Skip to main content

Harmonization Category

Multipath cycleGAN for harmonization of paired and unpaired low-dose lung computed tomography reconstruction kernels

Dec. 5, 2025—Aravind R Krishnan, Thomas Z Li, Lucas W Remedios, Michael E Kim, Chenyu Gao, Gaurav Rudravaram, Elyssa M McMaster, Adam M Saunders, Shunxing Bao, Kaiwen Xu, Lianrui Zuo, Kim L Sandler, Fabien Maldonado, Yuankai Huo, Bennett A Landman, Medical Physics, Volume 52, Issue 11, DOI: https://doi.org/10.1002/mp.70120 Abstract Background Reconstruction kernels in computed tomography (CT) introduce...

Read more


Anatomy-Guided Multi-Path CycleGAN for Lung CT Kernel Harmonization

Dec. 5, 2025—Aravind Krishnan, Thomas Li, Lucas Walker Remedios, Kaiwen Xu, Lianrui Zuo, Kim L Sandler, Fabien Maldonado, Bennett Allan Landman, MIDL 2025, Link to paper: https://openreview.net/pdf?id=w3p7GddsQ8   Abstract  Accurate quantitative measurement in lung computed tomography (CT) imaging often re- lies on consistent kernel reconstruction across scanners and manufacturers. Harmonization can reduce measurement variability caused by heterogeneous...

Read more


Investigating the impact of kernel harmonization and deformable registration on inspiratory and expiratory chest CT images for people with COPD

Dec. 5, 2025—Aravind R Krishnan, Yihao Liu, Kaiwen Xu, Michael E Kim, Lucas W Remedios, Gaurav Rudravaram, Adam M Saunders, Bradley W Richmond, Kim L Sandler, Fabien Maldonado, Bennett A Landman, Lianrui Zuo, Medical Imaging 2025: Clinical and Biomedical Imaging, Volume 13410, 531-541 , DOI: https://doi.org/10.1117/12.3048827 Abstract Paired inspiratory-expiratory Computed Tomography (CT) scans enable quantification of gas...

Read more


Secondary use of radiological imaging data: Vanderbilt’s ImageVU approach

Dec. 4, 2025—David S. Smith, Karthik Ramadass, Laura Jones, Jennifer Morse, Daniel Fabbri, Joseph R. Coco, Shunxing Bao, Melissa Basford, Peter J. Embi, Reed A. Omary, John C. Gore, Jill M. Pulley, Bennett A. Landman. Secondary use of radiological imaging data: Vanderbilt’s ImageVU approach. J Biomed Inform. 2025 Oct;170:104905. doi: 10.1016/j.jbi.2025.104905. Epub 2025 Sep 10. PMID: 40939950....

Read more


Phenotype discovery of traumatic brain injury segmentations from heterogeneous multi-site data

Dec. 2, 2025—Adam M. Saunders, Michael E. Kim, Gaurav Rudravaram, Lucas W. Remedios, Chloe Cho, Elyssa M. McMaster, Daniel R. Gillis, Yihao Liu, Lianrui Zuo, Bennett A. Landman, and Tonia S. Rex. Phenotype discovery of traumatic brain injury segmentations from heterogeneous multi-site data. Accepted to SPIE Medical Imaging: Image Processing, February 2026. https://arxiv.org/abs/2511.03767 Abstract Traumatic brain injury...

Read more


Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks

Apr. 24, 2024—Aravind R. Krishnan, Kaiwen Xu, Thomas Li, Lucas W. Remedios, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman.  “Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks.”Med Phys. 2024;1-14.https://doi.org/10.1002/mp.17028 Abstract Background The kernel used in CT image reconstruction is an important factor that determines the texture of the CT image. Consistency of reconstruction...

Read more


Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation

Dec. 1, 2023—Aravind R. Krishnan, Kaiwen Xu, Thomas Li, Chenyu Gao, Lucas W. Remedios, Praitayini Kanakaraj, Ho Hin Lee, Shunxing Bao, Kim L. Sandler, Fabien Maldonado, Ivana Išgum, and Bennett A. Landman “Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation”, Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129261D (2 April 2024); https://doi.org/10.1117/12.3006608 Abstract The reconstruction kernel in computed tomography (CT) generation determines the texture of the image. Consistency...

Read more


Learning site-invariant features of connectomes to harmonize complex network measures

Dec. 1, 2023—Figure 1. Previous research elucidated that connectomes suffer from confounding site effects. In this work we propose a data-driven model to learn disjoint site (𝑐 = {1,2}) and biological features (siteless z) for BIOCARD (orange) and VMAP (blue) (left). We then inject a prescribed site, c’, to the learned representations to compute harmonized connectome modularity,...

Read more


Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes

Sep. 6, 2023—Nancy R. Newlin, Francois Rheault, Kurt G. Schilling, Bennett A. Landman. “Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes” Journal of Magnetic Resonance Imaging. January 2023. Full Text Background While graph measures are used increasingly to characterize human connectomes, uncertainty remains in how to use these metrics in a quantitative and reproducible manner. Specifically, there is...

Read more


Body Composition Assessment with Limited Field-of-view Computed Tomography: A Semantic Image Extension Perspective. Medical Image Analysis

Aug. 31, 2023—Kaiwen Xu, Thomas Li, Mirza S. Khan, Riqiang Gao, Sanja L. Antic, Yuankai Huo, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman Paper: https://www.sciencedirect.com/science/article/pii/S1361841523001123 Code: https://github.com/MASILab/S-EFOV Abstract Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT). This poses limitations for opportunistic CT-based body composition (BC) assessment as key anatomical structures...

Read more