Stimulating Macrophage-Dependent Anti-Tumor Immunity with siRNA-Loaded, Mannosylated Nanoparticles in Ovarian Cancer

Evan B. Glass1, Alyssa A. Hoover1, Kennady K. Bullock1, Matthew Z. Madden2, Bradley I. Reinfeld3, Whitney Harris1, Dominique Parker1, Demetra H. Hufnagel1, W. Kimryn Rathmell2, Jeffrey C. Rathmell2, Andrew J. Wilson2, Todd D. Giorgio1, & Fiona E. Yull1
1Vanderbilt University, Nashville, TN; 2Vanderbilt University Medical Center, Nashville, TN

Background

Tumor-associated macrophages (TAMs) are primarily M2-like and promote tumor progression and immunosuppression

- Repolarizing TAMs to an M1, pro-inflammatory phenotype can stimulate anti-tumor immunity
- By targeting the inhibitor of Nuclear Factor-κB alpha (IkBα) with small interfering RNA (siRNA), TAMs can be repolarized to develop anti-tumor immunity
- TAMs overexpress CD206 which can be targeted by decorating nanoparticles with mannose

Hypothesis

Delivery of IkBα siRNA using mannose-decorated polymeric nanoparticles will activate the canonical NF-κB pathway in TAMs to support anti-tumor immunity

MnPEGDB Polymers Complex with siRNA to Form MnNPs that Target and Repolarize M2 BMDMs

- Mannose-Poly(ethylene glycol)-(DMAEMA-co-BMA) (MnPEGDB) forms polymeric complexes with small oligonucleotides (Cy5-dsDNA, scrambled siRNA, IkBα siRNA)
- DLS and zeta revealed size ~140 nm and zeta ~1 mV
- FTIR confirmed mannose conjugation (decrease in azide peak at 2100 cm⁻¹)
- IkBα-MnNPs induce phenotypic shift towards M1 macrophages by activating canonical NF-κB in BMDMs from NGL-reporter mice

In Vivo IP Delivery of MnNPs Targets TAMs in the Ascites and Tumor in TBR5 Ovarian Tumor Models

- Female FVB mice injected IP with TBR5 ovarian tumor cells were treated with Cy5-MnNPs twice per week for 2 weeks (4 total treatments)
- Flow analysis of solid tumor, ascites, and spleen revealed specific uptake of MnNPs in the macrophages and monocytes in the solid tumor and ascites, but not the other immune cells
- Negligible delivery was observed in any immune cell population in the spleen

- Organ comparison of macrophages and monocytes revealed no off-target delivery outside of tumors and ascites
- MnNPs were almost exclusively taken up by CD45+ immune cells, with no delivery to tumor cells

MnNP Treatment with IkBα siRNA Suppresses Tumor Development in Multiple Models of Ovarian Cancer

<table>
<thead>
<tr>
<th>ID8-C57BL/6 (Late-Stage Model)</th>
<th>TBR5-FVB (Aggressive Model)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female C57BI/6 injected with ID8 cells and treated 3x at late-stage</td>
<td>Female FVB injected with TBR5 cells and treated 2x/week to model an aggressive tumor</td>
</tr>
<tr>
<td>Trend in reduction of ascites volume but no change in tumor size</td>
<td>Both MnNP treatments significantly reduced ascites accumulation and tumor growth, only IkBα-MnNP significantly decreased tumor cell populations</td>
</tr>
<tr>
<td>TNF-α and CCL3 RNA expression was increased in the ascites, indicating increase in inflammation</td>
<td>IkBα-MnNPs also significantly decreased the percent of M2-like TAMs, indicating repolarization of macrophages</td>
</tr>
</tbody>
</table>

Conclusions and Future Directions

- MnNPs form nanoscale micelles that deliver IkBα siRNA to macrophages and alter their phenotype
- In vivo delivery via IP injection revealed specific uptake into macrophages in the solid tumor and ascites with negligible off-target delivery to the spleen
- Treatment with IkBα-MnNPs decreased ascites buildup and tumor burden and altered TAM phenotype
- Preliminary IF studies suggested an increase in infiltrating CD8 T cells, necessary for future combination therapies
- Future Directions:
 - Utilize combination therapies with immune checkpoint blockades to increase therapeutic effects
 - Evaluate potential for MnNP treatments to limit progression of breast cancer metastases using two models:
 - Intubation for direct delivery into lungs with breast metastases generated via orthotopic tumor implants
 - Intravenous delivery to treat pre-existing bone metastases

References

Acknowledgements

- Todd Giorgio and Fiona Yull Research Groups
- J. and K. Rathmell Labs for flow cytometry assistance
- VINSE for use of FTIR and Zetasizer
- Funding:
 - NIH R01CA214043
 - Also supported by a generous gift from Mr. Chris Hill through Anglo-American Charity Ltd.