# Publications

**45.** Relatively hyperbolic groups with free abelian second cohomology (pdf), (with E. Swenson) arXiv 1812.08893.

**44.** Non-cocompact group actions and $\pi_1$ semistability at infinity (pdf), (with R. Geoghegan and C. Guilbault) arXiv1709.09129.

**43.** Topological properties of spaces admitting a coaxial homeomorphism (pdf), arXiv 1709.09140.

**42.**Bounded depth ascending HNN extensions and $\pi_1$-semistability at infinity (pdf), (with R. Geoghegan and C. Guilbault) arXiv 1611.01807.

**41.**Relatively hyperbolic groups with semistable fundamental group at infinity (pdf), (with E. Swenson) arXiv:1709.02420.

**40.**Semistability and Simple Connectivity at Infinity of Finitely Generated Groups with a Finite Series of Commensurated Subgroups (pdf),

*Algebraic and Geometric Topology*

**16-6**(2016), 3615-3640.

**39.**JSJ decompositions of Coxeter groups over virtually abelian splittings (pdf), arXiv:0804.3963.

**38.**Commensurated Subgroups, Semistability and Simple Connectivity at Infinity (pdf), (with G. Conner)

*Algebraic and Geometric Topology*,

**14-6**(2014), 3509–3532.

**37.**A classification of right angled Coxeter groups with no 3-flats and locally connected boundary (pdf), (with W. Camp)

*J. Group Theory*,

**17**(2014), no. 5, 717-755.

**36.**Geodesically tracking quasi-geodesic paths for Coxeter groups (pdf), (with S. Tschantz)

*Bulletin of the London Mathematical Society*,

**45**(2013), no 4, 700-714.

**35.**Commensurated Subgroups and Ends of Groups (pdf), (with G. Conner)

*J. Group Theory*,

**16**(2013), No. 1, 107-139.

**34.**Strong accessibility of Coxeter groups over minimal splittings (pdf), (with S. Tschantz),

*J. Pure Appl. Algegra*,

**216**(2012), No. 5, 1102-1117.

**33.**Visual decompositions of Coxeter groups (pdf), (with S. Tschantz),

*Groups, Geom., and Dyn*.

**3**(2009) 173-198.

**32.**On the rank of a Coxeter group (pdf), (with J. Ratcliffe),

*J. Group Theory*

**12**, No. 3 (2009) 449-464.

**31.**Quotient isomorphism invariants of a finitely generated Coxeter group (pdf), (with J. Ratcliffe and S. Tschantz), In –

*Aspects of Infinite Groups*, Ed. B. Fine, G. Rosenberger, and D. Spellman,

*Algebra Discrete Math.*

**1**(2008), 16pp. World Sci. Publ., Hackensack NJ.

**30.**Matching theorems for systems of a finitely generated Coxeter group (pdf), (with J. Ratcliffe and S. Tschantz),

*Algebr. Geom. Topol.*

**7**(2007) 919-956.

**29.**Local connectivity of right angled Coxeter group boundaries –

*improved*(pdf), ( joint with K. Ruane and S. Tschantz),

*J. Group Theory*

**10**, No. 4 (2007) 531-560.

**28.**The even isomorphism theorem for Coxeter groups (pdf),

*Trans. Amer. Math. Soc.*

**359**, No. 9 (2007) 4297-4324.

**27.**Homotopy of ends and boundaries of CAT(0) groups (pdf), (with G. Conner and S. Tschantz),

*Geom. Dedicata*

**120**(2006) 1-17.

**26.**Reflection independence in even Coxeter groups (pdf), (with P. Bahls)

*Geom. Dedicata*

**110**(2005) 63-80.

**25.**Ascending HNN-extensions of finitely generated free groups are Hopfian, (with R. Geoghegan, M. Sapir and D. Wise),

*Proc. London Math. Soc.*

**33**(2001) 292-298.

**24.**CAT(0) HNN-extensions with non-locally connected boundary, (with K. Ruane)

*Topology Appl.*

**100**(2001) 83-98.

**23.**Cat (0) groups with non-locally connected boundary, (with K. Ruane)

*J. London Math. Soc.*(2)

**60**(1999) 757-770.

**22.**Group extensions, HNN-extensions and tame pairs,

*Trans. Amer. Math. Soc.*

**381**, No. 2 (1999) 1095-1107.

**21.**Tame combings for groups, (with S. Tschantz),

*Trans. Amer. Math. Soc.*

**349**No. 10 (1997) 4251-4264.

**20.**Compactifying coverings of 3-manifolds,

*Comment. Math. Helv.*

**71**(1996), 362-372.

**19.**Semistability at infinity, simple connectivity at infinity and normal subgroups,

*Topology Appl.*(3)

**72**(1996), 273-281.

**18.**The fundamental groups at infinity, (with R. Geoghegan),

*Topology*(3)

**35**(1996), 665-669.

**17.**Semistability of Artin and Coxeter groups,

*J. Pure Appl. Algebra*

**111**(1996), 205-211.

**16.**The QSF property for groups and spaces, (with S. Brick),

*Math. Zeit.*(2)

**220**(1995), 207-218.

**15.**Group extensions are QSF, (with S. Brick),

*Bull. Austral. Math. Soc.*(1)

**50**(1994), 21-28.

**14.**Quasiconvex subgroups of hyperbolic groups, (with S. Tschantz),

*Bull. Amer. Math. Soc.*(1)

**26**(1992), 131-136.

**13.**Semistability of amalgamated products, HNN-extensions and all one relator groups, (with S. Tschantz),

*Bull. Amer. Math. Soc.*(1)

**26**(1992), 131-136.

**12.**One relator groups are semistable at infinity, (with S. Tschantz),

*Topology*(4)

**31**(1992), 801-804.

**11.**Ends of amalgamated products and HNN-extensions, (with S. Tschantz),

*Mem. Amer. Math. Soc.*

(# 471)

**98**(1992).**10.**Notes on negatively curved groups, (with J.M. Alonso, T. Brady, D. Cooper, V. Ferlini, M. Lustig, M. Shapiro, H. Short (editor)), In proceedings of the workshop of

*Group Theory from a Geometrical Viewpoint*– ICIP, Trieste, Italy (1991), World Scientific, edited by A. Haefliger, E. Ghys and A. Ver- jovsky, 3-63.

**9.**Semistability at infinity, infinite ended groups and group cohomology,

*Trans. Amer. Math.*Soc.(2)

**303**(1987), 479-485.

**8.**Solvable groups that are simply connected at infinity,

*Math. Zeit.*

**195**(1987) 79-87.

**7.**A note on the vanishing of $H^n(G:ZG)$,

*J. Pure Appl. Algebra*

**39**(1986), 301-304.

**6.**Semistability of finitely generated groups and solvable groups,

*J. Pure Appl. Algebra*

**35**(1985), 305-320.

**5.**Ends of double extension groups,

*Topology*

**25**(1986), 45-53.

**4.**Ends of groups with integers as a quotient,

*J. Pure Appl. Algebra*

**35**(1985), 305-320.

**3.**Free abelian cohomology of groups and ends of universal covers, (with R. Geoghegan),

*J. Pure Appl.*

**36**(1985), 123-137.

**2.**Semistablility at the end of a group extension,

*Trans. Amer. Math. Soc*.

**277**(1983), 307-321.

**1.**Ends of fundamental groups in shape and proper homotopy,

*Pac. J. Math.(2)*

**90**(1980),

431-458.