Skip to main content

Image Processing Category

Tractography reproducibility challenge with empirical data (TRAceD): The 2017 ISMRM diffusion study group challenge

Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Huo Y, Blaber JA, Hainline AE, Barakovic M, Romascano D, Rafael‐Patino J, Frigo M, Girard G. Tractography reproducibility challenge with empirical data (traced): The 2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging. 2020 Jan;51(1):234-49. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31179595 Abstract BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an...

Read more


Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI

Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Hansen CB, Hainline AE, Huo Y, Blaber JA, Lyu I, Janve V, Gao Y, Stepniewska I, Anderson AW, Landman BA. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magnetic resonance imaging. 2019 Oct 1;62:220-7. Abstract PURPOSE: Diffusion-weighted magnetic resonance imaging (DW-MRI) is of critical importance...

Read more


Diffusion MRI microstructural models in the cervical spinal cord – application, normative values, and correlations with histological analysis

Dec. 16, 2019—Kurt G. Schilling, Samantha By, Haley Feiler, Bailey Box, Kristin P. O’Grady, Atlee Witt, Bennett A. Landman, Seth A. Smith. “Diffusion MRI microstructural models in the cervical spinal cord – application, normative values, and correlations with histological analysis”. NeuroImage. doi: 10.1016/j.neuroimage.2019.116026. 2019. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31326569 Abstract Multi-compartment tissue modeling using diffusion magnetic resonance imaging has proven...

Read more


Improved gray matter surface based spatial statistics in neuroimaging studies

May. 21, 2019—Prasanna Parvathaneni; Ilwoo Lyu; Yuankai Huo; Baxter P. Rogers; Kurt G. Schilling; Vishwesh Nath; Justin A Blaber; Allison E Hainline; Adam W Anderson; Neil D. Woodward; Bennett A Landman. “Improved gray matter surface based spatial statistics in neuroimaging studies.” Magnetic Resonance Imaging, 61, 285-295, 2019. Full text Abstract Neuroimaging often involves acquiring high-resolution anatomical images along with...

Read more


Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps

Dec. 10, 2018—Bermudez, C., Rodriguez, W., Huo, Y., Hainline, A. E., Li, R., Shults, R., … & Landman, B. A. (2018). Towards Machine Learning Prediction of Deep Brain Stimulation (DBS) Intra-operative Efficacy Maps. arXiv preprint arXiv:1811.10415. Full Text: https://arxiv.org/abs/1811.10415 Abstract Deep brain stimulation (DBS) has the potential to improve the quality of life of people with a...

Read more


Technology Enablers for Big Data, Multi-Stage Analysis in Medical Image Processing

Oct. 26, 2018—Shunxing Bao, Prasanna Parvathaneni, Yuankai Huo, Yogesh Barve, Andrew J. Plassard, Yuang Yao, Hongyang Sun, Ilwoo Lyu, David H. Zald, Bennett A. Landman and Aniruddha Gokhale. “Technology Enablers for Big Data, Multi-Stage Analysis in Medical Image Processing.” Big Data (Big Data), 2018 IEEE International Conference. (accepted) (acceptance rate 18.9%) Full text: TBD Abstract Big data medical image processing...

Read more


Harmonization of white and gray matter features in diffusion microarchitecture for cross sectional studies

Jun. 25, 2018—Prasanna Parvathaneni, Shunxing Bao , Allison Hainline , Yuankai Huo , Kurt G. Schilling , Hakmook Kang , Owen Williams , Neil D. Woodward , Susan M. Resnick , David H. Zald  , Ilwoo Lyu , Bennett A. Landman “Harmonization of white and gray matter features in diffusion microarchitecture for cross sectional studies.”  In International Conference on Clinical and Medical Image Analysis 2018 (ICCMIA’18) – Accepted Abstract Understanding of the specific processes...

Read more


Empirical Reproducibility, Sensitivity, and Optimization of Acquisition Protocol for Neurite Orientation Dispersion and Density Imaging using AMICO

Apr. 6, 2018—Prasanna Parvathaneni, Vishwesh Nath, Justin A. Blaber, Kurt G Schilling, Allison E. Hainline, Adam W Anderson, and Bennett A. Landman “Empirical Reproducibility, Sensitivity, and Optimization of Acquisition Protocol for Neurite Orientation Dispersion and Density Imaging using AMICO”. Magnetic Resonance Imaging. Mar 2018. Abstract Neurite Orientation Dispersion and Density Imaging (NODDI) is a relatively new model for diffusion weighted...

Read more


Learning Implicit Brain MRI Manifolds with Deep Learning

Dec. 22, 2017—Bermudez, C., Plassard, A.J., Davis, T.L., Newton, A.T., Resnick, S.M., and Landman, B.A. (2017) “Learning implicit brain MRI manifolds with deep learning.” arXiv preprint arXiv:1801.01847 Full Text: https://arxiv.org/pdf/1801.01847.pdf Abstract An important task in image processing and neuroimaging is to extract quantitative information from the acquired images in order to make observations about the presence of disease...

Read more


Constructing Statistically Unbiased Cortical Surface Templates Using Feature Space Covariance

Dec. 19, 2017—Citation: ” Constructing statistically unbiased cortical surface templates using feature-space covariance”. Prasanna Parvathaneni, Ilwoo Lyu, Justin A. Blaber, Yuankai Huo, Allison E. Hainline, Neil D. Woodward, Hakmook Kang, Bennett A. Landman   In SPIE Medical Imaging, International Society for Optics and Photonics, 2018 (Accepted). Abstract The choice of surface template plays an important role in cross-sectional subject analyses...

Read more