Engineering the Spectral and Spatial Dispersion of Thermal Emission using Phonon Polaritons

Guanyu Lu1, Christopher R. Gubbin2, J. Ryan Nolen1, Thomas Folland1,3, Ivan I. Kravchenko4, Marko J. Tadjer5, Greg Walker1, Simone De Liberato2, Joshua D. Caldwell1
1. Vanderbilt University, 2. University of Southampton, 3. The University of Iowa, 4. Oak Ridge National Laboratory, 5. US Naval Research Laboratory

Thermal emission
- Described by Planck’s law:
 \[L_{BB}(T) = \frac{c^3}{4\pi^5} \frac{1}{e^{\frac{hc}{kT}} - 1} \]
- Thermal emission from a black body has broadband emitting energy distribution in both the spectra and spatial domains.

Waste-heat driven narrowband thermal emitter
- Low-loss localized surface phonon polaritons (LSPhP) from SiC nanopillar array can give rise to narrowband thermal emission [1].
- We demonstrated that the SiC narrowband thermal emitter can be potentially driven by waste heat: over 10 mW output LWIR power.

Phonon polaritons
- They are quasiparticles that comprise a photon and a coherently oscillating ionic charge in polar materials.
- Momentum mismatch: can’t be launched by free-space light.
- Lower loss compared to plasmons in the LWIR spectra region.

Spatially coherent emission from superstructure gratings
- Superstructure gratings (SSGs) can launch surface phonon polaritons (SPhP) with different wavevectors in a single grating [2].
- Multiple spatially coherent emission modes from SSGs fabricated into a 4H–SiC substrate:

Strongly coupled thermal emitter
- Strong coupling phenomenon can combine the corresponding virtues of both LSPhP and SPhP into a new, hybrid mode [3].
- Coupling to a third zone-folded longitudinal optic phonons (ZFLO) mode can make the emission electrically driven possible.
- We demonstrated a 5-fold improvement in the spatial coherence and 3-fold enhancement of the quality factor for coupled modes.
- Increasing the complexity of LSPhP unit cell can introduce a new degree of freedom with new collectively excited LSPhP modes [4].

References and Acknowledgements
1. Lu, G., et al., ACS Omega, (2020)

Funding: Vanderbilt University, NSF STTR, ONR, DOE user facility.