Skip to main content

Big Data Category

Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI Structural Features

May. 15, 2017—Citation: Bermudez, C. et.al. Accurate Age Estimation in a Pediatric Population Using Deep Learning on T1‐weighted MRI  Structural Features. Frontiers in Biomedical Imaging Science VI. May 2017. Abstract. Abstrract It is well known that there are structural changes that occur in the brain with age. However, there are insufficient imaging biomarkers that reliably describe structural...

Read more


Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service

Nov. 15, 2016—Shunxing Bao, Andrew Plassard, Bennett Landman and Aniruddha Gokhale. “Cloud Engineering Principles and Technology Enablers for Medical Image Processing-as-a-Service.”  IEEE International Conference on Cloud Engineering (IC2E), Vancouver, Canada, April 2017. Full text: NIHMSID Abstract Traditional in-house, laboratory-based medical imaging studies use hierarchical data structures (e.g., NFS file stores) or databases (e.g., COINS, XNAT) for storage and retrieval....

Read more


Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine

Nov. 1, 2016—Shunxing Bao, Frederick D. Weitendorf, Andrew J. Plassard, Yuankai Huo, Aniruddha Gokhale, Bennett A. Landman. “Theoretical and Empirical Comparison of Big Data Image Processing with Apache Hadoop and Sun Grid Engine”. Orlando, Florida, February 2017. Oral presentation. Full Text: Abstract Traditional large scale processing uses a cluster computer that combines a group of workstation nodes...

Read more


Deep Learning for Brain Tumor Classification

Jul. 1, 2016—Justin S. Paul, Andrew J. Plassard, Bennett A. Landman, Daniel Fabbri. “Deep Learning for Brain Tumor Classification.” In Proceedings of the SPIE Medical Imaging Conference. Orlando, Florida, February 2017. Oral presentation. Abstract Recent research has shown that deep learning methods have performed well on supervised machine learning, image classification tasks. The purpose of this study is...

Read more


Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment

Jan. 31, 2016—Robert L. Harrigan, Benjamin C. Yvernault, Brian D. Boyd, Stephen M. Damon, Kyla David Gibney, Benjamin N. Conrad, Nicholas S. Phillips, Baxter P. Rogers, Yurui Gao, Bennett A. Landman “Vanderbilt University Institute of Imaging Science Center for Computational Imaging XNAT: A multimodal data archive and processing environment” Neuroimage, 2014. In press May 2015† Full Text:...

Read more


Data-driven Probabilistic Atlases Capture Whole-brain Individual Variation

Oct. 4, 2015—Yuankai Huo, Katherine Swett, Susan M. Resnick, Laurie E. Cutting, Bennett A. Landman. “Data-driven Probabilistic Atlases Capture Whole-brain Individual Variation”, MICCAI MAPPING Workshop, Munich, Germany, October 2015. Full text: https://www.researchgate.net/publication/303483865_Data-driven_Probabilistic_Atlases_Capture_Whole-brain_Individual_Variation Abstract

Read more


Resource Estimation in High Performance Medical Image Computing

Oct. 31, 2014—Rueben Banalagay, Kelsie J. Covington, D.Mitch Wilkes, Bennett A. Landman. “Resource Estimation in High Performance Medical Image Computing.” Neuroinformatics. 2014 Oct;12(4):563-73. † PMC4381797 Full Text: https://www.ncbi.nlm.nih.gov/pubmed/24906466 Abstract Medical imaging analysis processes often involve the concatenation of many steps (e.g., multi-stage scripts) to integrate and realize advancements from image acquisition, image processing, and computational analysis. With the...

Read more


On study design in neuroimaging heritability analyses.

Feb. 1, 2014—Mary Ellen Koran, Neda Jahanshad, Bo Li, Tricia A. Thornton-Wells, David C. Glahn, Paul M. Thompson, John Blangero, Thomas E. Nichols, Peter Kochunov, Bennett A. Landman. “On study design in neuroimaging heritability analyses.” In Proceedings of the SPIE Medical Imaging Conference. San Diego, California, February 2014† Full Text: https://www.researchgate.net/publication/269322665_On_Study_Design_in_Neuroimaging_Heritability_Analyses Abstract Imaging genetics is an emerging...

Read more