Skip to main content

Harmonization Category

Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks

Apr. 24, 2024—Aravind R. Krishnan, Kaiwen Xu, Thomas Li, Lucas W. Remedios, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman.  “Lung CT harmonization of paired reconstruction kernel images using generative adversarial networks.”Med Phys. 2024;1-14.https://doi.org/10.1002/mp.17028 Abstract Background The kernel used in CT image reconstruction is an important factor that determines the texture of the CT image. Consistency of reconstruction...

Read more


Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation

Dec. 1, 2023—Aravind R. Krishnan, Kaiwen Xu, Thomas Li, Chenyu Gao, Lucas W. Remedios, Praitayini Kanakaraj, Ho Hin Lee, Shunxing Bao, Kim L. Sandler, Fabien Maldonado, Ivana Išgum, and Bennett A. Landman “Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation”, Proc. SPIE 12926, Medical Imaging 2024: Image Processing, 129261D (2 April 2024); https://doi.org/10.1117/12.3006608 Abstract The reconstruction kernel in computed tomography (CT) generation determines the texture of the image. Consistency...

Read more


Learning site-invariant features of connectomes to harmonize complex network measures

Dec. 1, 2023—Figure 1. Previous research elucidated that connectomes suffer from confounding site effects. In this work we propose a data-driven model to learn disjoint site (𝑐 = {1,2}) and biological features (siteless z) for BIOCARD (orange) and VMAP (blue) (left). We then inject a prescribed site, c’, to the learned representations to compute harmonized connectome modularity,...

Read more


Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes

Sep. 6, 2023—Nancy R. Newlin, Francois Rheault, Kurt G. Schilling, Bennett A. Landman. “Characterizing Streamline Count Invariant Graph Measures of Structural Connectomes” Journal of Magnetic Resonance Imaging. January 2023. Full Text Background While graph measures are used increasingly to characterize human connectomes, uncertainty remains in how to use these metrics in a quantitative and reproducible manner. Specifically, there is...

Read more


Body Composition Assessment with Limited Field-of-view Computed Tomography: A Semantic Image Extension Perspective. Medical Image Analysis

Aug. 31, 2023—Kaiwen Xu, Thomas Li, Mirza S. Khan, Riqiang Gao, Sanja L. Antic, Yuankai Huo, Kim L. Sandler, Fabien Maldonado, Bennett A. Landman Paper: https://www.sciencedirect.com/science/article/pii/S1361841523001123 Code: https://github.com/MASILab/S-EFOV Abstract Field-of-view (FOV) tissue truncation beyond the lungs is common in routine lung screening computed tomography (CT). This poses limitations for opportunistic CT-based body composition (BC) assessment as key anatomical structures...

Read more


Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion MRI

Jul. 25, 2022—Colin B. Hansen, Kurt G. Schilling, Francois Rheault, Susan Resnick, Andrea T. Shafer, Lori L. Beason-Held, Bennett A. Landmƒan. “Contrastive semi-supervised harmonization of single-shell to multi-shell diffusion MRI.” Magnetic Resonance Imaging (2022). Full Text Abstract Diffusion weighted MRI (DW-MRI) harmonization is necessary for multi-site or multi-acquisition studies. Current statistical methods address the need to harmonize...

Read more


Multimodal neuroimaging in pediatric type 1 diabetes: a pilot multisite feasibility study of acquisition quality, motion, and variability

Dec. 10, 2021—Leon Y. Cai, Costin Tanase, Adam W. Anderson, Karthik Ramadass, Francois Rheault, Chelsea A. Lee, Niral J. Patel, Sky Jones, Lauren M. LeStourgeon, Alix Mahon, Sumit Pruthi, Kriti Gwal, Arzu Ozturk, Hakmook Kang, Nicole Glaser, Simona Ghetti, Sarah S. Jaser, Lori C. Jordan, and Bennett A. Landman Abstract Type 1 diabetes (T1D) affects over 200,000...

Read more


MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging

Aug. 30, 2021—Leon Y. Cai, Qi Yang, Praitayini Kanakaraj, Vishwesh Nath, Allen T. Newton, Heidi A. Edmonson, Jeffrey Luci, Benjamin N. Conrad, Gavin R. Price, Colin B. Hansen, Cailey I. Kerley, Karthik Ramadass, Fang-Cheng Yeh, Hakmook Kang, Eleftherios Garyfallidis, Maxime Descoteaux, Francois Rheault, Kurt G. Schilling, and Bennett A. Landman. MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for...

Read more


Pandora: 4-D White Matter Bundle Population-Based Atlases Derived from Diffusion MRI Fiber Tractography

Nov. 29, 2020—Colin B. Hansen, Qi Yang,  Ilwoo Lyu, Francois Rheault, Cailey Kerley, Bramsh Qamar Chandio, Shreyas Fadnavis, Owen Williams, Andrea T. Shafer, Susan M. Resnick, David H. Zald, Laurie E. Cutting, Warren D. Taylor, Brian Boyd, Eleftherios Garyfallidis, Adam W. Anderson, Maxime Descoteaux, Bennett A. Landman, Kurt G. Schilling. Pandora: 4-D White Matter Bundle Population-Based Atlases Derived from Diffusion MRI Fiber Tractography. Neuroinform (2020). Full Text Abstract Brain atlases have proven to be valuable neuroscience tools for...

Read more


Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI

Nov. 25, 2020—Colin B. Hansen, Baxter P. Rogers, Kurt G. Schilling, Vishwesh Nath, Justin A. Blaber, Okan Irfanoglu, Alan Barnett, Carlo Pierpaoli, Adam W. Anderson, Bennett A. Landman. “Empirical field mapping for gradient nonlinearity correction of multi-site diffusion weighted MRI.” Magnetic Resonance Imaging 2020. Full Text Abstract Background: Achieving inter-site / inter-scanner reproducibility of diffusion weighted magnetic resonance...

Read more