Journal Club


Fall 2019:


  • Verschooten, E., Desloovere, C., & Joris, P. X. (2018). High-resolution frequency tuning but not temporal coding in the human cochlea. PLoS Biology, 16(10), e2005164. pdf
  • Verschooten, E. et al. (2019). The upper frequency limit for the use of phase locking to code temporal fine structure in humans: A compilation of viewpoints. Hearing Research, 377, 109-121. pdf


  • Mowery, T. M. et al. (2019). Preserving inhibition during developmental hearing loss rescues auditory learning and perception. Journal of Neuroscience, 39(42), 8347– 8361. pdf


  • Nist-Lund, C. A. et al. (2019). Improved TMC1 gene therapy restores hearing and balance in mice with genetic inner ear disorders. Nature Communications, 10(236), 1-14. pdf


  • Parham, K. et al. (2019). Noise-induced trauma produces a temporal pattern of change in blood levels of the outer hair cell biomarker prestin. Hearing Research, 371, 98-104. pdf


  • Iyer et al. (2018). Visualizing the 3D cytoarchitecture of the human cochlea in an intact temporal bone using synchrotron radiation phase contrast imaging. Biomedical Optics Express, 9(8), 3757-3767. pdf


  • Ryals, Dent, & Dooling (2013). Return of function after hair cell regeneration. Hearing Research, 297, 113-120. pdf
  • Cotanche (1987). Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hearing Research, 30, 181-196. pdf


  • Bruce, Erfani, & Zilany (2018). A phenomenological model of the synapse between the inner hair cell and auditory nerve: Implications of limited neurotransmitter release sites. Hearing Research, 360, 40-54. pdf


  • Jesteadt, Bacon, & Lehman (1982). Forward masking as a function of frequency, masker level, and signal delay. JASA, 71(4), 950-962. pdf
  • Glasberg, Moore, & Bacon (1987). Gap detection and masking in hearing-impaired and normal-hearing subjects. JASA, 81(5), 1546-1556. pdf

Spring 2019:

04/19/2019 and 04/26/2019

  • Carney, L. H. (2018). Supra-threshold hearing and fluctuation profiles: Implications for sensorineural and hidden hearing loss. JARO, 19, 331-352. pdf
    • Supplemental Reading: Carney, L. H., Li, T., & McDonough, J. M. (2015). Speech coding in the brain: Representation of vowel formants by midbrain neurons tuned to sound fluctuations. eNeuro, 2(4), 1-12. pdf


  • Bramhall, N., Beach, E. F., Epp, B., Le Prell, C. G., Lopez-Poveda, E. A., Plack, C. J., Schaette, R., Verhulst, S., & Canlon, B. (2019). The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hearing Research, 377, 88-103. pdf


  • Dobie, R. A. & Humes, L. E. (2017). Commentary on the regulatory implications of noise-induced cochlear neuropathy. International Journal of Audiology, 56:sup1, 74-78. pdf


  • Lonsbury-Martin, B. L. & Martin, G. K. (1981). Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations. Journal of Neurophysiology46(3), 563-586. pdf


  • Shaheen, L. A. & Liberman, M. C. (2018). Cochlear synaptopathy changes sound-evoked activity without changing spontaneous discharge in the mouse inferior colliculus. Frontiers in Systems Neuroscience, 12(59), 1-19. pdf

Fall 2018:


  • Caspary, D. M., Ling, L, Turner, J. G., & Hughes, L. F. (2008). Review: Inhibitory neurotransmission, plasticity and aging in the mammalian central auditory system. Journal of Experimental Biology, 211, 1781-1791. pdf


  • Juarez-Salina, D. L., Engle, J. R., Navarro, X. O., & Recanzone, G. H. (2010). Hierarchical and serial processing in the spatial auditory cortical pathway is degraded by natural aging. Journal of Neuroscience, 30(44), 14795-14804. pdf
  • Ng, C-W., Navarro, X., Engle, J. R., & Recanzone, G. H. (2015). Age-related changes of auditory brainstem responses in nonhuman primates. Journal of Neurophysiology, 114, 455-467. pdf


  • Fernandez, K. A., Jeffers, P. W., Lall, K., Liberman, M. C., & Kujawa, S. G. (2015). Aging after noise exposure: acceleration of cochlear synaptopathy in “recovered” ears. Journal of Neuroscience, 35(19), 7509-7520. pdf


  • Suzuki, Corfas, & Liberman (2016). Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Scientific Reports, 6 (24907)pdf


  • Song, Q., Shen, P., Li, X., Shi, L., Liu, L., Wang, J., Yu, Z., Stephen, K., Aiken, S., Yin, S., Wang, J. (2016). Coding deficits in hidden hearing loss induced by noise: The nature and impacts. Scientific Reports, (25200). pdf


  • Buran, B.N., Strenzke N., Neef, A., Gundelfinger, E.D., Moser, T., Liberman, M.C. (2010). Onset coding is degraded in auditory nerve fibers from mutant mice lacking synaptic ribbons. Journal of Neuroscience, 30 (22), 7587-7597. pdf

Summer 2018


  • Valero, M. D., Burton, J. A., Hauser, S. N., Hackett, T. A., Ramachandran, R., & Liberman, M. C. (2017). Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hearing Research, 353, 213-223. pdf
  • Viana, L. M., O’Malley, J. T., Burgess, B. J., Jones, D. D., Oliveira, C. A. C. P., Santos, F., Merchant, S. N., Liberman, L. D., & Liberman, M. C. (2015). Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hearing Research, 327, 78-88. pdf


  • Mehraei, G., Hickox, A. E., Bharadwaj, H. M., Goldberg, H., Verhulst, S., Liberman, M. C., & Shinn-Cunningham, B. G. (2016). Auditory brainstem response latency in noise as a marker of cochlear synaptopathy. Journal of Neuroscience, 36(13), 3755-3764. pdf
  • Bharadwaj, H. M., Masud, S., Mehraei, G., Verhulst, S., & Shinn-Cunningham, B. G. (2015). Individual differences reveal correlates of hidden hearing deficits. Journal of Neuroscience, 35(5), 2161-2172. pdf


  • Guest, H., Munro, K. J., Prendergast, G., Millman, R. E., & Plack, C. J. (2018). Impaired speech perception in noise with a normal audiogram: No evidence for cochlear synaptopathy and no relation to lifetime noise exposure. Hearing Research, 364, 142-151. pdf
  • Lobarinas, E., Spankovich, C., & Le Prell, C. G. (2017). Evidence of “hidden hearing loss” following noise exposures that produce robust TTS and ABR wave-I amplitude reductions. Hearing Research, 349, 155-163. pdf


  • Valero, M. D., Hancock, K. E., & Liberman, M. C. (2016). The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hearing Research, 332, 29-38. pdf
  • Shaheen, L. A., Valero, M. D., & Liberman, M. C. (2015). Towards a diagnosis of cochlear neuropathy with envelope following responses. JARO, 16, 727-745. pdf


  • Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2013). Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology, 110(3), 577-586. pdf
  • Lin, H. W., Furman, A. C., Kujawa, S. G., & Liberman, M. C. (2011). Primary neural degeneration in the guinea pig after reversible noise-induced threshold shift. JARO, 12, 605-616. pdf


  • Kujawa, S. G. & Liberman, M. C. (2009). Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-induced hearing loss. Journal of Neuroscience, 29(45), 14077-14085. pdf
  • Kujawa, S. G. & Liberman, M. C. (2006). Acceleration of age-related hearing loss by early noise exposure: Evidence of a misspent youth. Journal of Neuroscience, 26(7), 2115-2123. pdf

Spring 2018:

Auditory Anatomy and Physiology Independent Study: Syllabus

Fall 2017:


Ryan, A. F., Miller, J. M., Pfingst, B. E., & Martin, G. K. (1984). Effects of reaction time performance on single-unit activity in the central auditory pathway of the rhesus macaque. Journal of Neuroscience4(1), 298-308.


Ryan, A., & Miller, J. (1977). Effects of behavioral performance on single-unit firing patterns in inferior colliculus of the rhesus monkey. Journal of Neurophysiology40(4), 943-956.


Ryan, A., & Miller, J. (1978). Single unit responses in the inferior colliculus of the awake and performing rhesus monkey. Experimental Brain Research32(3), 389-407.


Rhode, W. S., Roth, G. L., & Recio-Spinoso, A. (2010). Response properties of cochlear nucleus neurons in monkeys. Hearing Research259(1), 1-15.


Kavanagh Moore, J. (1980). The primate cochlear nuclei: loss of lamination as a phylogenetic process. Journal of Comparative Neurology193(3), 609-629.


Liberman, M. C. (1993). Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei. Journal of Comparative Neurology327(1), 17-36.


Liberman, M. C. (1991). Central projections of auditory‐nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus. Journal of Comparative Neurology313(2), 240-258.


Liberman, M. C. (1982). Single-neuron labeling in the cat auditory nerve. Science216(4551), 1239-1241.


Nomoto, M., Suga, N., & Katsuki, Y. (1964). Discharge pattern and inhibition of primary auditory nerve fibers in the monkey. Journal of Neurophysiology27(5), 768-787.


Badri, R., Siegel, J. H., & Wright, B. A. (2011). Auditory filter shapes and high-frequency hearing in adults who have impaired speech in noise performance despite clinically normal audiograms a. The Journal of the Acoustical Society of America129(2), 852-863.

Spring 2017:


Pages, D. S., Ross, D. A., Puñal, V. M., Agashe, S., Dweck, I., Mueller, J., Grill, W., Wilson, S., Groh, J. M. (2016). Effects of Electrical Stimulation in the Inferior Colliculus on Frequency Discrimination by Rhesus Monkeys and Implications for the Auditory Midbrain Implant. The Journal of Neuroscience, 36(18), 5071-5083.


Salzman, C. D., Murasugi, C. M., Britten, K. H., & Newsome, W. T. (1992). Microstimulation in visual area MT: effects on direction discrimination performance. Journal of Neuroscience12(6), 2331-2355.

Fall 2016:


Christison-Lagay, K. L., Bennur, S., & Cohen, Y. E. (2017). Contribution of spiking activity in the primary auditory cortex to detection in noise. Journal of Neurophysiology118(6), 3118-3131.


Kidd Jr, G., Mason, C. R., Brantley, M. A., & Owen, G. A. (1989). Roving‐level tone‐in‐noise detection. The Journal of the Acoustical Society of America86(4), 1310-1317.


Liberman, M. C., Epstein, M. J., Cleveland, S. S., Wang, H., & Maison, S. F. (2016). Toward a differential diagnosis of hidden hearing loss in humans. PLoS One11(9), e0162726.