Warning: Undefined array key "myvuwebrequested" in /var/www/m_my.prd.vanderbilt.edu/wp-content/themes/vanderbilt-brand/includes/session.php on line 77
Publications – The Friedman Lab

Publications

K. Ngo, T.H. Gittens, D.I. Gonzalez, E.A. Hatmaker, S. Plotkin, M. Engle, G.A. Friedman, M. Goldin, R.E. Hoerr, B.F. Eichman, A. Rokas, M.L. Benton, K.L. Friedman (2023) A comprehensive map of hotspots of de novo telomere addition in Saccharomyces cerevisiae. Genetics 224(2). iyad076. PMID: 37119805.

R.E. Hoerr, A. Eng, C. Payen, S.C. Di Rienzi, M.K. Raghuraman, M.J. Dunham, B.J. Brewer, K.L. Friedman (2023) Hotspot of de novo telomere addition stabilizes linear amplicons in yeast grown in sulfate-limiting conditions. Genetics 224(2):iyad010. PMC1021349.

R.E. Hoerr,* K. Ngo,* K.L. Friedman (2021) When the ends justify the means: regulation of telomere addition at double-strand breaks in yeastFront Cell Dev Biol 9:655377. PMC8012806 *These authors contributed equally.

R.T. DeAngelis, J. Taylor, K.L. Friedman (2020) Parental status and biological functioning: findings from the Nashville stress and health study. Popul Res Policy Rev. 39(2): 365-373. PMC7954218

Ngo, E.A. Epum,K.L. Friedman (2020) Emerging non-canonical roles for the Rad51-Rad52 interaction in response to double-strand breaks in yeast.Curr Genet.  PMID32399607.

E.A. Epum, M. Mohan, N.P. Ruppe, K.L. Friedman (2020) Interaction of yeast Rad51 and Rad52 relieves Rad52-mediated inhibition of de novo telomere additionPLoS Genet. 16(2):e1008608. PMID32012161.

E. O’Brien, L.E. Salay, E.A. Epum, K.L. Friedman, W.J. Chazin, J.K. Barton (2018) Yeast require redox switching in DNA primase.  Proc Natl Acad Sci U S A. 115:13186-13191. PMC6310810.

M.J. McFarland, J. Taylor, C.A.S. McFarland, K.L. Friedman (2018) Perceived Unfair Treatment by Police, Race, and Telomere Length: A Nashville Community-based Sample of Black and White Men.  J Health Soc Behav.585-600.

M.D. Schaller, G. McDowell, A. Porter, D. Shippen, K.L. Friedman, M.S. Gentry, T.R. Serio, W.I. Sundquist. (2017) What’s in a name? Elife 6.pii: e32437. PMC5655148.

C. Obodo, E.A. Epum, M.H. Platts, J. Seloff, N.A. Dahlson,  S.M. Velkovsky, S.R. Paul, and K.L. Friedman (2016) Endogenous Hot Spots of De Novo Telomere Addition in the Yeast Genome Contain Proximal Enhancers That Bind Cdc13. Mol. Cell. Biol. 36, 1750-1763.

T.D. Hill, C.G. Ellison, A.M. Burdette, J. Taylor, and K.L. Friedman. (2016) Dimensions of religious involvement and leukocyte telomere length. Social Science & Medicine 163, 168-75.

Ning, M.D. Feldkamp, D. Cortez, W.J. Chazin, K.L. Friedman, and E. Fanning (2015) Simian virus Large T antigen interacts with the N-terminal domain of the 70 kD subunit of Replication Protein A in the same mode as multiple DNA damage response factors. PLoS One 10: e0116093. PMC4337903.

G.A. Sowd, D. Mody, J. Eggold, D. Cortez, K.L. Friedman, and E. Fanning (2014) SV40 utilizes ATM kinase activity to prevent non-homologous end joining of broken viral DNA replication products. PLoS Pathog.10 :e1004536. PMC4256475.

C. Hawkins and K.L. Friedman (2014) Normal Telomere Length Maintenance in Yeast Requires Nuclear Import of the Ever Shorter Telomeres 1 (Est1) Protein via the Importin Alpha Pathway. Eukaryotic Cell 13: 1036-1050.  PMC4135794.

K. Paeschke, M.L. Bochman, P.D. Garcia, P. Cejka, K.L. Friedman, S.C. Kowalczykowski, and V.A. Zakian (2013) Pif1 family helicases suppress genome instability at G-quadruplex motifs. Nature 497. 458-462. PMC3680789.

J.L. Ferguson, W.C.H. Chao, E. Lee and K.L. Friedman (2013) The anaphase promoting complex contributes to the degradation of the S. cerevisiae telomerase recruitment subunit Est1p. PLoS ONE 8(1): e55055. PMC3555863

R.C.B. Bairley, G. Guillaume, L.R. Vega, and K.L. Friedman (2011) A mutation in the catalytic subunit of yeast telomerase alters primer-template alignment while promoting processivity and protein-DNA binding. J. Cell Sci., 124. 4241-52. PMID: 22193961

J.M. Talley, D.C. DeZwaan, L.D. Maness, B.C. Freeman, and K.L. Friedman (2011) Stimulation of yeast telomerase activity by the ever shorter telomere 3 (Est3) subunit is dependent on direct interaction with the catalytic protein Est2. J. Biol. Chem. 286. 26431-26439. PMC3143607

K.L. Friedman (2011) Telomerase reverse transcriptase and Wnt signaling. Mol. Cell. Biol. 31. 2366-2368. PMC3133428

J.L. Osterhage and K.L. Friedman (2009) Chromosome end maintenance by telomerase. J Biol Chem. 284. 16061-16065. PMC2713563

H. Ji, C.J. Adkins, B.R. Cartwright, and K.L. Friedman (2008) Yeast Est2p affects telomere length by influencing association of Rap1p with telomeric chromatin. Mol. Cell. Biol. 28. 2380-2390.

J.L. Osterhage, J.M. Talley, and K.L. Friedman (2006) Proteasome-dependent degradation of Est1p regulates the cell cycle-restricted assembly of telomerase in Saccharomyces cerevisiae. Nat. Struct. Mol. Biol. 13. 720-728.

H. Ji, M.H. Platts, L.M. Dharamsi, and K.L. Friedman (2005) Regulation of telomere length by an N-terminal region of the yeast telomerase reverse transcriptase. Mol. Cell. Biol. 25. 9103-9114.

 

Back Home   

Recent Comments

    Archives

    Categories

    Meta