Skip to main content

MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging

Aug. 30, 2021—Leon Y. Cai, Qi Yang, Praitayini Kanakaraj, Vishwesh Nath, Allen T. Newton, Heidi A. Edmonson, Jeffrey Luci, Benjamin N. Conrad, Gavin R. Price, Colin B. Hansen, Cailey I. Kerley, Karthik Ramadass, Fang-Cheng Yeh, Hakmook Kang, Eleftherios Garyfallidis, Maxime Descoteaux, Francois Rheault, Kurt G. Schilling, and Bennett A. Landman. MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for...

Read more


Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe

Aug. 28, 2021—Plassard, Andrew J., Shunxing Bao*, Maureen McHugo, Lori Beason-Held, Jennifer U. Blackford, Stephan Heckers, and Bennett A. Landman. “Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe.” Magnetic Resonance Imaging 81 (2021): 17-23. Full text: https://www.sciencedirect.com/science/article/abs/pii/S0730725X21000692 Abstract Examining volumetric differences of the amygdala and anterior-posterior regions of the...

Read more


Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT

Aug. 28, 2021—Riqiang Gao, Mirza S. Khan, Yucheng Tang, Kaiwen Xu, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman, Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT, Technical report, 2021. Full text: https://arxiv.org/abs/2107.12842 Abstract Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning....

Read more


Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective

Aug. 28, 2021—Riqiang Gao, Yucheng Tang, Kaiwen Xu, Ho Hin Lee, Steve Deppen, Kim Sandler, Pierre Massion, Thomas A. Lasko, Yuankai Huo, Bennett A. Landman, Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective, MICCAI, 2021. Full text: https://arxiv.org/abs/2107.11882 Abstract Data from multi-modality provide complementary information in clinical prediction, but missing data in clinical cohorts limits...

Read more


Technical Note: Comparison of Convolutional Neural Networks for Detecting Large Vessel Occlusion on Computed Tomography Angiography

Jul. 21, 2021—Lucas W. Remedios, Sneha Lingam, Samuel W. Remedios, Riqiang Gao, Stephen W. Clark, Larry T. Davis, Bennett A. Landman. Technical Note: Comparison of Convolutional Neural Networks for Detecting Large Vessel Occlusion on Computed Tomography Angiography. Medical Physics,  2021 Full Text Abstract Purpose: Artificial intelligence diagnosis and triage of large vessel occlusion may quicken clinical response for...

Read more


PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images

Jun. 23, 2021—Leon Y. Cai, Qi Yang, Colin B. Hansen, Vishwesh Nath, Karthik Ramadass, Graham W. Johnson, Benjamin N. Conrad, Brian D. Boyd, John P. Begnoche, Lori L. Beason-Held, Andrea T. Shafer, Susan M. Resnick, Warren D. Taylor, Gavin R. Price, Victoria L. Morgan, Baxter P. Rogers, Kurt G. Schilling, Bennett A. Landman. PreQual: An automated pipeline...

Read more


Labeling Lateral Prefrontal Sulci using Spherical Data Augmentation and Context-aware Training

Apr. 1, 2021—Ilwoo Lyu, Shunxing Bao, Lingyan Hao, Jewelia Yao, Jacob Miller, Willa Voorhies, Warren Taylor, Silvia Bunge, Kevin Weiner, Bennett Landman. “Labeling Lateral Prefrontal Sulci using Spherical Data Augmentation and Context-aware Training”. NeuroImage, 229, 117758, 2021. [Full text][Code] Abstract The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow...

Read more


RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random Anatomical Prior

Dec. 28, 2020—Ho Hin Lee, Yucheng Tang, Shunxing Bao, Richard G. Abramson, Yuankai Huo, Bennett A. Landman. “RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random Anatomical Prior.” arXiv preprint arXiv:2012.12425 (2020). Full Text Abstract Performing coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation minimizing the lost of spatial contextual information. However, current coarse-to-refine approaches require a significant number of models...

Read more


Multi-Contrast Computed Tomography Healthy Kidney Atlas

Dec. 28, 2020—Ho Hin Lee, Yucheng Tang, Kaiwen Xu, Shunxing Bao, Agnes B. Fogo, Raymond Harris, Mark P. de Caestecker, Mattias Heinrich, Jeffery M. Spraggins, Yuankai Huo, Bennett A. Landman, “Multi-Contrast Computed Tomography Healthy Kidney Atlas.” arXiv preprint arXiv:2012.12432 (2020). Full Text Abstract The construction of three-dimensional multi-modal tissue maps provides an opportunity to spur interdisciplinary innovations across temporal and...

Read more


Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning

Dec. 26, 2020—Bermudez, C., Remedios, S. W., Ramadass, K., McHugo, M., Heckers, S., Huo, Y., & Landman, B. A. (2020). Generalizing deep whole-brain segmentation for post-contrast MRI with transfer learning. Journal of Medical Imaging, 7(6), 064004. Full Text: https://pubmed.ncbi.nlm.nih.gov/33381612/ Abstract Purpose: Generalizability is an important problem in deep neural networks, especially with variability of data acquisition in...

Read more