VINSE News & Events

Home » News » Nanoscale origami: Smallest-ever, atomically precise structures set stage for quantum breakthroughs

Nanoscale origami: Smallest-ever, atomically precise structures set stage for quantum breakthroughs

Posted by on Wednesday, September 11, 2019 in News.

If you think learning traditional paper origami is a difficult practice, try wrapping your head around origami on the atomic scale.

In “Atomically-Precise, Custom-Design Origami Graphene Nanostructures,” published today in the journal Science, an international team of researchers have accomplished just that, using sophisticated and precise control of atoms to experiment with new structures and set the stage for future generations of breakthroughs in quantum technology.

“Under atomic-scale control of these graphene-based nanostructures, researchers are able to build fascinating new structures,” noted Vanderbilt University Distinguished Professor of Physics and Engineering Sokrates T. Pantelides who collaborated on the research. “In the future, these fundamental discoveries are likely to serve as groundwork for new devices our current generation can’t even begin to imagine.”


Prof. Sokrates Pantelides, of the Physics and Astronomy dept. (Vanderbilt University / Steve Green)

While the ancient art form of origami is currently used in large-scale applications, such as in architecture or battery design, researchers have long sought to apply origami techniques to small atomic structures, including graphene – a two-dimensional semimetal and “supermaterial” capturing the attention of researchers around the world for its properties of tensile strength, flexibility and impermeability – to name a few. However, technological limitations prevented researchers from using origami’s fine control to build and manipulate custom graphene structures.

A collaboration between Pantelides, University of Maryland Professor Min Ouyang, and a team of researchers at the Institute of Physics of the Chinese Academy of Sciences in Beijing headed by Professor Hong-Jun Gao, the findings build on many years of investigations of carbon-based nanostructures, including the discovery of carbon nanotubes and the successful isolation of monolayer graphene, which was awarded the 2010 Nobel Prize in Physics.

 

For the full article click here.

Comments are closed.


Back Home   

Recent Posts

Browse by Month