths as the other color channels.642

This aligns with the results found in Section 3.2, as well as 643

visual inspection of the images in Fig. 9, which show much higher 644

contrast between the colon and blood features. Furthermore, 645

since the features found in NBI are twice as strong as those found 646

for WLI, this enables more robust tracking of features from one 647

frame to another. This results in more consistency and coherence 648

between the training set for the ANN and the testing data that are 649

encountered in practice. 650

4. Conclusions 651

Teleoperated and automated flexible endoscopes have the 652

potential to impact the lives of people worldwide by reducing the 653

perceived indignity and discomfort of colonoscopy and other clin- 654

ical procedures. Pose detection algorithms provide positional and 655

rotational feedback about the movement of the tip of the endoscope 656

as a result of actuating the device. This is essential for control- 657

ling devices in dynamic environments which cannot be accurately 658

modeled, especially in the presence of disturbances caused by 659

the environment and noise inherent in the system. The research 660

presented in this paper has the potential to become an enabling 661

technology for teleoperated and automated colonoscopy. 662

This work first investigated how pose feedback can best be esti- 663

mated by using components that are already available in many 664

modern endoscopes, including the endoscopic camera, WLI, and 665

NBI. In order to do this, an image-based approach using optical 666

flow between two successive frames was used to train ANNs to 667

estimate a change in pose of the endoscope tip. The inputs to 668

the ANN were feature vectors created using two different spatial 669

partitioning approaches (grid-based or lumen-centered). To assess 670

the proposed approach and compare it to commercially available 671

magnetic trackers, a benchtop experiment was  performed using a 672

human colon simulator with blood. All the ANNs achieved posi- 673

tional RMSE of less than 5 mm,  and in one case, the error in all 674

the ANNs was lower than that of the commercial magnetic tracker. 675

The best combination of illumination and partitioning was WLI 676

with grid-based partitioning (2.42 mm RMSE). However, in terms 677

of rotational RMSE, the most accurate ANN was the one using NBI 678

and lumen-centered partitioning (1.69◦ RMSE). During this trial, 679

the tracker obtained an accuracy of 2.49 mm in positional DOF  and 680

0.89◦ in rotational DOF. With these results, we can conclude that 681

the optical flow-based ANN has performance comparable to that of 682

a state-of-the-art commercial tracker. 683

To confirm these results in a clinical setting, 4 colonoscopies 684

were performed with a commercial endoscope operated by an 685

expert endoscopist on a colonoscopy training model with fresh 686

porcine blood. Four sets of images were produced – 2 under 687

WLI, and 2 under NBI. During both these trials, the position and 688

orientation of a magnetic tracker placed in the tip of the endo- 689

scope via the tool channel was  also recorded. In each case of 690

illumination, one image set was  used for ANN training using the 691

magnetic tracker readings as the target values. The other image 692

set was used for testing, in which the performance of the ANNs 693

was measured with respect to the magnetic tracker readings. The 694

performance of lumen-centered partitioning with NBI was  supe- 695

rior, with 1.03 ± 0.8 mm RMSE  in positional DOF, and 1.26 ± 0.98◦
696

RMSE in rotational DOF, while with WLI, the performance was 697

1.56 ± 1.15 mm  RMSE  in positional DOF and 2.45 ± 1.90◦ RMSE in 698

rotational DOF. 699

A secondary purpose of this study was  to assess the impact 700

of illumination and color channel on feature strength. This was 701

achieved by analyzing a series of images collected from the 702

experiment using the commercial endoscope. The features were 703

compared based on their eigenvalues, a common image processing 704

measure of feature strength. A comparison of these eigenvalues 705

showed that features obtained from NBI were on average twice as 706
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strong as the features extracted under WLI. No significant differ-707

ence between the features strengths obtained from the RGB color708

channels or grayscale for any illumination was observed.709

This work demonstrated that an image-based approach using710

ANNs to learn the relationship between optical flow and change711

in pose of teleoperated flexible endoscopes is comparable to that712

of a commercially available magnetic tracker. The performance713

obtained by the ANNs was enhanced by the NBI modality, which714

corresponds to stronger features and better pose estimation. These715

findings indicate that NBI combined with a dynamic feature parti-716

tioning based on the anatomical structure of the colon – given the717

feature descriptors used for quantification – provides reliable and718

accurate feedback about the change in pose resulting from actua-719

tion of the endoscope. Regardless, the pose estimation algorithm720

presented can also be used with commercial endoscopes without721

NBI, although the accuracy will be slightly lower.722

It is worth mentioning that the ANN trained using the benchtop723

experimental setup was not used for the assessment performed724

with the commercial endoscope. This is because the benchtop725

experiment did not include training data with corner folds of726

the colon or irregularly spaced or oriented haustral folds; this727

was left for validation with the commercial endoscope. However,728

the training portion of this algorithm is meant to be performed729

once for the lifetime of the endoscope, assuming that the camera730

optics/illumination do not change significantly. Initial training of731

the algorithm would require a calibration endoscopy to be per-732

formed once by the endoscopist; however, numerical training and733

usage of the neural network would proceed in a software auto-734

mated fashion. As a future work, we will quantify the effect of the735

variance of the appearance of the colon among different patients736

and we will verify to what extent a new calibration/training of the737

ANN is required.738

Although this work cannot be used to detect looping or colon739

perforation, it is a novel method which uses components native to740

commercial endoscopes for pose feedback to teleoperated endo-741

scopes. Future work includes a further exploration of feature742

descriptors used for input to the ANNs, particularly those that lever-743

age the strength of features provided by the illumination modality744

employed, RGB color features [62], and aggregated features. Addi-745

tionally, this approach must still be confirmed by in vivo trials,746

repeating the experiment inside a living colon. Therefore, we  plan747

porcine model experiments using a commercial NBI endoscope as748

next step of this work. These experiments will allow a more accu-749

rate description of features produced by NBI due to the presence of750

blood vessels. This will also enable us to find optimal features and751

feature descriptors for each control loop in order to decrease the752

computational time for real-time pose estimation, while maintain-753

ing or improving the current accuracy. Furthermore, these trials754

will provide the opportunity to assess the robustness of the pro-755

posed method with respect to haustral contractions. To cope with756

this issue, we plan to freeze the endoscope motion during the haus-757

tral contraction and resume pose detection once the contraction is758

over. Finally, the methodology presented will be integrated as real-759

time closed-loop feedback into the control system of a teleoperated760

platform to achieve reliable remote manipulation of a teleoperated761

flexible endoscope.762
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