Publications

– Peer Reviewed Journal Publications (113)
– Refereed Conference Publications (14)
– Book Chapters (1)
– Patents (13 Granted US Patents)

> 5000 Citations; h-index 39 (Link to my Google Scholar Page)

1. Peer Reviewed Journal Publications

2018

113. C. Meng^, N. Muralidharan^, E. Teblum, K. Moyer, G.D. Nessim, and C.L. Pint, “Multifunctional Structural Ultra-Battery Composite,”  Nano Letters, accepted and in press (2018).

112. A.P. Cohn, T. Metke, J. Donohue, N. Muralidharan, K. Share, and C.L. Pint, “Rethinking sodium-ion anodes as nucleation layers for anode-free batteries,” Journal of Materials Chemistry A, accepted and in press (2018).

111. R. Rao, C.L. Pint, A.E. Islam, R. Weatherup, S. Hofmann, E. Meshot, F. Wu, C. Zhou, N.T. Dee, P. Amama, W. Shi, D. Plata, J. Carpena, E. Penev, B.I. Yakobson, P. Balbuena, C. Bichara, D. Futaba, S. Noda, H. Shin, K.S. Kim, B. Simard, F. Mirri, M. Pasquali, F. Fornasiero, E.I. Kauppinen, M.S. Arnold, B.A. Cola, P. Nikolaev, S. Arepalli, H-M. Cheng, D. Zakharov, E.A. Stach, M. Terrones, D.B. Geohegan, B. Maruyama, S. Maruyama, J. Zhang, Y. Li, W.W. Adams, A.J. Hart, “Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis towards Mainstream Commercial Applications”  ACS Nano, accepted and in-press (2018).

110. N. Muralidharan^, A. Westover^, E. Teblum^, D. Schauben, A. Yitzhak, M. Muallem, G.D. Nessim, and C.L. Pint, “Carbon nanotube reinforced structural composite supercapacitor,” Scientific Reports 8 17662 (2018).

109. K. Moyer, J. Donohue, N. Ramanna, A.P. Cohn, N. Muralidharan, J. Eaves, and C.L. Pint, “High-rate potassium ion and sodium ion batteries by co-intercalation anodes and open framework cathodes,” Nanoscale 10, 13335-13342 (2018).

108. M. Li, N. Muralidharan, K. Moyer, and C.L. Pint, “Solvent Mediated Hybrid 2D Materials – Black Phosporus-Graphene Heterostructured Building Blocks Assembled for Sodium Ion Batteries, Nanoscale 10, 10443-10449 (2018).

107. N. Muralidharan, J. Afolabi, K. Share, M. Li, and C.L. Pint, “A Fully Transient Mechanical Energy Harvester,” Advanced Materials Technologies 1800083 (2018).

106. A. Douglas, R. Carter, M. Li, and C.L. Pint, “Toward Small Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening” ACS Applied Materials and Interfaces 10, 19010-19018 (2018).

105. E. Shawat Avraham, A. S. Westover, A. Itzhak, L. Shani, V. Mor, O. Girshevitz, C. L. Pint, and G. D. Nessim, “Patterned Growth of Carbon Nanotube Forests using Cu and Cu/Ag Thin Film Reservoirs as Growth Inhibitors,” Carbon, 130, 273-280 (2018).

2017

104. R. Carter, B. Davis, L. Oakes, M. Maschmann, and C.L. Pint, “High Areal Capacity Lithium Sulfur Battery Cathode by Site-Selective Vapor Infiltration of Hierarchical Carbon Nanotube Arrays,”  Nanoscale 9, 15018 – 15026 (2017).

103. N. Muralidharan^, M. Li^, R. Carter, N. Galioto, and C.L. Pint, “Ultralow Frequency Electrochemical – Mechanical Strain Energy Harvester using 2D Black Phosphorus Nanosheets,” ACS Energy Letters 2, 1797-1803 (2017).

102. A. Douglas, N. Muralidharan, R. Carter, and C.L. Pint, “Sustainable Capture and Conversion of Carbon Dioxide into Valuable Multi-Walled Carbon Nanotubes using Metal Scrap Materials,” ACS Sustainable Chemistry & Engineering, 5, 7104 – 7110 (2017).

101. N. Muralidharan, C. Brock, A.P. Cohn, D. Schauben, R.E. Carter, L. Oakes, D.G. Walker, and C.L. Pint, “Tunable MechanoChemistry of Lithium Battery Electrodes,” ACS Nano 11, 6243-6251 (2017).

100. M. Li, R. Carter, A. Douglas, L. Oakes, C.L. Pint, “Sulfur vapor-infiltrated 3-D carbon nanotube foam for binder-free high areal capacity composite lithium sulfur battery cathodes,” ACS Nano 11, 4877-4884 (2017). 

99. E.S. Avraham, O. Flecker, L. Benisvy, L. Oakes, C.L. Pint, and G.D. Nessim, “Inducing porosity and growing carbon nanofibers in ferroin perchlorate: An example of morphological transitions in coordination complexes,” Journal of Solid State Chemistry 253, 21-28 (2017).

98. R. Carter, L. Oakes, N. Muralidharan, and C.L. Pint, “Isothermal sulfur condensation into carbon scaffolds: Improved loading, performance, and scalability for lithium sulfur battery cathodes,” Journal of Physical Chemistry C, 121, 7718-7727 (2017).

97. M. Li, R. Carter, L. Oakes, A. Douglas, N. Muralidharan, and C.L. Pint, “Role of carbon defects in the reversible alloying states of red phosphorus composite anodes for efficient sodium ion batteries,” Journal of Materials Chemistry A, 5, 5266-5272 (2017).

96. R. Carter, L. Oakes, N. Muralidharan, A.P. Cohn, A. Douglas, and C.L. Pint, “Polysulfide anchoring mechanism revealed by atomic layer deposition of V2O5 and sulfur filled carbon nanotubes for lithium-sulfur batteries,” ACS Applied Materials and Interfaces, 9, 7185-7192 (2017).

95. R. Carter, L. Oakes, A. Douglas, N. Muralidharan, A.P. Cohn, and C.L. Pint, “A sugar derived room temperature sodium sulfur battery with long term cycling stability,” Nano Letters, 17, 1863-1869 (2017)

94. A. Douglas, R. Carter, N. Muralidharan, L. Oakes, and C.L. Pint, “Iron catalyzed growth of crystalline multi-walled carbon nanotubes from ambient carbon dioxide mediated by molten carbonates,” Carbon, 116, 572-578 (2017).

93.  A.P. Cohn, N. Muralidharan, R. Carter, K. Share, and C.L. Pint, “An anode-free sodium battery through in-situ plating of sodium metal,” Nano Letters, 17, 1296-1301 (2017).

92.  A. Douglas and C.L. Pint, “Review – Electrochemical growth of carbon nanotubes and graphene from ambient carbon dioxide: Synergy with conventional gas-phase growth mechanisms,” ECS Journal of Solid State Science and Technology, 6, M3084-M3089 (2017).  [Special issue: In Memory of Sir Harry Kroto]

2016

91. N. Muralidharan, A.S. Westover, H. Sun, N. Galioto, R. Carter, A.P. Cohn, L. Oakes, and C.L. Pint, “From the junkyard to the power grid; Ambient processing of scrap metals into nanostructured electrodes for ultrafast rechargeable batteries,” ACS Energy Letters 1, 1034-1041 (2016).

90. L. Oakes, R. Carter, and C.L. Pint, “Nanoscale Defect Engineering of Lithium-Sulfur Battery Composite Cathodes for Improved Performance,” Nanoscale 8, 19368-19375, 2016.

89. L. Oakes, N. Muralidharan, A.P. Cohn, and C.L. Pint, “Catalyst morphology matters for lithium-oxygen battery cathodes,” Nanotechnology 27, 495404 (2016).

88. K. Share, A.P. Cohn, R. Carter, B. Rodgers, and C.L. Pint, “Role of nitrogen doped graphene for improved high capacity potassium ion battery anodes,” ACS Nano 10, 9738-9744, (2016).

87. B. Davis, X. Yan, N. Muralidharan, L. Oakes, C.L. Pint, and M. Maschmann, “Electrically conductive hierarchical carbon nanotube networks with tunable mechanical response,” ACS Applied Materials and Interfaces 8, 28004-28011 (2016).

86. A.P. Cohn, N. Muralidharan, R. Carter, K. Share, L. Oakes, and C.L. Pint, “Durable potassium ion battery electrodes from high-rate cointercalation into graphitic carbons,” Journal of Materials Chemistry A 4, 14954 – 14959 (2016).

85. R. Carter, D. Ejorh, K. Share, A.P. Cohn, A. Douglas, N. Muralidharan, T. Tovar, and C.L. Pint, “Surface oxidized mesoporous carbons derived from porous silicon as dual polysulfide confinement and anchoring cathodes in lithium sulfur batteries,” Journal of Power Sources 330, 70-77, (2016).

84. K. Share, A.P. Cohn, R. Carter, and C.L. Pint, “Mechanism of Electrochemical Potassium Ion Intercalation Staging in Few Layered Graphene from In-Situ Raman Spectroscopy, Nanoscale 8, 16435-16439 (2016).

83. A.S. Westover, J. Choi, K. Cui, T. Ishikawa, T. Inoue, R. Xiang, S. Chiashi, T. Kato, S. Maruyama, and C.L. Pint, “Load dependent frictional response of vertically aligned single-walled carbon nanotube films.” Scripta Materialia 125, 63-67 (2016).

82. M. Li, A. Westover, R. Carter, L. Oakes, N. Muralidharan, T. Boire, H-J. Sung, and C.L. Pint, “Noncovalent pi-pi stacking at the carbon-electrolyte interface; Controlling the voltage window of electrochemical supercapacitors.”  ACS Applied Materials and Interfaces 8, 19558-19566 (2016).

81. D. Gardner, C. Holzwarth, Y. Liu, S. Clendenning, W. Jin, B. Moon, C.L. Pint, Z. Chen, E. Hannah, C. Chen, C. Wang, E. Makila, R. Chen, T. Aldridge, J. Gustafson, “Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors,” Nano Energy 25, 68-79 (2016).

80. K. Share, R. Carter, P. Nikoleav, D. Hooper, L. Oakes,  A.P. Cohn, R. Rao, A.A. Puretzky, D.B. Geohegan, B. Maruyama, and C.L. Pint, “Nanoscale silicon as a catalyst for graphene growth; Mechanistic insight from in-situ Raman Spectroscopy,” Journal of Physical Chemistry C 120, 14180-14186 (2016).

79. N. Muralidharan, R. Carter, L. Oakes, A.P. Cohn, and C.L. Pint, “Strain engineering to modify the electrochemistry of energy storage electrodes,” Scientific Reports 6, 27542 (2016).

78. K. Share, A.S. Westover, M. Li, and C.L. Pint, “Surface engineering of nanomaterials for improved energy storage – a review” Chemical Engineering Science 154, 3-19 (2016).

77. L. Oakes, R. Carter, T. Hanken, A.P. Cohn, K. Share, B. Schmidt, and C.L. Pint, “Interface strain in vertically stacked two-dimensional heterostructured carbon-MoS2 nanosheets controls electrochemical reactivity,”  Nature Communications 7, 11796 (2016).

76. M. Li, R. Carter, A.P. Cohn, and C.L. Pint, “Interconnected foams of helical carbon nanofibers grown with ultrahigh yield for high capacity sodium ion battery anodes,” Carbon 107, 109-115 (2016).

75. T. Metke^, A.S. Westover^, R. Carter, L. Oakes, A. Douglas, and C.L. Pint, “Particulate-free porous silicon networks for efficient capacitive deionization water desalination,” Scientific Reports 6, 24680 (2016).

74. A. Douglas^, N. Muralidharan^, R. Carter, K. Share, and C.L. Pint, “Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics,”  Nanoscale 8, 7384-7390 (2016).

73. S. Licht, A. Douglas, J. Ren, R. Carter, M. Lefler, and C.L. Pint, “Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes,”  ACS Central Science 2, 162-168 (2016).

72. A.P. Cohn, K. Share, R. Carter, L. Oakes, and C.L. Pint, “Ultrafast solvent-assisted sodium ion intercalation into highly crystalline few-layered graphene,”  Nano Letters 16, 543-548 (2016).

2015

71. K. Share, J. Lewis, L. Oakes, R. Carter, A.P. Cohn, and C.L. Pint, “Tungsten Diselenide (WSe2) as a high capacity, low overpotential conversion electrode for sodium ion batteries,” RSC Advances 5, 101262-101267 (2015).

70. A. Douglas, R. Carter, L. Oakes, K. Share, A.P. Cohn, and C.L. Pint, “Ultrafine iron pyrite (FeS2) nanocrystals improve sodium-sulfur and lithium-sulfur conversion reactions for efficient batteries,”   ACS Nano 9, 11156-11165 (2015).

69. A.S. Westover, B. Baer, B.H. Bello, H. Sun, L. Oakes, L. Bellan, and C.L. Pint, “Multifunctional high strength and high energy epoxy composite structural supercapacitors with wet-dry operational stability,” Journal of Materials Chemistry A  3, 20097-20102 (2015).

68. R. Carter, S. Chatterjee, E. Gordon, K. Share, W.R. Erwin, A.P. Cohn, R. Bardhan, and C.L. Pint, “Corrosion resistant three-dimensional nanotextured silicon for water photo-oxidation,” Nanoscale 7, 16755-16762 (2015).

67. L. Oakes, D. Zukifli, H. Azmi, K. Share, T. Hanken, R. Carter, and C.L. Pint, “One Batch Exfoliation and Assembly of Two-Dimensional Transition Metal Dichalcogenide Nanosheets using Electrophoretic Deposition,” Journal of the Electrochemical Society 162, D3063-D3070 (2015). (JES Special Focus Issue on Electrophoretic Deposition)

66. L. Oakes, A.P. Cohn, A.S. Westover, and C.L. Pint, “Electrophoretic stabilization of freestanding pristine graphene foams with carbon nanotubes for enhanced optical and electrical response,” Materials Letters 159, 261-264 (2015).

65. L. Oakes, T. Hanken, R. Carter, W. Yates, and C.L. Pint, “Roll-to-roll nanomanufacturing of hybrid nanostructures for energy storage device design,” ACS Applied Materials and Interfaces 7, 14201-14210 (2015).

64. A.P. Cohn^, W.R. Erwin^, K. Share, L. Oakes, A.S. Westover, R.E. Carter, R. Bardhan, and C.L. Pint, “All silicon electrode photo-capacitor for integrated energy storage and conversion,” Nano Letters 15, 2727-2731, (2015). (^equal contributing first author)

63. L.V. Titova, C.L. Pint, Q. Zhang, R.H. Hauge, J. Kono, and F.A. Hegmann, “Generation of terahertz radiation by optical excitation of aligned carbon nanotubes,” Nano Letters 15, 3267-3272, (2015).

62. A.S. Westover, D. Freudiger, Z.S. Gani, K. Share, L. Oakes, R.E. Carter, and C.L. Pint, “On-chip high power porous silicon lithium ion batteries with stable capacity over 10,000 cycles,”  Nanoscale 7, 98-103, (2015).

2014

61. R. Carter, L. Oakes, A. Cohn, J. Holzgrafe, H.F. Zarick, S. Chatterjee, R. Bardhan, and C.L. Pint, “Solution assembled single walled carbon nanotube foams; Superior performance in supercapacitors, lithium ion, and lithium air batteries,” Journal of Physical Chemistry C  118, 20137-20151 (2014).

60. E. Shawat, I. Perelshtein, A. Westover, C.L. Pint, and G.D. Nessim, “Ultra high-yield one-step synthesis of conductive and superhydrophobic three-dimensional mats of carbon nanofibers via full catalysis of unconstrained thin film,” Journal of Materials Chemistry A, 2, 15118-15123 (2014).

59. W.R. Erwin, L. Oakes, S. Chatterjee, H.F. Zarick, C.L. Pint, and R. Bardhan, “Engineered porous silicon counter electrodes for high efficiency dye sensitized solar cells,” ACS Applied Materials and Interfaces, 6, 9904-9910 (2014).

58. A.S. Westover, K. Share, R. Carter, A.P. Cohn, L. Oakes, and C.L. Pint, “Direct integration of a supercapacitor into the backside of a silicon photovoltaic device,” Applied Physics Letters 104, 213905 (2014).

57. A.S. Westover, J.W. Tian, S. Bernath, L. Oakes, R. Edwards, F.N. Shabab, S. Chatterjee, A. Anilkumar, and C.L. Pint, “A multifunctional load-bearing solid-state supercapacitor,” Nano Letters, 14, 3197-3202 (2014).

56. S. Chatterjee, R. Carter, L. Oakes, W.R. Erwin, R. Bardhan, and C.L. Pint, “Electrochemical and corrosion stability of nanostructured silicon by graphene coatings; Toward high power porous silicon supercapacitors,” Journal of Physical Chemistry C, 118, 10893-10902 (2014).

55. A.S. Westover, F.N. Shabab, J. Tian, S. Bernath, L. Oakes, W.R. Erwin, R. Carter, R. Bardhan, and C.L. Pint, “Stretching ion conducting polymer electrolytes; in-situ correlation of mechanical, ionic transport, and optical properties,”  Journal of the Electrochemical Society 161, E112 – E117 (2014).

54. H. Zarick, W.R. Erwin, J. Aufrecht,  A. Coppola, B.R. Rogers, C.L. Pint, and R. Bardhan, “Morphological modulation of bimetallic nanostructures for accelerated catalysis,” Journal of Materials Chemistry A  2, 7088-7098 (2014).

53. A.P. Cohn, L. Oakes, R. Carter, S. Chatterjee, A. Westover, K. Share, and C.L. Pint, “Assessing the improved performance of freestanding, flexible graphene and carbon nanotube hybrid foams for lithium-ion battery anodes,” Nanoscale 6, 4669-4675 (2014).

52. J. Webb, W.R. Erwin, H. Zarick, J. Aufrecht, H. Manning, M. Lang, C.L. Pint, and R. Bardhan, “Geometry dependent plasmonic tunability and photothermal characteristics of multibranched gold nanoantennas,” Journal of Physical Chemistry C 118 3696-3707 (2014).

51. E. Shawat, V. Mor, L. Oakes, Y. Fleger, C.L. Pint, and G.D. Nessim, “What is below the support layer affects carbon nanotube growth: an iron catalyst reservoir yields taller nanotube carpets,” Nanoscale 6, 1545-1551 (2014).

2013

50. L. Oakes, A. Westover, M. Mahjouri-Samani, S. Chatterjee, A. Puretzky, C. Rouleau, D.B. Geohegan, and C.L. Pint, “Uniform, homogenous coatings of carbon nanohorns on arbitrary substrates from common solvents,”  ACS Applied Materials and Interfaces, 5, 13153-13160 (2013).

49. L. Oakes, A. Westover, J.W. Mares, S. Chatterjee, W.R. Erwin, R. Bardhan, S.M. Weiss, and C.L. Pint, “Surface engineered porous silicon for stable, high performance electrochemical supercapacitors,” Scientific Reports 3, 3020 (2013).

48. R. Bardhan, H.F. Zarick, A. Schwartzburg, and C.L. Pint, “Size-dependent phononic properties of PdO nanocrystals probed by nanoscale optical thermometry,” Journal of Physical Chemistry C 117, 21558-21568 (2013).

47. A. Orbaek, A. Owens, C. Crouse, C.L. Pint, R. Hauge, and A. Barron, “Single-walled carbon nanotube growth and chirality dependence on catalyst composition,” Nanoscale 5, 9848-9859 (2013).

46. R. Bardhan, L.O. Hedges, C.L. Pint, A. Javey, S. Whitelam, and J.J. Urban, “Uncovering the intrinsic size dependence of hydriding phase transformations of nanocrystals.” Nature Materials, 12, 905-912 (2013).

45. D.T. Morris, C.L. Pint, R.S. Arvidson, A. Luttge, R.H. Hauge, A.A. Belyanin, G.L. Woods, and J. Kono, “Midinfrared third harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes,” Physical Review B 87, 161405 (rapid communication) (2013).

44. L. Ren, Q. Zhang, C.L. Pint, A.K. Wojcik, M. Bunney Jr., T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, A.A. Belyanin, and J. Kono, “Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays,” Physical Review B 87, 161401 (rapid communication) (2013).

43. S. Nanot, A. Cummings, C.L. Pint, A. Ikeuchi, T. Akiho, K. Sueoka, R.H. Hauge, F. Leonard, and J. Kono, “Broadband polarization-sensitive photodetector based on optically-thick films of macroscopically long, dense, and aligned carbon nanotubes,” Nature Scientific Reports 3, 1335 (2013).

42. E. Teblum, Y. Gofer, C.L. Pint, and G.D. Nessim, “Role of catalyst oxidation state in the growth of vertically aligned carbon nanotubes.” Journal of Physical Chemistry C 116, 24522 (2012).

2005 – Fall 2012  (Prior to Vanderbilt)

41. M. Majumder, C. Rendall, J.A. Eukel, J. Wang, N. Behabtu, C.L. Pint, T-Y. Liu, A. Orbaek, A. Barron, J. Nam, R.H. Hauge, H.K. Schmidt, and M. Pasquali, “Overcoming “Coffee-Stain” Effects by Compositional Marangoni Flow Assisted Drop-Drying.” Journal of Physical Chemistry B 116, 6536 (2012).

40. P.B. Amama, C.L. Pint, F. Mirri, M. Pasquali, R.H. Hauge, and B. Maruyama, “Catalyst-support interactions and their influence on water-assisted carbon nanotube carpet growth.” Carbon 50, 2396-2406 (2012).

39. L. Ren*, C.L. Pint*, T. Arikawa, K. Takeya, I. Kawayama, M. Tonouchi, R.H. Hauge, and J. Kono, “Broadband terahertz polarizers with ideal performance based on aligned carbon nanotube stacks,” Nano Letters 12, 787-790 (2012).

38. Z.Z. Sun*, C.L. Pint*, D. Marcano, C. Zhang, J. Yao, G. Ruan, Z. Yan, J. Yao, R.H. Hauge, J.M. Tour, “Toward hybrid superlattices in graphene” Nature Communications 2, 559 (2011).

37. C.L. Pint, K. Takei, R. Kapadia, M. Zheng, J. Moon, A.C. Ford, J. Zhang, A. Jamshidi, R. Bardhan, J.J. Urban, M. Wu, J.W. Ager, M. Oye, and A. Javey, “Rationally designed three-dimensional carbon nanotube back contacts for efficient solar devices” Advanced Energy Materials 1, 1040-1045 (2011).

36. B. Dan, T.B. Wingfield, J.S. Evans, F. Mirri, C.L. Pint, M. Pasquali, I.I. Smalyukh, “Templating of self-alignment patterns of anisotropic gold nanoparticles on ordered SWNT macrostructures,” ACS Applied Materials & Interfaces 5, 3718-3724 (2011).

35. C.L. Pint
, Z.Z. Sun, S. Moghazy, J.M. Tour, Y. Xu, R.H. Hauge, “Super growth of nitrogen-doped single-walled carbon nanotube arrays: decomposition chemistry, characterization, and doped/undoped heterostructures,”
ACS Nano 5, 6925-6934 (2011).

34. P. Dong, C.L. Pint, M. Hainey, F. Mirri, Y. Zhan, M. Pasquali, R.H. Hauge, R. Verduzco, J. Mian, H. Lin, J. Lou, “Vertically aligned single-walled carbon nanotubes as low cost and high electrocatalytic counter-electrode for dye-sensitized solar cells,” ACS Applied Materials & Interfaces 3, 3157-3161 (2011).

33. X. Zhang, C.L. Pint, M.H. Lee, B.E. Schubert, A. Jamshidi, K. Takei, H. Ko, A. Gillies, R. Bardhan, J.J. Urban, M. Wu, R. Fearing, and A. Javey, “Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites” Nano Letters 11, 3239-3244 (2011). Highlight in Nature 475, 426 (2011).

32. C.L. Pint, N. Nicholas, S. Xu, Z.Z. Sun, J.M. Tour, H.K. Schmidt, R.G. Gordon, R.H. Hauge, “Three-dimensional solid-state supercapacitors from aligned single-walled carbon nanotube array templates.” Carbon 49, 4890-4897 (2011).

31. N.T. Alvarez, F. Li, C.L. Pint, E. Fisher, J.M. Tour, V. Colvin, and R.H. Hauge, “Uniform, large diameter carbon nanotubes in vertical arrays from premade, near-monodisperse nanoparticles,” Chemistry of Materials 23, 3466-3475 (2011).

30. L.G. Booshehri, C.L. Pint, G.D. Sanders, L. Ren, C. Sun, E.H. Haroz, J.-H. Kim, K.-Y. Yee, Y.-S. Lim, R.H. Hauge, C.J. Stanton, and J. Kono, “Polarization dependence of coherent phonon generation and detection in highly-aligned single-walled carbon nanotubes.” Physical Review B 83, 195411 (2011).

29. M.J. Green, C.C. Young, A.N.G. Parra-Vasquez, M. Majumder, V. Juloori, N. Behabtu, C.L. Pint, J. Schmidt, E. Kesselman, R.H. Hauge, Y. Cohen, Y. Talmon, M. Pasquali, “Direct imaging of carbon nanotubes spontaneously filled with solvent.” Chemical Communications 47, 1228-1230 (2011).

28. S.M. Kim*, C.L. Pint*, P.B. Amama, R.H. Hauge, B. Maruyama, and E.A. Stach, “Catalyst and catalyst support morphology evolution in single-walled carbon nanotube supergrowth: growth deceleration and termination,”  (invited feature article) Journal of Materials Research 25, 1875-1885 (2010).

27. A.N.G. Parra-Vasquez, N. Behabtu, M.J. Green, C.L. Pint, C.C. Young, J. Schmidt, E. Kesselman, A. Goyal, P.M. Ajayan, Y. Cohen, Y. Talmon, R.H. Hauge, and M. Pasquali, “Spontaneous dissolution of ultra-long single- and multi-walled carbon nanotubes,” ACS Nano 4, 3969-3978 (2010).

26. N.T. Alvarez, C.E. Hamilton, C.L. Pint, A. Orbaek, J. Yao, A.R. Barron, J.M. Tour, and R.H. Hauge, “Wet catalyst-support films for production of vertically aligned carbon nanotubes,” ACS Applied Materials & Interfaces 2, 1851-1856 (2010).

25. L. Ren, C.L. Pint, A. Wojcik, T. Arikawa, Y. Takemoto, K. Takeya, I. Kawayama, A.A. Belyanin, M. Tonouchi, R.H. Hauge, and J. Kono, “Anisotropic terahertz dynamics of highly-aligned single-walled carbon nanotubes.” Journal of Terahertz Science and Technology 3, 26-32 (2010).

24. S.M. Kim*, C.L. Pint*, P. Amama, D. Zahkarov, R.H. Hauge B. Maruyama, and E.A. Stach, “Evolution in catalyst morpology leads to carbon nanotube growth termination” Journal of Physical Chemistry Letters  1, 918-922 (2010) .

23.  P.B. Amama, C.L. Pint, S.M. Kim, L. McJilton, K.G. Eyink, E.A. Stach, R.H. Hauge, and B. Maruyama, “Influence of alumina type on the evolution and activity of alumina-supported Fe catalysts in single walled carbon nanotube carpet growth.” ACS Nano, 4, 895-904 (2010).

22. C.L. Pint, Y-Q. Xu, S. Moghazy, T. Cherukuri, N.T. Alvarez, E.H. Haroz, S. Mahzooni, S. Doorn, J. Kono, M. Pasquali, and R.H. Hauge, “Dry contact transfer printing of aligned carbon nanotube patterns and characterization of their optical properties for diameter distribution and alignment,” ACS Nano, 4, 1131-1145 (2010).

21.  N.T. Alvarez, C.L. Pint, R.H. Hauge, J.M. Tour, “Abrasion as a catalyst deposition technique for carbon nanotube growth,” Journal of the American Chemical Society 131, 15041-15048 (2009).

20. C.L. Pint, S.M. Kim, E.A. Stach, and R.H. Hauge, “Rapid and scalable reduction of dense surface-supported metal-oxide catalyst with hydrazine vapor,” ACS Nano 3, 1897-1905 (2009).

19. C.L. Pint, N.T. Alvarez, and R.H. Hauge, “Odako growth of dense arrays of single-walled carbon nanotubes attached to carbon surfaces,” Nano Research 2, 526-534 (2009).

18. L. Ren, C.L. Pint, L.G. Booshehri, W.D. Rice, X. Wang, D.J. Hilton, K. Takeya, M. Tonouchi, R.H. Hauge, and J. Kono, “Carbon Nanotube Terahertz Polarizer,” Nano Letters 9, 2610-2613 (2009).

17. C.L. Pint, Y-Q. Xu, E. Morosan, and R.H. Hauge, “Alignment dependence of one-dimensional electronic hopping transport observed in films of highly aligned, ultralong single-walled carbon nanotubes,” Applied Physics Letters 94, 182107 (2009).

16. C.L. Pint, N. Nicholas, J.G. Duque, A.N.G. Parra-Vasquez, M. Pasquali, and R.H. Hauge, “Recycling ultra-thin catalyst layers for multiple single-walled carbon nanotube array regrowth cycles and selectivity in catalyst activation,” Chemistry of Materials 21, 1550-1556 (2009).

15.  C.L. Pint, S.T. Pheasant, A.N.G. Parra-Vasquez, C.C. Horton, Y-Q. Xu, and R.H. Hauge, “Investigation of optimal parameters for oxide-assisted growth of vertically aligned single-walled carbon nanotubes,” Journal of Physical Chemstry C  113, 4125 (2009).

14.  P. Amama, C.L. Pint, L. McJilton, S.M. Kim, D.N. Zakharov, M.J. Pender, E.A. Stach, T.P. Murray, R.H. Hauge, and B. Maruyama, “The role of water in super growth of single-walled carbon nanotube carpets,” Nano Letters 9, 44 (2009).

13. C.L. Pint, Y.-Q. Xu, M. Pasquali, and R. Hauge, “Formation of highly dense, aligned ribbons and ultra-thin films of single-walled carbon nanotubes from carpets,” ACS Nano 2, 1871 (2008).

12.  C.L. Pint, G.H. Bozzolo, and R.H. Hauge, “Catalyst design for carbon nanotube growth using atomistic modeling,” Nanotechnology 19, 405704 (2008).

11. C.L. Pint, N. Nicholas, S. Pheasant, J. Duque, N. Parra-Vasquez, G. Eres, M. Pasquali, and R. Hauge, “Temperature and gas pressure effects on vertically aligned carbon nanotube growth from Fe-Mo catalyst,” Journal of Physical Chemistry C  112, 14041 (2008).

10.  C.L. Pint, S.T. Pheasant, K. Coulter, M. Pasquali, H. Schmidt, and R. Hauge, “Synthesis of high aspect-ratio carbon nanotube ‘flying carpets’ from nanostructured flake substrates,” Nano Letters 8, 1879 (2008).

9. C.L. Pint, S. Pheasant, N. Nicholas, C.C. Horton, and R.E. Hauge, “The role of the substrate surface morphology and water in the growth of vertically aligned single-walled carbon nanotubes,” J. Nanosci. Nanotech.  8, 6158 (2008).

8. D.S. Todd, D. Leitner, C. Pint, and D.P. Grote, “Improving extraction and transport simulations of the superconducting ECR ion source VENUS,” Physics Procedia 1, 265-272 (2008).

7. C.L. Pint, G.H. Bozzolo, and J.E. Garces, “Growth and alloy formation of Fe on flat and stepped Pt surfaces,” Surf. Sci.  602, 559 (2008).

6. C.L. Pint, G.H. Bozzolo, and J. Garces, “Atomistic simulation of Fe deposition and alloy formation on Pt substrates,” Appl. Surf. Sci. 254, 92 (2007).

5.  C.L. Pint and M.W. Roth, “Simulated effects of odd-alkane impurities in a hexane monolayer on graphite,” Phys. Rev. B  73, 115404 (2006).

4.  C.L. Pint, M.W. Roth, and C. Wexler, “Behavior of hexane on graphite at near-monolayer coverages; molecular dynamics study,” Phys. Rev. B  73, 085422 (2006).

3.  C.L. Pint, “Simulations of the chain-length dependence of the melting transition in short-chained n-alkanes on graphite,” Surf. Sci.  600, 921 (2006).

2.  C.L. Pint, “Different melting behavior in pentane and heptane monolayers on graphite; Molecular dynamics simulations,” Phys. Rev. B  73(4), 045415 (2006).

1.  M.W. Roth, C.L. Pint, and C. Wexler, “Phase transitions in hexane monolayers physisorbed onto grapite,” Phys. Rev. B  71, 155427 (2005).

*denotes equal contribution.

2. Conference Publications (Refereed)

14. L. Prozorovska, N. Muralidharan, A.S. Westover, C.L. Pint, and D. Adams, “Cure Monitoring and Characterization of Epoxy/Amine Networks Modified with Ionic Liquid,” Proceedings of the American Society for Composites, Thirty Second Annual Technical Conference, 2017.

13. C. L. Pint, “Capillary Force Guided Nanomanufacturing of Composite Materials for Advanced Battery Applications,”  Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2017-71738.

12. B. Davis, N. Muralidharan, C.L. Pint, and M. Maschmann, “Electrically addressable hierarchical carbon nanotube forests,” Proceedings of the ASME 2016 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2016-67226.

11. R. Carter, L. Oakes, and C.L. Pint, “Three-dimensional single-walled carbon nanotube foams for ultrahigh energy density lithium-air battery cathodes,” Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2015-52333, pp. V06AT07A042. (2015).

10. A.S. Westover, J. Tian, S. Bernath, L. Oakes, R. Edwards, F.N. Shabab, S. Chatterjee, A. Anilkumar, and C.L. Pint, “Multifunctional load-bearing energy storage materials,” Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition, Paper No. IMECE2014-38931, pp. V06AT07A033 (6 pages).  (2014).

9. S. Nanot, C.L. Pint, A.W. Cummings, F. Leonard, R.H. Hauge, and J. Kono, “Large area, broadband, and polarization-sensitive photodetectors based on aligned carbon nanotubes,” Proceedings of 2012 Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest, paper JTu1M.4 (2012) (2 pages).

8. D.E. Lobo, C.L. Pint, B. Corry, and M. Majumder, “Building carbon nanotube fluidic devices,” Proceedings of CHEMECA 2011, pgs. 1821 (1-5) (2011).

7. D.T. Morris, C.L. Pint, R.H. Hauge, G.L. Woods, A. Belyanin, and J. Kono, “Mid-infrared third harmonic generation in highly-aligned single-walled carbon nanotubes,” Proceedings of 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz),” doi: 10.1109/irmmw-THz.2011.6105016 (2011) (2 pages).

6. L. Ren, T. Arikawa, J. Kono, C.L. Pint, R.H. Hauge, A.K. Wojcik, A.A. Belyanin, Y. Takemoto, K. Takeya, I. Kawayama, and M. Tonouchi, “Anisotropic terahertz conductivity of one-dimensional electrons in single-walled carbon nanotubes,” Proceedings of 2010 Conference on Lasers and Electro-Optics (CLEO), OSA Technical Digest, paper CMZ4 (2010) (2 pages).

5. P.B. Amama, C.L. Pint, S.M. Kim, K. Eyink, E. Stach, R.H. Hauge, and B. Maruyama, “Evolution, activity, and lifetime of supported Fe catalyst during super growth of SWNT carpets: Influence of the type of alumina,” MRS Proceedings, 1258, 1258-RO3-02 (2010).

4. S.M. Kim, C.L. Pint, P.B. Amama, D.N. Zakharov, R.H. Hauge, B. Maruyama, and E.A. Stach, “Exploiting environmental transmission electron microscopy approaches to understand the origin of carbon nanotube growth termination,” Microsc. Microanal. 16, 306-307 (2010).

3. S.M. Kim, C.L. Pint, P.B. Amama, D.N. Zakharov, R.H. Hauge, B. Maruyama, and E.A. Stach, “Understanding growth termination of single-walled carbon nanotube carpets by documenting the evolution of catalyst morphology with the transmission electron microscope,” Microscopy and Microanalysis 15, 1176-1177 (2009).

2. C.L. Pint, M.W. Roth, “Confinement effects on the melting transition in hexane and decane monolayers between two graphite slabs,” MRS Proceedings, 899, 0899-N07-21 (2005).

1. C.L. Pint, C. Wexler, and M.W. Roth, “Transition mechanisms and phases of hexane physisorbed onto graphite,” Proc. NSTI Nanotechnology and Trade Show 2, 365 (2005).

3. Book Chapters

1. S. Nanot, N.A. Thompson, J.H. Kim, X. Wang, W.D. Rice, E.H. Haroz, Y. Ganesan, C.L. Pint, and J. Kono, Chapter 4: “Single-Walled Carbon Nanotubes” in The Springer Handbook of Nanomaterials,  Ed. R. Vajtai, Springer-Verlag Publishers, 105-146 (2013).

4. Patents (only showing 13 granted)

13. US Patent 9,978,533: “Energy storage device, method of manufacturing same, and mobile electronic device containing same.”  (2018)

12. US Patent 9,963,781: “Carbon nanotubes grown on nanostructured flake surfaces and methods for production thereof”  (2018)

11. US Patent 9,928,966: “Nanostructured electrolytic energy storage devices.”  (2018)

10. US Patent 9,793,061: “Energy storage device, method of manufacturing same, and mobile electronic device containing same.”  (2017)

9. US Patent 9,685,278: “Energy storage devices having enhanced specific energy and associated methods.” (2017)

8. US Patent 9,449,765: “Energy storage device, method of manufacturing same, and mobile electronic device containing same.”  (2016)

7. US Patent 9,396,883: “Faradaic energy storage device structures and associated techniques and configurations.” (2016)

6. US Patent 9,355,790: “Energy storage devices having enhanced specific energy and associated methods.” (2016)

5. US Patent 9,299,505: “Overcoming variance in stacked capacitors.” (2016)

4. US Patent 9,245,695: “Integration of energy storage devices onto substrates for microelectronics and mobile devices.”  (2016).

3. US Patent 9.093,226: “Energy storage device, method of manufacturing same, and mobile electronic device containing same.” (2015).

2. US Patent 8,816,465: “Energy conversion and storage device and mobile electronic device containing same.” (2014).

1. US Patent 8,709,373: “Strongly bound carbon nanotube arrays grown directly on substrates and methods for production thereof” (2014).