Skip to main content

Resource Estimation in High Performance Medical Image Computing

Posted by on Friday, October 31, 2014 in Big Data, Informatics / Big Data, Neuroimaging.

Rueben Banalagay, Kelsie J. Covington, D.Mitch Wilkes, Bennett A. Landman. “Resource Estimation in High Performance Medical Image Computing.” Neuroinformatics. 2014 Oct;12(4):563-73. † PMC4381797

Full Text: https://www.ncbi.nlm.nih.gov/pubmed/24906466

Abstract

Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the dramatic increase in data size for medical imaging studies (e.g., improved resolution, higher throughput acquisition, shared databases), interesting study designs are becoming intractable or impractical on individual workstations and servers. Modern pipeline environments provide control structures to distribute computational load in high performance computing (HPC) environments. However, high performance computing environments are often shared resources, and scheduling computation across these resources necessitates higher level modeling of resource utilization. Submission of ‘jobs’ requires an estimate of the CPU runtime and memory usage. The resource requirements for medical image processing algorithms are difficult to predict since the requirements can vary greatly between different machines, different execution instances, and different data inputs. Poor resource estimates can lead to wasted resources in high performance environments due to incomplete executions and extended queue wait times. Hence, resource estimation is becoming a major hurdle for medical image processing algorithms to efficiently leverage high performance computing environments. Herein, we present our implementation of a resource estimation system to overcome these difficulties and ultimately provide users with the ability to more efficiently utilize high performance computing resources.

Overview of the need for accurate estimates in high performance medical imaging. Complex multi-stage imaging layouts need to provide accurate estimations of their resource requirements in order to leverage high performance computing resources. The upper-right inlay shows histograms of the runtime for a single software module (“File Collection Efficient Registration”) on datasets acquired on 21 individuals
Overview of the need for accurate estimates in high performance medical imaging. Complex multi-stage imaging layouts need to provide accurate estimations of their resource requirements in order to leverage high performance computing resources. The upper-right inlay shows histograms of the runtime for a single software module (“File Collection Efficient Registration”) on datasets acquired on 21 individuals

Tags: