Publications


Edited Books
The Lightest Metals: Science and Technology from Lithium to Calcium; Hanusa, T. P., Ed; Wiley: Chicester, 2015; 496 pages.

The Heaviest Metals: Science and Technology of the Actinides and Beyond; Evans, W. J., Hanusa, T. P., Ed; Wiley: Chicester, 2019; 496 pages.

Publications
Origin of research: (U) = undergraduate; (G) = graduate; (P) = postdoctoral; (V) = Vanderbilt

2020–present

167. H. P. DeGroot and T. P.; Hanusa, “Solvate-Assisted Grinding: Metal Solvates as Solvent Sources in Mechanochemically Driven Organometallic Reactions,” Organometallics 2021, 40, 3516–3525. doi.org/10.1021/acs.organomet.1c00316 (V)

Frontispiece ACIE 2021

Frontispiece ACIE 2021

166. R. F. Koby, N. D. Schley, and T. P. Hanusa, “Di(indenyl)beryllium,” Angew. Chem. Int. Ed. 2021, 60, 21174–21178. https://doi.org/10.1002/anie.202107980 (V)

(designated a “VIP” (Very Important Paper)

165. R. F. Koby, A. M. Doerr, N. R. Rightmire, N. D. Schley, W. W. Brennessel, B. K. Long, T. P. Hanusa, “Mechanochemical Formation, Solution Rearrangements, and Catalytic Behavior of a Polymorphic Ca/K Allyl Complex,” Chem.Eur. J. 2021, 27, 8195-8202. https://doi.org/10.1002/chem.202100589 (V)

164. H. P. DeGroot and T. P. Hanusa, “Cyano Metal Complexes,” in Encyclopedia of Inorganic Chemistry; R. B. King, Ed.; Wiley, 2020, pp 1-13. (70 references) https://doi.org/10.1002/9781119951438.eibc0055.pub2 (V)

163. R. F. Koby, A. M. Doerr, N. R. Rightmire, N. D. Schley, B. K. Long, and T. P. Hanusa, “An η3-Bound Allyl Ligand on Magnesium in a Mechanochemically Generated Mg/K Allyl Complex,” Angew. Chem. Int. Ed. 2020, 59, 9542-9548. (V)

162. I. R. Speight and T. P. Hanusa, “Mechanochemical Activation in Solid-State Fluoro-Grignard Reactions,” Molecules 2020, 25, 570. (V)

161. I. R. Speight, I. Huskić, M. Arhangelskis, H. M. Titi, R. S. Stein, T. P. Hanusa, and T. Friščić, “Disappearing Polymorphs in Metal–Organic Framework Chemistry: Unexpected Stabilization of a Layered Polymorph over an Interpenetrated Three-Dimensional Structure in Mercury Imidazolate,” Chem.Eur. J. 2020, 26, 1696-1696. (V)

160. R. F. Koby and T. P. Hanusa, Macrocyclic Complexes of the Alkali Metals. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier: 2020. DOI: https://doi.org/10.1016/B978-0-12-409547-2.14810-3. (V)

2015–2019

159. R. F. Koby and T. P. Hanusa, Lithium, Sodium, Potassium, Rubidium, and Cesium. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier: 2019. DOI: https://doi.org/10.1016/B978-0-12-409547-2.14700-6. (V)

158. R. F. Koby, N. R. Rightmire, N. D. Schley, T. P. Hanusa, and W. W. Brennessel, “Halide metathesis in overdrive: mechanochemical synthesis of a heterometallic group 1 allyl complex,” Beilstein J. Org. Chem. 2019, 15, 1856-1863. (V)

157. I. R. Speight, S. C. Chmely, T. P. Hanusa, and A. L. Rheingold, “Mechanochemically directed metathesis in Group 2 chemistry: Calcium amide formation without solvent,” Chem. Commun., 2019, 55, 2202-2205. (V)

156. R. G. Koby, T. P. Hanusa, and N. D. Schley, “Mechanochemically Driven Transformations in Organotin Chemistry: Stereochemical Rearrangement, Redox Behavior, and Dispersion-Stabilized Complexes,” J. Am. Chem. Soc., 2018, 140, 15934-15942. (V)

155. N. C. Boyde, G. W. Steelman, and T. P. Hanusa, “Multicomponent mechanochemical synthesis of cyclopentadienyl titanium tert-butoxy halides, CpxTiXy(OtBu)4-(x+y) (x, y = 1, 2; X = Cl, Br),” ACS Omega, 2018, 3, 8149-8159. (V)

154. R. F. Koby and T. P. Hanusa, “Dispersion and Distortion in Heavy Group 2 and Lanthanide Decamethylmetallocenes: the (C5Me5)2(Sr,Sm) Connection,” J. Organomet. Chem., 2018, 857, 145-151. (V)

153. N. C. Boyde, N. R. Rightmire, T. P. Hanusa, and W. W. Brennessel, “Symmetric Assembly of a Sterically Encumbered Allyl Complex: Mechanochemical and Solution Synthesis of the Tris(allyl)beryllate, K[BeA´3] (A´ = 1,3-(SiMe3)2C3H3),” Inorganics, 2017, 5, 36. http://www.mdpi.com/2304-6740/5/2/36 (V)

152. N. C. Boyde, N. R. Rightmire, E. J. Bierschenk, G. W. Steelman, T. P. Hanusa, and W. W. Brennessel, “Reaction environment and ligand lability in group 4 Cp2MXY (X, Y = Cl, OtBu) complexes,” Dalton Trans. 2016, 45, 18635–18642. (V) http://dx.doi.org/10.1039/C6DT03199D

Cover, Oct 2016 NJC

Cover, Oct 2016 NJC

151. L. S. Fitts, E. J. Bierschenk, T. P. Hanusa, A. L. Rheingold, M. Pink, and V. G. Young, “Selective modification of the metal coordination environment in heavy alkaline-earth iodide complexes,” New J. Chem. 2016, 40, 8229–8238. (V) http://dx.doi.org/10.1039/C6NJ01713D

150. N. R. Rightmire, D. L. Bruns, T. P. Hanusa, and W. W. Brennessel, “Mechanochemical Influence on the Stereoselectivity of Halide Metathesis: Synthesis of Group 15 Tris(allyl) ComplexesComplexes,” Organometallics201635, 1698–1706. (V) http://pubs.acs.org/doi/full/10.1021/acs.organomet.6b00151

149. N. R. Rightmire and T. P. Hanusa, “Advances in Organometallic Synthesis with Mechanochemical Methods,” Dalton Trans.,2016, 2352-2362. (V) http://dx.doi.org/10.1039/C5DT03866A   image (Thomsen Reuters)

148. T P. Hanusa, “Metal-based NMR Spectroscopy in Solution,” in The Lightest Metals: Science and Technology from Lithium to Calcium; T. P. Hanusa, Ed.; Wiley: Chichester, 2015, pp 91-116. (V) http://DOI: 10.1002/9781119951438.eibc2292

147. N. C. Boyde and T P. Hanusa, “Interrelationships Between the Lightest Metals,” in The Lightest Metals: Science and Technology from Lithium to Calcium; T. P. Hanusa, Ed.; Wiley: Chichester, 2015, pp 3-22. (V) http://DOI: 10.1002/9781119951438.eibc2288

2010–2014

146. T. P. Hanusa, “Alkaline Earth Organometallics,” in Reference Module in Chemistry, Molecular Sciences and Engineering; Reedijk, J., Ed.; Elsevier: Oxford, 2014. DOI:10.1016/B978-0-12-409547-2.10982-5. (V)

145. T. P. Hanusa, “Group 1s and 2s Metals,” in Reference Module in Chemistry, Molecular Sciences and Engineering; Reedijk, J., Ed.; Elsevier: Oxford, 2014. DOI:10.1016/B978-0-12-409547-2.10973-4 (V)

144. N. R. Rightmire, T. P. Hanusa, A. L. Rheingold, “Mechanochemical Synthesis of [1,3-(SiMe3)2C3H3]3(Al,Sc), a Base-Free Tris(allyl)aluminum Complex and Its Scandium Analogue,” Organometallics 2014, 33, 5952–5955. (V) (ACS Editors’ Choice article) http://dx.doi.org/10.1021/om5009204

143. N. R. Rightmire, K. T. Quisenberry, and T. P. Hanusa, “Balancing Adduct Formation and Ligand Coupling with the Bulky Allyl Complexes [1,3-(SiMe3)2C3H3]2M (M = Fe, Co, Ni),” Organometallics, 2014, 33 , 5678–5685. (V) http://pubs.acs.org/doi/abs/10.1021/om5004573

142. N. C. Boyde, S. C. Chmely, T. P. Hanusa, A. L. Rheingold, and W. W. Brennessel, “Structural Distortions in M[E(SiMe3)2]3 Complexes (M = Group 15, f-Element; E = N, CH): Is Three a Crowd?” Inorg. Chem. 2014, 53, 9703-9714. (V) http://dx.doi.org/10.1021/ic501232z

141. T. P. Hanusa, E. J. Bierschenk, L. K. Engerer, K. A. Martin, and N. R. Rightmire, “Synthesis and Structures of Group 2 Compounds,” in Comprehensive Inorganic Chemistry-II; Reedijk, J., Poeppelmeier, K., Eds; Elsevier: Oxford, 2013, Vol. 1, pp. 1133-1187. (405 references) (V) http://www.sciencedirect.com/science/article/pii/B9780080977744001455

140. T. P. Hanusa, “Barium: physical and chemical properties,” in Encyclopedia of Metalloproteins; R. H. Kretsinger, V. N. Uversky, and E. A. Permyakov, Eds.; Springer, 2013; pp 244–250.  (10 references) (V) http://dx.doi.org/10.1007/978-1-4614-1533-6_167

139. T. P. Hanusa, “Strontium: physical and chemical properties,” in Encyclopedia of Metalloproteins; R. H. Kretsinger, V. N. Uversky, and E. A. Permyakov, Eds.; Springer, 2013; pp 2141–2149.  (10 references) (V) http://dx.doi.org/10.1007/978-1-4614-1533-6_174

138. C. Lichtenberg, T. P. Spaniol, I. Peckermann, T. P. Hanusa, and  J. Okuda, “Cationic, Neutral, and Anionic Allyl Magnesium Compounds: Unprecedented Ligand Conformations and Reactivity Toward Unsaturated Hydrocarbons,” J. Am. Chem. Soc. 2013, 135, 811-821. (V) http://dx.doi.org/10.1021/ja310112e

137. T. P. Hanusa, “Radium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/radium) (V)

136. T. P. Hanusa, “Barium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/barium) (V)

135. T. P. Hanusa, “Strontium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/strontium) (V)

134. T. P. Hanusa, “Calcium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/calcium) (V)

133. T. P. Hanusa, “Magnesium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/magnesium) (V)

132. T. P. Hanusa, “Beryllium,” in Encyclopaedia Britannica Online (2012) (www.britannica.com/ science/beryllium) (V)

131. C. S. G. Phillips and T. P. Hanusa, “Alkaline-earth metal,” in Encyclopaedia Britannica Online(2012) (www.britannica.com/science/alkaline-earth-metal) (V)

130. L. K. Engerer; C. N. Carlson; T. P. Hanusa; W. W. Brennessel; V. G. Young, Jr., “σ- vs π-Bonding in Manganese(II) Allyl Complexes,” Organometallics 2012, 31, 6131-6138. (V) http://dx.doi.org/10.1021/om300478v

129. R. M. Meier and T. P. Hanusa, “Structural organomanganese chemistry,” in The chemistry of organomanganese compounds; Z. Rappoport and I. Marek, Eds.; Patai’s Chemistry of Functional Groups; Wiley, 2011; pp 1–127. (450 references) (V) http://dx.doi.org/10.1002/9780470682531.pat0541

128. R. M. Meier and T. P. Hanusa, “Symmetry and Steric Effects on Spin States in Transition Metal Complexes,” in Encyclopedia of Inorganic Chemistry-II (Online Edition); R. A. Scott, Ed.; John Wiley: Chichester, http://DOI: 10.1002/9781119951438.eibc0704. Published 15th June 2011 (38 references) (V)

127. E. J. Bierschenk, N. R. Wilk, Jr., and T. P. Hanusa, “2,4-Pentanediolate as an Alkoxide/Diketonate “Hybrid” Ligand and the Formation of Aluminum and Zirconium Derivatives,” Inorg. Chem., 2011, 50, 12126-12132. (V) http://dx.doi.org/10.1021/ic201718a

126. P. Jochmann, T. P. Spaniol, S. C. Chmely, T. P. Hanusa, and J. Okuda, “Preparation, Structure, and Ether Cleavage of a Mixed Hapticity Allyl Compound of Calcium,” Organometallics 2011, 30, 5291-5296. (V) http://dx.doi.org/10.1021/om200749f

125. L. K. Engerer and T. P. Hanusa,  “Geometric Effects in Olefinic Cation-π Interactions with Alkali Metals: A Computational Study,” J. Org. Chem., 2011, 76, 42-49. (V) http://dx.doi.org/10.1021/jo101307z

124. S. C. Chmely and T. P. Hanusa, “d- and f-Block Transition Metal Complexes with Bulky Allyl Ligands,” in Encyclopedia of Inorganic Chemistry-II (Online Edition); R. H. Crabtree, Ed.; John Wiley: Chichester. DOI: 10.1002/0470862106.ia299.pub2. Published 15th December 2010. (38 references) (V)

123. C. H. McMillen, C. K. Gren, T. P. Hanusa, and A. L. Rheingold, “A Tetrameric Allyl Complex of Sodium, and Computational Modeling of the 23Na–Allyl Chemical Shift,” Inorg. Chim. Acta, 2010, 364, 61–68. (V) http://www.sciencedirect.com/science/article/B6TG5-50T9X1H-1/2/2c5892ea0e084d1c00ec88eaec7a1157

122. S. C. Chmely, T. P. Hanusa, and A. L. Rheingold, “Influence of Ring Methylation in Group 15 Tetramethylcyclopentadienyl Complexes, M(C5Me4H)nI3-n (M = As, Sb),” Organometallics, 2010, 29, 5551–5557. (V) http://dx.doi.org/10.1021/om100474m

Inside Cover, ACIE 8/9/2010

Inside Cover, ACIE 8/9/2010

121. S. C. Chmely, T. P. Hanusa, and W. W. Brennessel, “Bis(1,3-trimethylsilylallyl)beryllium,” Angew. Chem. Int. Ed. 2010, 49, 5870 –5874. (V) http://dx.doi.org/10.1002/anie.201001866

120. K. T. Quisenberry, R. E. White, T. P. Hanusa, and W. W. Brennessel, “Allyl complexes of the heavy alkaline-earth metals: molecular structure and catalytic behavior,” New J. Chem. 2010, 34, 1579–1584. (V) http://dx.doi.org/10.1039/C0NJ00084A

119. B. W. Schmidt, B. R. Rogers, W. J. Sweet III, C. K. Gren, and T. P. Hanusa, “Deposition of alumina from dimethylaluminum isopropoxide”,J. Eur. Ceram. Soc.2010, 30, 2301-2304. (V) http://dx.doi.org/10.1016/j.jeurceramsoc.2010.02.015

118. J. A. Crisp, R. M. Meier, J. S. Overby, T. P. Hanusa, A. L. Rheingold, and W. W. Brennessel, “Indenyl Complexes of Manganese(II). Conformational Flexibility of the Mn(II)–(RnC9H7-n) Bond,” Organometallics 2010, 29, 2322-2331. (V) http://dx.doi.org/10.1021/om100162j

117. B. W. Schmidt, C. K. Gren, T. P. Hanusa, and B. Rogers, “Carbon incorporation in chemical vapor deposited aluminum oxide films,” Thin Solid Films 2010, 518, 3658-3663. (V) http://www.sciencedirect.com/science/article/B6TW0-4XC9SBS-9/2/fa729d6039a8f35c4971a3908e05b2a3

116. S. C. Chmely and T. P. Hanusa, “Complexes with Sterically Bulky Allyl Ligands: Insights into Structure and Bonding,” Eur. J. Inorg. Chem. 2010, 1321-1337. (V) http://dx.doi.org/10.1002/ejic.200900813

115. B. W. Schmidt, W. J. Sweet III, E. J. Bierschenk, C. K. Gren, T. P. Hanusa, and B. R. Rogers, “Metal-organic chemical vapor deposition of aluminum oxide thin films via pyrolysis of dimethylaluminum isopropoxide”, J. Vac. Sci. Technol., A  2010, 28, 238-243. (V) http://link.aip.org/link/?JVA/28/238/1

2005–2009

 

114. M. J. Harvey, D. J. Burkey, S. C. Chmely, and T. P. Hanusa, “Stability of Cyclopentadienyl Aryloxide Complexes of Calcium and Barium,” J. Alloys Compd.2009488, 528-532. (V) http://www.sciencedirect.com/science/article/pii/S0925838808014965

113. C. K. Gren, T. P. Hanusa, and A. L. Rheingold, “Solvent-resistant Structures of Unsolvated Lithium and Potassium Allyl Complexes, M[(SiMe3)nC3H5-n] (M = Li, n = 3; M = K, n = 2),” Main Group Chem.20098, 225-235. (V) http://Solvent-resistant Structures of Base-free Lithium and Potassium Allyl Complexes, M[(SiMe3)nC3H5-n] (M = Li, n = 3; M = K, n = 2)

112. M. B. Meredith, C. H. McMillen, J. T. Goodman, and T. P. Hanusa, “Ambient temperature imidazolium-based ionic liquids with tetrachloronickelate(II) anions,”Polyhedron 200928, 2355-2358. (V) http://www.sciencedirect.com/science/article/pii/S0277538709002472

111. S. C. Chmely, C. N. Carlson, T. P. Hanusa, and A. L. Rheingold, “Classical vs. Bridged Allyl Ligands in Magnesium Complexes: the Role of Solvent,” J. Am. Chem. Soc. 2009, 131, 6344-6345. (V) http://dx.doi.org/10.1021/ja900998t

110. A. M. Johns, S. C. Chmely, and T. P. Hanusa, “Solution Interaction of Potassium and Calcium Bis(trimethylsilyl)amides; Preparation of Ca[N(SiMe3)2]2from Dibenzylcalcium,”Inorg. Chem. 200948, 1380-1384. (V) http://dx.doi.org/10.1021/ic8012766

109. M. B. Meredith, J. A. Crisp, E. D. Brady, T. P. Hanusa, G. T. Yee, M. Pink, W. W. Brennessel, and V. G. Young, Jr., “Tunable Spin-crossover Behavior in Polymethylated Bis(indenyl)-chromium(II) Complexes: the Significance of Benzo-ring Substitution,”Organometallics200827, 5464-5473. (V) http://dx.doi.org/10.1021/om800473z

108. E. D. Brady, S. C. Chmely, K. C. Jayaratne, T. P. Hanusa, and V. G. Young, Jr., “s-Block Metal Complexes of the Bis(tetramethylcyclopentadienyl) Phosphonium Diylide [Me(t-Bu)P(C5Me4)2],” Organometallics 2008, 27, 1612-1616. (V) http://dx.doi.org/10.1021/om700635c

107. T. P. Hanusa, “Alkaline-Earth Metals: Beryllium, Magnesium, Calcium, Strontium, and Barium,” inComprehensive Organometallic Chemistry-IIICrabtree, R., Mingos, M., Eds; Elsevier: Oxford, 2007; Vol. 2, Chapter 2.02, pp 67–152. (405 references) (V) http://www.sciencedirect.com/science/article/pii/B0080450474000364

106. K. T. Quisenberry, C. K. Gren, R. E. White, T. P. Hanusa, and W. W. Brennessel, “Trimethylsilylated Allyl Complexes of the Heavy Alkali Elements, M[1,3-(SiMe3)2C3H3]3(thf)n (M = K, Cs),” Organometallics 2007, 26, 4354-4356. (V) http://dx.doi.org/10.1021/om700410a

105. R. E. White, T. P. Hanusa, and B. E. Kucera, “Compositional Variations in Monomeric Trimethylsilylated Allyl Lanthanide Complexes,” J. Organomet. Chem. 2007, 692, 3479–3485. (V) http://www.sciencedirect.com/science/article/pii/S0022328X07002872

104. C. K. Gren, T. P. Hanusa, and A. L. Rheingold, “Threefold Cation–π Bonding in an Alkali Metal Tris(trimethylsilylallyl)zincate,” Organometallics 2007, 26, 1643–1649. (V) http://dx.doi.org/10.1021/om061174d

103. R. E. White and T. P. Hanusa, “Prediction of 89Y NMR Chemical Shifts in Organometallic Complexes with Density Functional Theory,” Organometallics 2006, 25, 5621–5630. (V) http://dx.doi.org/10.1021/om060695y

102. M. B. Meredith, J. A. Crisp, E. D. Brady, T. P. Hanusa, G. T. Yee, N. R. Brooks, B. E. Kucera, and V. G. Young, Jr., “High-spin and Spin-crossover Behavior in Monomethylated Bis(indenyl)chromium(II) Complexes,” Organometallics 2006, 25, 4945–4952. (V) http://dx.doi.org/10.1021/om060534u

101. R. E. White, C. N. Carlson, J. M. Veauthier, C. K. Simpson, J. D. Thompson, B. L. Scott, T. P. Hanusa, and K. D. John, “Observation of Electron Transfer in Bulky Allyl Ytterbium Complexes with Substituted Terpyridine Ligands,” Inorg. Chem. 2006, 45, 7004–7009. (V) http://dx.doi.org/10.1021/ic060603x

100. R. E. White, T. P. Hanusa, and B. E. Kucera, “Generation of Dimethylsilylene and Allylidene Holmium Complexes from Trimethylsilylated Allyl Ligands,” J. Am. Chem. Soc. 2006, 128, 9622-9623. (V) http://dx.doi.org/10.1021/ja062646i

99. C. K. Gren, T. P. Hanusa, and W. W. Brennessel, “Allyl Complexes of Heavy Group 13 Elements: Structure and Bonding in [1,3-(SiMe3)2C3H3]3Ga,” Polyhedron 2006, 26, 286-292 (V)http://www.sciencedirect.com/science/article/pii/S0277538705004559

98. T. P. Hanusa and C. N. Carlson, “Transition Metal Complexes with Bulky Allyl Ligands,” in Encyclopedia of Inorganic Chemistry-II; R. B. King, Ed.; Wiley, 2005; Vol. 9, pp 5690–5695. (19 references) (V) http://dx.doi.org/10.1002/0470862106.ia299

97. R. E. White, T. P. Hanusa, and U. Koelle, “Ruthenium: Organometallic Chemistry,” in Encyclopedia of Inorganic Chemistry-II; R. B. King, Ed.; Wiley, 2005; Vol. 7, pp 4778–4809. (108 references) (V) http://DOI: 10.1002/9781119951438.eibc0193

96. T. P. Hanusa, “Cyanide Complexes of the Transition Metals,” in Encyclopedia of Inorganic Chemistry-II; R. B. King, Ed.; Wiley, 2005; Vol. 2, pp 1231–1241. (47 references) (V) http://DOI: 10.1002/9781119951438.eibc0055

95. K. T. Quisenberry, T. P. Hanusa, and U. Koelle, “Cobalt: Organometallic Chemistry,” in Encyclopedia of Inorganic Chemistry-II; R. B. King, Ed.; Wiley, 2005; Vol. 2, pp 991–1027. (117 references) (V) http://DOI: 10.1002/9781119951438.eibc0045

94. C. K. Simpson, R. E. White, C. N. Carlson, D. A. Wrobleski, C. J. Kuehl, T. A. Croce, I. M. Steele, B. L. Scott, V. G. Young, Jr., T. P. Hanusa, A. P. Sattelberger, and K. D. John, “The Role of Alkali Metal Cations in MMA Polymerization Initiated by Neutral and Anionic Allyl Lanthanide Complexes,”Organometallics 2005, 24, 3685-3691. (V) http://dx.doi.org/10.1021/om050098w

93. K. T. Quisenberry, J. D. Smith, M. Voehler, D. F. Stec, T. P. Hanusa, and W. W. Brennessel, “Trimethylsilylated Allyl Complexes of Nickel. The Stabilized Bis(-allyl)nickel Complex [η³-1,3-(SiMe3)2C3H3]2Ni and its Mono(π-allyl)NiX (X = Br, I) Derivatives,” J. Am. Chem. Soc. 2005, 127, 4376-4387.  (V) http://dx.doi.org/10.1021/ja044308s

92. J. A. Crisp, M. B. Meredith, T. P. Hanusa, G. Wang, W. W. Brennessel, and G. T. Yee, “Bis(1,2,3-trimethylindenyl)iron(III) 2,3-Dicyanonaphtho-1,4-quinonide, a Non-Metallo­cene, Charge-Transfer Salt Metamagnet with Complementary Donor–Acceptor Geometries,” Inorg. Chem., 2005, 44, 172-174. (V) http://dx.doi.org/10.1021/ic048398d

2000–2004

91. T. P. Hanusa, “Group 1s and 2s Metals,” in Comprehensive Coordination Chemistry–II; McCleverty, J. A., Meyer, T. B., Eds; Elsevier: Oxford, 2004; Vol. 3, Chapter 1, pp 1–92. (799 references) (V) http://www.sciencedirect.com/science/article/pii/B0080437486020247

90. J. Dominic Smith, Keith T. Quisenberry, Timothy P. Hanusa, and William W. Brennessel l, “Bis(1,3-(trimethylsilyl)allyl)cobalt(II), (1,3-(SiMe3)2C3H3)2Co, a Stable Electron-deficient Allyl Complex,” Acta Cryst., 2004, C60, m507-m508. (V) https://doi.org/10.1107/S0108270104020293

89. C. N. Carlson, T. P. Hanusa, and W. W. Brennessel, “Metal Allyl Complexes with Bulky Ligands: Stabilization of Homoleptic Thorium Compounds,  [(SiMe3)nC3H5-n]4Th (n= 1, 2),”J. Am. Chem. Soc.2004126, 10550-10551. (V) http://dx.doi.org/10.1021/ja047770l

88. C. N. Carlson, J. D. Smith, T. P. Hanusa, W. W. Brennessel, and V. G. Young, Jr., “Homoleptic Allyl Complexes of Chromium with Trimethylsilylated Ligands. Formation and Molecular Structure of {[1-(SiMe3)C3H4]2Cr}2, [1,3-(SiMe3)2C3H3]2Cr, and [1,1´,3-(SiMe3)3C3H2]2Cr,”J. Organomet. Chem.,2003683, 191-199. (V) http://www.sciencedirect.com/science/article/pii/S0022328X0300603X

87. C. J. Kuehl, C. K. Simpson, K. D. John, A. P. Sattelberger, C. N. Carlson, and T. P. Hanusa, “Monomeric f-element Chemistry with Sterically Encumbered Allyl Ligands,” J. Organomet. Chem., 2003, 683, 149-154. (V) http://www.sciencedirect.com/science/article/pii/S0022328X03005588

86. M. J. Harvey, K. T. Quisenberry, T. P. Hanusa, and V. G. Young, Jr., “A Homologous Series of Base-Free Organoalkaline-earth Metallocenes: Synthesis and Molecular Structures of [1,2,4-(SiMe3)3C5H2]2(Ca,Sr,Ba),” Eur. J. Inorg. Chem., 2003, 3383-3390. (V) http://dx.doi.org/10.1002/ejic.200300284

85. E. D. Brady, J. S. Overby, M. B. Meredith, A. B. Mussman, M. A. Cohn, T. P. Hanusa, G. T. Yee, and M. Pink, “Spin-State Alteration from Sterically Enforced Ligand Rotation in Bis(indenyl)chromium(II) Complexes,” J. Am. Chem. Soc., 2002, 124, 9556-9566. (V) http://dx.doi.org/10.1021/ja012390a

84. T. P. Hanusa, “New Developments in the Cyclopentadienyl Chemistry of the Alkaline-earth Metals,” Organometallics, 2002, 21, 2559-2571. (V) (Invited review with 123 references)http://dx.doi.org/10.1021/om020168o

83. K. C. Jayaratne, L. S. Fitts, T. P. Hanusa, and V. G. Young, Jr., “Formation and Crystal Structure of a Cationic Mono(cyclopentadienyl) Complex of Calcium, [Ca(C5Me5)(OPPh3)3]+I,” Organometallics, 2001, 20, 3638-3640. (V) http://dx.doi.org/10.1021/om010399f

82. J. D. Smith and T. P. Hanusa, “Trends in the Structures and Energetics of the Group 14 Metallocenes (C5H5)2M (M = Si–Pb): a Density Functional Theory Study,”Organometallics,200120, 3056-3062. (V) http://dx.doi.org/10.1021/om020082v

81. J. D. Smith, T. P. Hanusa, and V. G. Young, Jr., “Steric Stabilization of Homoleptic Bis(π-allyl) Complexes of Chromium(II) and Iron(II),” J. Am. Chem. Soc., 2001, 123, 6455-6456. (V) http://dx.doi.org/10.1021/ja015626j

80. M. J. Harvey. T. P. Hanusa, and V. G. Young, Jr., “Formation and Crystal Structures of a Monomer–Dimer Pair of Mono(cyclopentadienyl)calcium Complexes, [(C5(t-Bu)3H2]­CaI(thf)2 and {[(C5(t-Bu)3H2]CaI(thf)}2,” J. Organomet. Chem., 2001, 626(1-2), 43-48. (V) http://www.sciencedirect.com/science/article/pii/S0022328X01006581

79. M. J. Harvey, T. P. Hanusa, and M. Pink, “Structural characterization of the columnar alkali metal cyclopentadienide [K{C5H2(SiMe3)3-1,2,4}],” J. Chem. Soc., Dalton Trans., 2001, 1128-1130. (V) http://dx.doi.org/10.1039/B009359I

78. E. D. Brady, T. P. Hanusa, M. Pink, and V. G. Young, Jr., “The First Non-coordinated Phosphonium Diylide, [Me2P(C13H8)2], and its Ylidic and Cationic Counterparts: Synthesis, Structural Characterization, and Interaction with the Heavy Group 2 Metals,” Inorg. Chem., 2000, 39, 6028-6037. (V) http://dx.doi.org/10.1021/ic000838n

77. T. P. Hanusa, “Non-cyclopentadienyl Organometallic Compounds of Calcium, Strontium, and Barium,” Coord. Chem. Rev., 2000, 210, 329-367. (V) http://dx.doi.org/10.1016/S0010-8545(00)00348-9

76. M. J. Harvey and T. P. Hanusa, “Mono(cyclopentadienyl) Complexes of Calcium, Strontium, and Barium, {[C5(SiMe3)3H2](Ca,Sr,Ba)I(thf)n}x. Influence of Alkali Metal Cations on Ligand Exchange Reactions,” Organometallics, 2000, 19, 1556-1566. (V) http://dx.doi.org/10.1021/om991003r

75. M. J. Harvey, T. P. Hanusa, and M. Pink, “Unusual stability of the coordinated triethylborohydride anion in an alkaline-earth metal complex: crystallographic characterization of [Ca(HBEt3){1,2,4-C5(SiMe3)3H2}(thf)2],” Chem. Commun., 2000, 489-490. (V) http://dx.doi.org/10.1039/A908674I

74. D. J. Burkey, T. P. Hanusa and J. C. Huffman, “Stereochemical Activity of the Metal-centered Lone Electron Pair in Group 14 Metallocenes. The Crystal Structure of the Linear Sandwich Complex [C5(iPr)3H2]2Pb,”Inorg. Chem.,200039, 153-155. (V) http://dx.doi.org/10.1021/ic9905401

1995–1999

73. J. S. Overby, T. P. Hanusa, S. P. Sellers, and G. T. Yee, “Steric Stabilization of a High-Spin Chromium(II) Indenyl Complex, [1,3-(C3H7)2C9H5]2Cr,” Organometallics, 1999, 18, 3561-3562. (V) http://dx.doi.org/10.1021/om990433e

72. J. S. Overby, K. C. Jayaratne, N. J. Schoell and T. P. Hanusa, “Unexpected Competition Between Vanadium and Zinc in the Synthesis of Sterically Bulky Metallocenes,” Organometallics, 1999, 18, 1663-1668. (V) http://dx.doi.org/10.1021/om980691w

71. J. S. Overby, E. D. Brady, S. C. Slate, and T. P. Hanusa, “Steric Influences on the Stability and Synthetic Accessibility of Tetraalkylcyclopentadienes,” J. Mol. Struct., 1999, 478, 163–168. (V) http://www.sciencedirect.com/science/article/pii/S0022286098007625

70. M. J. Harvey, T. P. Hanusa, and V. G. Young, Jr., “Synthesis and Crystal Structure of a Bis(allyl) Complex of Calcium, [Ca{C3(SiMe3)2H3}2·(thf)2],” Angew. Chem. Int. Ed., 1999, 38, 217-219. (V) http://dx.doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<217::AID-ANIE217>3.0.CO;2-Q

69. M. L. Hays, D. J. Burkey, J. S. Overby, T. P. Hanusa, S. P. Sellers, G. T. Yee, and V. G. Young, Jr., “Steric Influence on the Structure, Magnetic Properties, and Reactivity of Hexa- and Octaisopropylmanganocene,” Organometallics, 1998, 17, 5521-5527. (V) http://dx.doi.org/10.1021/om980596n

68. J. S. Overby, N. J. Schoell, and T. P. Hanusa, “Synthesis and Characterization of Chromocenes Containing Bulky Cyclopentadienyl Ligands,” J. Organomet. Chem., 1998, 560, 15-19. (V) http://www.sciencedirect.com/science/article/pii/S0022328X98004859

67. J. S. Overby, T. P. Hanusa, and V. G. Young, Jr., “Redetermination of the Zigzag Modification of Plumbocene at 173 K,” Inorg. Chem., 1998, 37, 163-165. (V) http://dx.doi.org/10.1021/ic970980x

66. J. S. Overby, J. M. Farrar, and T. P. Hanusa, “Bis[1,2,4-triisopropylcyclopenta­dienyl]ruthenium,” Acta Cryst., 1997, C53, 1605-1606. (V) https://doi.org/10.1107/S0108270197007014

65. J. S. Overby, T. P. Hanusa, and P. D. Boyle, “Stabilization of the (π-Indenyl)-Lead Bond: The First Structurally Authenticated Bis(η5-indenyl) Complex of a Posttransition Element, [{1,3-(SiMe3)2C9H5}2Pb],” Angew. Chem. Int. Ed. Engl., 1997, 36, 2378-2379. (V) http://dx.doi.org/10.1002/anie.199723781

64. A. M. Bahl, S. Krishnaswamy, N. G. Massand, D. J. Burkey, and T. P. Hanusa, “Heavy Alkaline-earth Polyether Carboxylates. The Crystal Structure of {Ca[(OOC(CH2)O(CH2)2]2O­ (H2O)2}2,” Inorg. Chem., 1997, 36, 5413-5415. (V) http://dx.doi.org/10.1021/ic970617q

63. R. H. Herber and T. P. Hanusa, “Hyperfine Interactions and Lattice Dynamics of Ferrocene, Ring-substituted Ferrocenes and their Oxidation Products,” Hyperfine Interact., 1997, 108, 563-575. (V) http://dx.doi.org/10.1023/A:1012616308692

62. D. J. Burkey, M. L. Hays, R. E. Duderstadt, and T. P. Hanusa, “Synthesis, Structures, and Properties of “Encapsulated” Iron and Cobalt Metallocenes with Highly Isopropylated Cyclopentadienyl Rings,” Organometallics, 1997, 16, 1465-1475. (V) http://dx.doi.org/10.1021/om960740+

61. P. S. Tanner, J. S. Overby, M. M. Henein, and T. P. Hanusa, “Cyclopentadienyl Ring Metathesis with Organocalcium and Organopotassium Compounds,” Chem. Ber./Recueil, 1997, 130, 155–159. (V) http://dx.doi.org/10.1002/cber.19971300204

60. M. L. Hays and T. P. Hanusa, “Substituent Effects as Probes of Structure and Bonding in Mononuclear Metallocenes,” Adv. Organomet. Chem, 1996, 40, pp 117–170. (239 references) (V) http://www.sciencedirect.com/science/article/pii/S006530550860533X

59. D. J. Burkey and T. P. Hanusa, “Synthesis and Solution Behavior of [Tetraiso-propylcyclopentadienyl]calcium Acetylide Complexes. The Molecular Structure of {[(C3H7)4C5H]Ca(µ-C≡CPh)(thf)}2,” Organometallics, 1996, 15, 4971-4976. (V) http://dx.doi.org/10.1021/om960126y

58. D. J. Burkey and T. P. Hanusa, “(Tetrahydrofuran-O)bis(h5-1,2,4-triisopropylcyclopenta­dienyl)strontium,” Acta Cryst., 1996, C52, 2452-2454. (V) https://doi.org/10.1107/S0108270196007330

57. M. L. Hays, T. P. Hanusa, and T. A. Nile, “Synthesis and X-Ray Crystal Structures of Alkaline-Earth Metallocenes with Pendant Substituents,” J. Organomet. Chem., 1996, 514, 73–79. (V) http://www.sciencedirect.com/science/article/pii/0022328X9506015O

56.  M. M. Jones, J. J. Molenda, T. P. Hanusa, and M. W. Voehler, “Structure of 5-Hydroxy-2-hydroxymethyl-1-methylpyrid-4-one and 13C NMR Relaxation Studies of its Gadolinium(III) Complex,” J. Inorg. Biochem., 1996, 62, 127-136. (V) http://www.sciencedirect.com/science/article/pii/0162013495001298

55. D. J. Burkey and T. P. Hanusa, “Effects of Steric Strain on the Bonding in Zinc Metallocenes: The Structure of [(C3H7)4C5H]2Zn,” J. Organomet. Chem., 1996, 512, 165–173. (V) http://www.sciencedirect.com/science/article/pii/0022328X9505952L

54. J. S. Overby and T. P. Hanusa, “Synthesis and Crystallographic Study of Indenyl and Isopropylated Indenyl Complexes of Calcium, Strontium, and Barium,” Organometallics, 1996, 15, 2205-2212. (V) http://dx.doi.org/10.1021/om950810x

53. M. L. Hays and T. P. Hanusa, “A Reinvestigation of the Reaction of Arylcalcium Iodides with Nitrous Oxide,”Tetrahedron Lett.,199536, 2435-2436. (V) http://www.sciencedirect.com/science/article/pii/004040399500309Z

52. J. S. Overby and T. P. Hanusa, “2,4,7,9-Tetra-tert-butyl-1,3,7,9-decatetraene,” Acta Cryst., 1995, C51, 313-315. (V) https://doi.org/10.1107/S0108270194006426

51. D. J. Burkey and T. P. Hanusa, “Structural Lessons from Main-Group Metallocenes,” Comments Inorg. Chem., 1995, 17, 41-77. (V) (Invited review with 93 references) http://dx.doi.org/10.1080/02603599508035781

50. P. S. Tanner, D. J. Burkey and T. P. Hanusa, “Cyclopentadienyl Ring Metathesis with Bis(pentamethylcyclopentadienyl)calcium as a Route to Mixed Ring Organolanthanide Complexes; the Crystal Structure of (C5Me5)2Nd(C5H5),” Polyhedron, 1995, 14, 331-333. (V) http://www.sciencedirect.com/science/article/pii/0277538794003167

1990–1994

49. T. P. Hanusa and D. J. Burkey, “Cyano Metal Complexes,” in Encyclopedia of Inorganic Chemistry; R. B. King, Ed.; Wiley, 1994, 2, pp 943-949. (34 references) (V) (No online link available)

48. T. P. Hanusa, “Calcium, Strontium & Barium: Organometallic Chemistry,” in Encyclopedia of Inorganic Chemistry; R. B. King, Ed.; Wiley, 1994, 1, pp 507-518. (120 references) (V) (No online link available)

47. J. S. Overby and T. P. Hanusa, “Synthesis and Crystal Structure of the “Open” Calcocene, [{(tBu)2C5H5}2Ca•thf],” Angew. Chem. Int. Ed. Engl., 1994, 33, 2191-2193. (V) (Selected for inclusion in a “Highlights” article for the issue) http://dx.doi.org/10.1002/anie.199421911

46. P. S. Tanner and T. P. Hanusa, “Encapsulated Alkaline-earth Metallocenes. 4. Thermal Instability in Tetraphenylcyclopentadienyl Barium Complexes,” Polyhedron, 1994, 13, 2417-2420. (V) http://www.sciencedirect.com/science/article/pii/S0277538700881541

45. J. A. Burman, M. L. Hays, D. J. Burkey, P. S. Tanner, and T. P. Hanusa, ”Synthesis and Structural Characterization of Hexa(cyclohexyl)ferrocene, [1,2,4-(C6H11)3C5H2]2Fe,” J. Organomet. Chem., 1994, 479, 135-139. (V) http://www.sciencedirect.com/science/article/pii/0022328X94841004

44. D. J. Burkey, E. K. Alexander and T. P. Hanusa, “Encapsulated Alkaline-Earth Metallocenes. 5. Kinetic Stabilization of Mono[tetraisopropylcyclopentadienyl]calcium Complexes,” Organometallics, 1994, 13, 2773-2786. (V) http://dx.doi.org/10.1021/om00019a038

43. J. J. Molenda, M. A. Basinger, T. P. Hanusa and M. M. Jones, “Synthesis and Iron(III) Binding Properties of 3-Hydroxypyrid-4-ones Derived from Kojic Acid,” J. Inorg. Biochem., 1994, 55, 131-146. (V) http://www.sciencedirect.com/science/article/pii/0162013494850356

42. K. F. Tesh, D. J. Burkey and T. P. Hanusa, “Formation, Structures and Reactions of Calcium and Barium Mono(alkoxide) Complexes,” J. Am. Chem. Soc., 1994, 116, 2409-2417. (V) http://dx.doi.org/10.1021/ja00085a021

41. D. J. Burkey, T. P. Hanusa, and J. C. Huffman, “Encapsulated Alkaline-earth Metallocenes. 3. Structural Influences on Phase Transformations in Alkaline-earth Complexes,” Adv. Mater. Opt. Electron., 1994, 4, 1-8. (V) http://dx.doi.org/10.1002/amo.860040102

40. P. S. Tanner, R. A. Williams, and T. P. Hanusa, “Relative Importance of Oligomerized Structures and Donor–Acceptor Interactions in Electrophilic Cyclopentadienyl Compounds,” Inorg. Chem., 1993, 32, 2234-2235. (V) http://dx.doi.org/10.1021/ic00063a005

39. T. P. Hanusa, “Ligand Influences on Structure and Reactivity in Organoalkaline-earth Chemistry,” Chem. Rev., 1993, 93, 1023-1036. (V) (Invited review with 164 references) http://dx.doi.org/10.1021/cr00019a009

38. D. J. Burkey, R. A. Williams, and T. P. Hanusa, “Encapsulated Alkaline-earth Metallocenes. 2. Triisopropylcyclopentadienyl Systems, [(C3H7)3C5H2]2Ae(THF)n (Ae = Ca, Sr, Ba; n = 0–2) and the Crystal Structure of [(C3H7)3C5H2]2Ba(THF)2,” Organometallics, 1993, 12, 1331-1337. (V) http://dx.doi.org/10.1021/om00028a056

37. K. F. Tesh, T. P. Hanusa, J. C. Huffman, and C. J. Huffman, “Structural Relationships between Mono- and Dimeric Bis(alkoxides) and Bis(aryloxides) of Calcium and Barium. The X-ray Crystal Structures of M(OC6H2-t-Bu2-2,6-Me-4)2(THF)3•(THF) [M = Ca, Ba] and [Ca(µ-OR)(OR)(THF)]2•2(toluene) [R = C(C6H5)2CH2C6H4-Cl-4],” Inorg. Chem., 1992, 31, 5572-5579. (V) http://dx.doi.org/10.1021/ic00052a037

36.   G. D. Friesen, T. P. Hanusa, L. J. Todd, and L. G. Sneddon, “7,9-Diselena-nido-undecaborane(9),” Inorg. Synth., 1992, 29, 105-107. (G) http://dx.doi.org/10.1002/9780470132609.ch24

35. K. F. Tesh, B. D. Jones, T. P. Hanusa, and J. C. Huffman, “Synthesis and Crystallographic Characterization of [CsHN(SiMe3)]4, a Cesium-based Heterocubane,” J. Am. Chem. Soc., 1992, 114, 6590-6591. (V) http://dx.doi.org/10.1021/ja00042a067

34. S. C. Sockwell, P. S. Tanner, and T. P. Hanusa, “Control of Donor–Acceptor Interactions in Organoalkaline-earth–Transition Metal Complexes. Crystallographic Characterization of (Me5C5)2HfCl(µ-Cl)Ca(Me5C5)2,” Organometallics, 1992, 11, 2634-2638. (V) http://dx.doi.org/10.1021/om00043a055

33. R. A. Williams, T. P. Hanusa, and J. C. Huffman, “Reaction of Organocalcium and -barium Complexes with Pyrazines. X-ray Structural Characterization of [(Me5C5)2Ba]2(µ-C4H4N2),” J. Organomet. Chem., 1992, 429, 143-152. (V) http://www.sciencedirect.com/science/article/pii/0022328X9283247F

32. S. C. Sockwell, T. P. Hanusa, and J. C. Huffman, “Formation and Reactions of Mono- and Bis(peralkylcyclopentadienyl) Complexes of Calcium and Barium. The X-ray Crystal Structure of [(Me4EtC5)Ca(µ-SiMe2CH2CH2Me2)]2,” J. Am. Chem. Soc., 1992, 114, 3393-3399.(V) http://dx.doi.org/10.1021/ja00035a035

31. K. F. Tesh and T. P. Hanusa, “Formation and Solid-State Structure of a Tetranuclear Oxoaryloxide Cluster of Barium, [Ba44-O)(µ2-OC6H2(CH2NMe2)3-2,4,6)6]•3(toluene),” J. Chem. Soc., Chem. Commun., 1991, 879-881. (V) http://dx.doi.org/10.1039/C39910000879

30. R. A. Williams, K. F. Tesh, and T. P. Hanusa, “Encapsulated Alkaline-earth Metallocenes. Synthesis, Solution Behavior and Solid-State Structures of Bis(tetraisopropylcyclopenta­dienyl)calcium and -barium, [(C3H7)4C5H]2Ca and [(C3H7)4C5H]2Ba,” J. Am. Chem. Soc., 1991, 113, 4843-4851. (V) http://dx.doi.org/10.1021/ja00013a020

29. T. P. Hanusa, “New Developments in the Organometallic Chemistry of Calcium, Strontium, and Barium,” Polyhedron, 1990, 9, 1345-1362. (V) (Invited review with 88 references) http://www.sciencedirect.com/science/article/pii/S0277538700840152

28. M. J. McCormick, K. B. Moon, S. R. Jones, and T. P. Hanusa, “Preparation of Activated Calcium, Strontium, and Barium Powders by Reduction of Alkaline Earth Di-iodides,” J. Chem. Soc., Chem. Commun., 1990, 778-779. (V) http://dx.doi.org/10.1039/C39900000778

 

27. R. A. Williams, T. P. Hanusa, and J. C. Huffman, “Structures of Ionic Decamethyl­metallocenes: Crystallographic Characterization of (Me5C5)2Ca and (Me5C5)2Ba, and a Comparison with Related Organolanthanide Species,”Organometallics,19909, 1128-1134. (V) http://dx.doi.org/10.1021/om00118a036

26. K. F. Tesh, T. P. Hanusa, and J. C. Huffman, “Ion Pairing in [Bis(trimethylsilyl)amido]­potassium: X-ray Crystal Structure of Unsolvated [KN(SiMe3)2]2,”Inorg. Chem.,199029, 1584-1586. (V) http://dx.doi.org/10.1021/ic00333a029

25. R. A. Williams, T. P. Hanusa, and J. C. Huffman, “Synthesis and Crystallographic Characterization of (Me5C5)2Ca(Me3SiC≣C–C≡CSiMe3): The First Monomeric Diyne Complex of a Main-group Element,” J. Am. Chem. Soc. 1990, 112, 2454-2455. (V) http://dx.doi.org/10.1021/ja00162a075

24. S. C. Sockwell and T. P. Hanusa, “Detection of Covalency in Cyclopentadienyl Complexes of the Alkaline Earth and f Elements: Statistical Evaluation of Structural Data,” Inorg. Chem., 1990, 29, 76-80. (V) http://dx.doi.org/10.1021/ic00326a016

1985–1989

23. W. J. Evans, D. K. Drummond, T. P. Hanusa, and J. M. Olofson, “Synthesis and X-ray crystal structure of a heterobimetallic bridged alkynide complex (C5Me5)2Y(µ-C≡CCMe3)2­Li(THF),”J. Organomet. Chem.,1989376, 311-320. (P) http://www.sciencedirect.com/science/article/pii/0022328X89851411

22.  M. J. McCormick, S. C. Sockwell, C. E. H. Davies, T. P. Hanusa, and J. C. Huffman, “Synthesis of a Monopentamethylcyclopentadienyl Halide Complex of Calcium; the X-Ray Crystal Structure of [(Me5C5)Ca(µ-I)(THF)2]2”, Organometallics, 1989, 8, 2044-2049. (V) http://dx.doi.org/10.1021/om00110a035

21.  R. A. Williams, T. P. Hanusa, and J. C. Huffman, “Solid-State Structure of Bis(pentamethyl-cyclopentadienyl)barium, (Me5C5)2Ba; the First X-Ray Crystal Structure of an Organobarium Complex,” J. Chem. Soc., Chem. Commun., 1988, 1045-1046. (V) http://dx.doi.org/10.1039/C39880001045

20.   M. J. McCormick, R. A. Williams, L. J. Levine and T. P. Hanusa, “Solution Synthesis of Calcium, Strontium, and Barium Metallocenes,” Polyhedron 1988, 7(9), 725-730. (V) http://www.sciencedirect.com/science/article/pii/S0277538788800457

19.  W. J. Evans, M. S. Sollberger, and T. P. Hanusa, “Synthesis and Structure of the Polymetallic Yttrium Alkoxide Complex, Y33-OCMe3)(µ3-Cl)(µ-OCMe3)3(OCMe3)4(THF)2 and Related Complexes: Ln33-OR)(µ3-X)(µ-OR)3 Building Blocks in Yttrium and Lanthanide Alkoxide Chemistry,” J. Am. Chem. Soc. 1988, 110, 1841-1850. (P) http://dx.doi.org/10.1021/ja00214a029

18. T. P. Hanusa, N. R. de Parisi, J. G. Kester, A. Arafat, and L. J. Todd, “Synthesis of Polyhedral Arsaboranes and Their Metal Derivatives,” Inorg. Chem. 1987, 26, 4100-4102. (G) http://dx.doi.org/10.1021/ic00271a026

17. W. J. Evans, D. K. Drummond, T. P. Hanusa and R. J. Doedens, “Bis(1,2-dimethylcyclo­pentadienyl) Yttrium Complexes. Synthesis and X-ray Crystallographic Characterization of [(1,3-Me2C5H3)2Y(µ-Me)]2, [(1,3-Me2C5H3)2Y(µ-H)]3, and [(1,3-Me2C5H3)2(THF)Y(µ-H)]2,” Organometallics 1987, 6, 2279-2285. (P)

16. T. P. Hanusa, “Reexamining the Diagonal Relationships,” J. Chem. Educ.198764(8), 686-687. (V) http://dx.doi.org/10.1021/ed064p686

15.  W. J. Evans, T. P. Hanusa, J. H. Meadows, W. E. Hunter, and J. L. Atwood, “Synthesis and X-ray Crystal Structure of µ,η2N-Alkylformimidoyl Complexes of Erbium and Yttrium, A Structural Comparison,” Organometallics 1987, 6, 295-301. (P) http://dx.doi.org/10.1021/om00145a010

14. W. J. Evans, R. Dominguez, and T. P. Hanusa, “Organolanthanide and Organoyttrium Enolate Chemistry. The Synthesis of [(C5H4R)2Ln(µ-OCH=CH2)]2 and the Molecular Structure of [(CH3C5H4)2Y(µ-OCH=CH2)]2,”Organometallics 1986, 5, 1291-1296. (P)

13.  W. J. Evans, L. A. Hughes, T. P. Hanusa, and R. J. Doedens, “Synthesis and X-ray Crystal Structures of Bis(pentamethylcyclopentadienyl) Complexes of Samarium and Europium, (C5Me5)2Sm and (C5Me5)2Eu,” Organometallics 1986, 5, 1285-1291. (P) http://dx.doi.org/10.1021/om00138a001

12. T. P. Hanusa and W. J. Evans, “X-ray Crystal Structure of Solvent-free Hydrido­tris(triphenylphosphine)rhodium, HRh(PPh3)3,” J. Coord. Chem. 1986, 14, 223-229. (P) http://dx.doi.org/10.1080/00958978608073911

11.  W. J. Evans, R. Dominguez, and T. P. Hanusa, “Organolanthanide and organoyttrium hydride chemistry. Part 8. Structure and Reactivity Studies of Bis­(cyclopentadienyl) Ytterbium and Yttrium Alkyl Complexes Including the X-ray Crystal Structure of (C5H5)2Yb(CH3)(THF),” Organometallics 1986, 5, 263-270. (P) http://dx.doi.org/10.1021/om00133a016

10. T. P. Hanusa and L. J. Todd, “Reductive Isomerization of Icosahedral Metallocarbaboranes,” Polyhedron 1985, 4, 2063-2066. (G) http://www.sciencedirect.com/science/article/pii/S0277538700867364

9. W. J. Evans, T. P. Hanusa, and K. R. Levan, “Synthesis and Structure of an Organosamarium Aryloxide Complex, (C5Me5)2Sm(OC6HMe4-2,3,5,6),” Inorg. Chem. Acta 1985, 110, 191-195. (P) http://www.sciencedirect.com/science/article/pii/S0020169300823063

8. T. P. Hanusa, T. A. Ulibarri, and W. J. Evans, “Structure of (h-Methylcyclopentadienyl)(tri­phenylphosphine)copper(I), [Cu(CH3C5H4){P(C6H5)3}],” Acta. Crystallogr. 1985, C41, 1036-1038. (P) https://doi.org/10.1107/S0108270185006485

7. T. P. Hanusa, T. L. Curtis, J. C. Huffman, and L. J. Todd, “Synthesis of (π-Arene)­metallocarbaboranes Containing Ruthenium or Osmium and a (π-Cyclohexadienyl)cobalta­carbaborane. Crystal Structure of 2,5,6-(η-C6H6)RuC2B7H11,” Inorg. Chem. 1985, 24, 787-792. (G) http://dx.doi.org/10.1021/ic00199a032

1980–1984

5. W. J. Evans, L. A. Hughes, and T. P. Hanusa, “Synthesis and Crystallographic Characterization of an Unsolvated, Monomeric Bis(pentamethylcyclopentadienyl) Organolanthanide Complex, (C5Me5)2Sm,” J. Am. Chem. Soc. 1984, 106, 4270-4272. (P) http://dx.doi.org/10.1021/ja00327a037

4. T. P. Hanusa, “Pentamethylcyclopentadiene and the Carbaborane B9C2H112- as Analogous Ligands in Transition Metal Complexes,” Polyhedron 1982, 1, 663-665. (G) http://www.sciencedirect.com/science/article/pii/S0277538700808657

3. T. P. Hanusa, J. C. Huffman, and L. J. Todd, “Synthesis of π-(Arene)metallocarboranes Containing Iron and Ruthenium. Crystal Structure of 3,1,2-(η6-1,3,5-(CH3)3C6H3)FeC2B9H11,” Polyhedron 1982, 1, 77-82. (G) http://www.sciencedirect.com/science/article/pii/S0277538700810724

2. A. M. Barriola, T. P. Hanusa, and L. J. Todd, “Synthesis of Heteroatom Boranes Containing Two Arsenic Atoms,” Inorg. Chem. 1980, 19, 2801-2802. (G) http://dx.doi.org/10.1021/ic50211a061

1. T. H. Jordan, J. S. Wefel, D. Brennan, C. Brooks, T. Hanusa, S. VanWhy, “Reaction Between TiF4and Apatite,” J. Dent. Res198059(Sp. Iss. A), 523. (U) (No online link available)


Back Home