Skip to main content

Neuroimaging Category

Enabling Multi-shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE

Jan. 17, 2020—Nath V, Lyu I, Schilling KG, Parvathaneni P, Hansen CB, Huo Y, Janve VA, Gao Y, Stepniewska I, Anderson AW, Landman BA. Enabling Multi-shell b-Value Generalizability of Data-Driven Diffusion Models with Deep SHORE. In International Conference on Medical Image Computing and Computer-Assisted Intervention 2019 Oct 13 (pp. 573-581). Springer, Cham. Full text: https://arxiv.org/ftp/arxiv/papers/1907/1907.06319.pdf Abstract Intra-voxel...

Read more


Harmonizing 1.5 T/3T diffusion weighted MRI through development of deep learning stabilized microarchitecture estimators

Jan. 17, 2020—Nath V, Remedios S, Parvathaneni P, Hansen CB, Bayrak RG, Bermudez C, Blaber JA, Schilling KG, Janve VA, Gao Y, Huo Y. Harmonizing 1.5 T/3T diffusion weighted MRI through development of deep learning stabilized microarchitecture estimators. In Medical Imaging 2019: Image Processing 2019 Mar 15 (Vol. 10949, p. 109490O). International Society for Optics and Photonics....

Read more


Tractography reproducibility challenge with empirical data (TRAceD): The 2017 ISMRM diffusion study group challenge

Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Huo Y, Blaber JA, Hainline AE, Barakovic M, Romascano D, Rafael‐Patino J, Frigo M, Girard G. Tractography reproducibility challenge with empirical data (traced): The 2017 ISMRM diffusion study group challenge. Journal of Magnetic Resonance Imaging. 2020 Jan;51(1):234-49. Full text: https://www.ncbi.nlm.nih.gov/pubmed/31179595 Abstract BACKGROUND: Fiber tracking with diffusion-weighted MRI has become an...

Read more


Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI

Jan. 17, 2020—Nath V, Schilling KG, Parvathaneni P, Hansen CB, Hainline AE, Huo Y, Blaber JA, Lyu I, Janve V, Gao Y, Stepniewska I, Anderson AW, Landman BA. Deep learning reveals untapped information for local white-matter fiber reconstruction in diffusion-weighted MRI. Magnetic resonance imaging. 2019 Oct 1;62:220-7. Abstract PURPOSE: Diffusion-weighted magnetic resonance imaging (DW-MRI) is of critical importance...

Read more


Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Contrast MRI with Augmented Transfer Learning

Aug. 13, 2019—Bermudez, C., Blaber, J., Remedios, S.W., Reynolds, J.E., Lebel, C., McHugo, M., Heckers, S., Huo, Y., Landman, B.A. Generalizing Deep Whole Brain Segmentation for Pediatric and Post-Constrast MRI with Augmented Transfer Learning. SPIE Medical Imaging: Image Processing 2020. Houston, TX. Full Text: NIHMSID Abstract Generalizability is an important problem in deep neural networks, especially in...

Read more


Anatomical context improves deep learning on the brain age estimation task

Jul. 12, 2019—Bermudez, C., Plassard, A. J., Chaganti, S., Huo, Y., Aboud, K. E., Cutting, L. E., … & Landman, B. A. (2019). Anatomical context improves deep learning on the brain age estimation task. Magnetic Resonance Imaging. Full Text: https://www.ncbi.nlm.nih.gov/pubmed/31247249 Abstract Deep learning has shown remarkable improvements in the analysis of medical images without the need for...

Read more


Improved gray matter surface based spatial statistics in neuroimaging studies

May. 21, 2019—Prasanna Parvathaneni; Ilwoo Lyu; Yuankai Huo; Baxter P. Rogers; Kurt G. Schilling; Vishwesh Nath; Justin A Blaber; Allison E Hainline; Adam W Anderson; Neil D. Woodward; Bennett A Landman. “Improved gray matter surface based spatial statistics in neuroimaging studies.” Magnetic Resonance Imaging, 61, 285-295, 2019. Full text Abstract Neuroimaging often involves acquiring high-resolution anatomical images along with...

Read more


Learning 3D White Matter Microstructure from 2D Histology

Apr. 1, 2019—Histological analysis is typically the gold standard for validating measures of tissue microstructure derived from magnetic resonance imaging (MRI) contrasts. However, most histological investigations are inherently 2-dimensional (2D), due to increased field-of-view, higher in-plane resolutions, ease of acquisition, decreased costs, and a large number of available contrasts compared to 3-dimensional (3D) analysis. Because of this,...

Read more


A Web-based Combined MRI-Histology Digital Atlas of the Squirrel Monkey Brain.

Dec. 15, 2018—Kurt G. Schilling, Yurui Gao, Vaibhav Janve, Matthew Christian, Iwona Stepniewska, Bennett A. Landman, Adam W. Anderson. “A Web-based Combined MRI-Histology Digital Atlas of the Squirrel Monkey Brain.” Neuroinformatics (2018) 1-15. doi:10.1007/s12021-018-9391-z. Full text: https://www.ncbi.nlm.nih.gov/pubmed/?term=A+Web-based+Combined+MRI-Histology+Digital+Atlas Abstract  The squirrel monkey (Saimiri sciureus) is a commonly-used surrogate for humans in biomedical research. In the neuroimaging community, MRI...

Read more


Challenges in diffusion MRI tractography – Lessons learned from international benchmark competitions

Dec. 15, 2018—Kurt G Schilling, Alessandro Daducci, Klaus Maier-Hein, Cyril Poupon, Jean-Christophe Houde, Vishwesh Nath, Adam W Anderson, Bennett A Landman, Maxime Descoteaux. “Challenges in Diffusion MRI Tractography – Lessons Learned from International Benchmark Competitions”. Magnetic Resonance Imaging. 2018. doi: 10.1016/j.mri.2018.11.014 Full text: NIHMSID https://www.sciencedirect.com/science/article/pii/S0730725X18305162#f0005 Abstract Diffusion MRI (dMRI) fiber tractography has become a pillar of the neuroimaging...

Read more