TractEM: Evaluation of protocols for deterministic tractography white matter atlas
Dec. 3, 2021—Rheault, Francois, Roza G. Bayrak, Xuan Wang, Kurt G. Schilling, Jasmine M. Greer, Colin B. Hansen, Cailey Kerley et al. “TractEM: Evaluation of protocols for deterministic tractography white matter atlas.” Magnetic Resonance Imaging 85 (2022): 44-56. Full Text Abstract Purpose: One of the key challenges of the manual delineation of white matter pathways is human-rater’s subjectivity in labeling....
MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging
Aug. 30, 2021—Leon Y. Cai, Qi Yang, Praitayini Kanakaraj, Vishwesh Nath, Allen T. Newton, Heidi A. Edmonson, Jeffrey Luci, Benjamin N. Conrad, Gavin R. Price, Colin B. Hansen, Cailey I. Kerley, Karthik Ramadass, Fang-Cheng Yeh, Hakmook Kang, Eleftherios Garyfallidis, Maxime Descoteaux, Francois Rheault, Kurt G. Schilling, and Bennett A. Landman. MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for...
Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe
Aug. 28, 2021—Plassard, Andrew J., Shunxing Bao*, Maureen McHugo, Lori Beason-Held, Jennifer U. Blackford, Stephan Heckers, and Bennett A. Landman. “Automated, open-source segmentation of the Hippocampus and amygdala with the open Vanderbilt archive of the temporal lobe.” Magnetic Resonance Imaging 81 (2021): 17-23. Full text: https://www.sciencedirect.com/science/article/abs/pii/S0730725X21000692 Abstract Examining volumetric differences of the amygdala and anterior-posterior regions of the...
Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT
Aug. 28, 2021—Riqiang Gao, Mirza S. Khan, Yucheng Tang, Kaiwen Xu, Steve Deppen, Yuankai Huo, Kim L. Sandler, Pierre P. Massion, Bennett A. Landman, Technical Report: Quality Assessment Tool for Machine Learning with Clinical CT, Technical report, 2021. Full text: https://arxiv.org/abs/2107.12842 Abstract Image Quality Assessment (IQA) is important for scientific inquiry, especially in medical imaging and machine learning....
Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective
Aug. 28, 2021—Riqiang Gao, Yucheng Tang, Kaiwen Xu, Ho Hin Lee, Steve Deppen, Kim Sandler, Pierre Massion, Thomas A. Lasko, Yuankai Huo, Bennett A. Landman, Lung Cancer Risk Estimation with Incomplete Data: A Joint Missing Imputation Perspective, MICCAI, 2021. Full text: https://arxiv.org/abs/2107.11882 Abstract Data from multi-modality provide complementary information in clinical prediction, but missing data in clinical cohorts limits...
Technical Note: Comparison of Convolutional Neural Networks for Detecting Large Vessel Occlusion on Computed Tomography Angiography
Jul. 21, 2021—Lucas W. Remedios, Sneha Lingam, Samuel W. Remedios, Riqiang Gao, Stephen W. Clark, Larry T. Davis, Bennett A. Landman. Technical Note: Comparison of Convolutional Neural Networks for Detecting Large Vessel Occlusion on Computed Tomography Angiography. Medical Physics, 2021 Full Text Abstract Purpose: Artificial intelligence diagnosis and triage of large vessel occlusion may quicken clinical response for...
PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
Jun. 23, 2021—Leon Y. Cai, Qi Yang, Colin B. Hansen, Vishwesh Nath, Karthik Ramadass, Graham W. Johnson, Benjamin N. Conrad, Brian D. Boyd, John P. Begnoche, Lori L. Beason-Held, Andrea T. Shafer, Susan M. Resnick, Warren D. Taylor, Gavin R. Price, Victoria L. Morgan, Baxter P. Rogers, Kurt G. Schilling, Bennett A. Landman. PreQual: An automated pipeline...
Labeling Lateral Prefrontal Sulci using Spherical Data Augmentation and Context-aware Training
Apr. 1, 2021—Ilwoo Lyu, Shunxing Bao, Lingyan Hao, Jewelia Yao, Jacob Miller, Willa Voorhies, Warren Taylor, Silvia Bunge, Kevin Weiner, Bennett Landman. “Labeling Lateral Prefrontal Sulci using Spherical Data Augmentation and Context-aware Training”. NeuroImage, 229, 117758, 2021. [Full text][Code] Abstract The inference of cortical sulcal labels often focuses on deep (primary and secondary) sulcal regions, whereas shallow...
Body Part Regression With Self-Supervision
Jan. 14, 2021—Y.Tang, R.Gao, S.Han, Y.Chen, D.Gao, V.Nath, C.Bermudez, M.R. Savona, R.G. Abramson, S.Bao,I.Lyu, Y.Huo and B.A. Landman,”Body Part Regression with Self-supervision”,IEEETransactions onMedicalImaging,2021 Full Text: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9350603 Abstract Body part regression is a promising new technique that enables content navigation through selfsupervised learning. Using this technique, the global quantitative spatial location for each axial view slice is obtained...
RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random Anatomical Prior
Dec. 28, 2020—Ho Hin Lee, Yucheng Tang, Shunxing Bao, Richard G. Abramson, Yuankai Huo, Bennett A. Landman. “RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random Anatomical Prior.” arXiv preprint arXiv:2012.12425 (2020). Full Text Abstract Performing coarse-to-fine abdominal multi-organ segmentation facilitates to extract high-resolution segmentation minimizing the lost of spatial contextual information. However, current coarse-to-refine approaches require a significant number of models...
