General Interests

David Furbish’s research involves environmental fluid mechanics and transport theory applied to problems in hydrology and geomorphology, and the intersection of these fields with ecology. His work combines theoretical, experimental, computational and field-based components aimed at understanding the dynamics of Earth surface, and near-surface, systems spanning human to geomorphic time scales. David has taught courses in geology, hydrology and geomorphology, transport processes in Earth and environmental systems, and fluid dynamics. He is author of the text, “Fluid Physics in Geology,” published by Oxford University Press.

Current Research

MB Creek

David’s current research is centered on two interrelated projects. The first project involves theoretical and experimental studies of the physics and probabilistic nature of sediment particle motions, and is aimed at clarifying our understanding of the transport and dispersal of sediment and sediment-borne substances in rivers and on hillslopes. The second project concerns desert plant-soil interactions, and is aimed at clarifying the interrelationship between desert shrub community dynamics and soil transport, wherein shrubs behave as sediment capacitors in regulating the transport and dispersal of soil material by rain splash and surface flows.

 

 

 

 

Current Students

Angel Abbott (M.S.) Earth and Environmental Sciences
Tyler Doane (M.S.) Earth and Environmental Sciences
Siobhan Fathel (Ph.D.) Environmental Science
Margaret Jones (B.A.) Earth and Environmental Sciences
John Roseberry (Ph.D.) Environmental Science

Selected Publications (*Denotes Student Author)

Furbish, D. J., and J. J. Roering (2013), Sediment disentrainment and the concept of local versus nonlocal transport on hillslopes, Journal of Geophysical Research – Earth Surface, 118, 1-16, doi: 10.1002/jgrf.20071.

Furbish, D. J., and M. W. Schmeeckle (2013), A probabilistic derivation of the exponential-like distribution of bed load particle velocities, Water Resources Research, 49, 1537-1551, doi: 10.1002/wrcr.20074.

Furbish, D. J., P. K. Haff, J. C. Roseberry*, and M. W. Schmeeckle (2012), A probabilistic description of the bed load sediment flux: 1. Theory, Journal of Geophysical Research – Earth Surface, 117, F03031, doi: 10.1029/2012JF002352.

*Roseberry, J. C., M. W. Schmeeckle, and D. J. Furbish (2012), A probabilistic description of the bed load sediment flux: 2. Particle activity and motions, Journal of Geophysical Research – Earth Surface, 117, F03032, doi: 10.1029/2012JF002353.

Furbish, D. J., J. C. Roseberry*, and M. W. Schmeeckle (2012), A probabilistic description of the bed load sediment flux: 3. The particle velocity distribution and the diffusive flux, Journal of Geophysical Research – Earth Surface, 117, F03033, doi: 10.1029/2012JF002355.

Furbish, D. J., A. E. Ball*, and M. W. Schmeeckle (2012), A probabilistic description of the bed load sediment flux: 4: Fickian diffusion at low transport rates, Journal of Geophysical Research – Earth Surface, 117, F03034, doi: 10.1029/2012JF002356.

Furbish, D. J. and Haff, P. K. (2010) From divots to swales: Hillslope sediment transport across divers length scales, Journal of Geophysical Research – Earth Surface, 115, F03001, doi: 10.1029/2009JF001576.

*Covey, A. K., D. J. Furbish, and K. S. Savage (2010) Earthworms as agents for arsenic transport and transformation in roxarsone-impacted soil microcosms: A µ-XANES and modeling study, Geoderma, 156, 99-111, doi: 10.1016/j.geoderma.2010.02.004.

*Challener, R. C., M. F. Miller, D. J. Furbish, and J. McClintock (2009) An evaluation of sand grain crushing in the sand dollar Mellita tenuis (Echinoidea: Echinodermata), Aquatic Biology, 7, 261-268, doi: 10.33354/ab00199

Furbish, D. J., P. K. Haff, W. E. Dietrich, and A. M. Heimsath (2009) Statistical description of slope-dependent soil transport and the diffusion-like coefficient, Journal of Geophysical Research – Earth Surface, 114,
doi: 10.1029/2009JF001267.

Furbish, D. J., E. M. Childs*, P. K. Haff, and M. W. Schmeeckle (2009) Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution. Journal of Geophysical Research – Earth Surface, 114, doi: 10.1029/2009JF001265.

Furbish, D. J., M. W. Schmeeckle, and J. J. Roering (2008) Thermal and force-chain effects in an experimental, sloping granular shear flow. Earth Surface Processes and Landforms, 33, 2108-2117, doi: 10.1002/esp.1655.

*Mudd, S. M. and D. J. Furbish (2007) Responses of soil-mantled hillslopes to transient channel incision rates. Journal of Geophysical Research – Earth Surface, 112, F03S18, doi: 10.1029/2006JF000516.

Furbish, D. J., K. K. Hamner*, M. W. Schmeeckle, M. N. Borosund*, and S. M. Mudd* (2007) Rain splash of dry sand revealed by high-speed imaging and sticky-paper splash targets. Journal of Geophysical Research – Earth Surface, 112, F01001, doi: 10.1029/2006JF000498.

Furbish, D. J. and S. Fagherazzi (2001), Stability of creeping soil and implications for hillslope evolution, Water Resources Research, 37, 2607-2618.

Furbish, D. J. (1998) Irregular bed forms in steep, rough channels: 1. Stability analysis. Water Resources Research, 34, 3635-3648, doi: 10.1029/98WR02339.

Furbish, D. J., S. D. Thorne*, T. C. Byrd*, J. Warburton, J. J. Cudney*, and R. W. Handel* (1998) Irregular bed forms in steep, rough channels: 2. Field observations.Water Resources Research, 34, 3649-3659,
doi: 10.1029/98WR02338.