Machine Learning Category
Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI Structural Features
May. 15, 2017—Citation: Bermudez, C. et.al. Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI Structural Features. Frontiers in Biomedical Imaging Science VI. May 2017. Abstract. Abstrract It is well known that there are structural changes that occur in the brain with age. However, there are insufficient imaging biomarkers that reliably describe structural...
Phenotype Analysis of Early Risk Factors from Electronic Medical Records Improves Image-Derived Diagnostic Classifiers for Optic Nerve Pathology
Nov. 1, 2016—Shikha Chaganti, Kunal P. Nabar, Katrina M. Nelson, Louise A. Mawn, Bennett A. Landman. “Phenotype Analysis of Early Risk Factors from Electronic Medical Records Improves Image-Derived Diagnostic Classifiers for Optic Nerve Pathology” In Proceedings of the SPIE Medical Imaging Conference. Orlando, Florida, February 2017. Oral presentation. Full Text: Abstract We examine CT imaging and EMR...
Multi-atlas Learner Fusion: An efficient segmentation approach for large-scale data
Dec. 26, 2015—Andrew J. Asman, Yuankai Huo, Andrew J. Plassard, and Bennett A. Landman, “Multi-atlas Learner Fusion: An efficient segmentation approach for large-scale data”, Medical Image Analysis (MedIA), 2015 Dec;26(1):82-91. Full text: http://linkinghub.elsevier.com/retrieve/pii/S1361-8415(15)00135-8 Abstract We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on...
Toward content based image retrieval with deep convolutional neural networks
Feb. 12, 2015—Judah E. Sklan, Andrew J. Plassard, Daniel Fabbri, Bennett A. Landman. “Toward content based image retrieval with deep convolutional neural networks ” In Proceedings of the SPIE Medical Imaging Conference. Orlando, Florida, February 2015. † Full text: https://www.ncbi.nlm.nih.gov/pubmed/?term=%E2%80%9CToward+content+based+image+retrieval+with+deep+convolutional+neural+networks+%E2%80%9D Abstract Content–based image retrieval (CBIR) offers the potential to identify similar case histories, understand rare disorders, and...
Revealing Latent Value of Clinically Acquired CTs of Traumatic Brain Injury Through Multi-Atlas Segmentation in a Retrospective Study of 1,003 with External Cross-Validation
Feb. 1, 2015—Andrew J. Plassard, Patrick D. Kelly, Andrew J. Asman, Hakmook Kang, Mayur B. Patel, Bennett A. Landman. “Revealing Latent Value of Clinically Acquired CTs of Traumatic Brain Injury Through Multi-Atlas Segmentation in a Retrospective Study of 1,003 with External Cross-Validation” In Proceedings of the SPIE Medical Imaging Conference. Orlando, Florida, February 2015. Full text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4405676/...
Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging.
Apr. 15, 2013—Carolyn B. Lauzon, Andrew J. Asman, Michael L. Esparza, Scott S. Burns, Qiuyun Fan, Yurui Gao, Adam W. Anderson, Nicole Davis, Laurie E. Cutting, Bennett A. Landman. “Simultaneous Analysis and Quality Assurance for Diffusion Tensor Imaging.” PLoS ONE. 2013 Apr 30;8(4) PMC23637895 † Full Text: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3640065/ Abstract Diffusion tensor imaging (DTI) enables non-invasive, cyto-architectural...